[go: up one dir, main page]

KR100347721B1 - Antagonistic soil bacterium Pseudomonas fluorescens and biological control using the same - Google Patents

Antagonistic soil bacterium Pseudomonas fluorescens and biological control using the same Download PDF

Info

Publication number
KR100347721B1
KR100347721B1 KR1019990043524A KR19990043524A KR100347721B1 KR 100347721 B1 KR100347721 B1 KR 100347721B1 KR 1019990043524 A KR1019990043524 A KR 1019990043524A KR 19990043524 A KR19990043524 A KR 19990043524A KR 100347721 B1 KR100347721 B1 KR 100347721B1
Authority
KR
South Korea
Prior art keywords
pseudomonas fluorescens
antibiotics
antagonistic
antagonist
pseudomonas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1019990043524A
Other languages
Korean (ko)
Other versions
KR20010036495A (en
Inventor
김상달
이은탁
Original Assignee
김상달
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김상달 filed Critical 김상달
Priority to KR1019990043524A priority Critical patent/KR100347721B1/en
Publication of KR20010036495A publication Critical patent/KR20010036495A/en
Application granted granted Critical
Publication of KR100347721B1 publication Critical patent/KR100347721B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N31/00Biocides, pest repellants or attractants, or plant growth regulators containing organic oxygen or sulfur compounds
    • A01N31/08Oxygen or sulfur directly attached to an aromatic ring system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/38Pseudomonas
    • C12R2001/39Pseudomonas fluorescens
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/822Microorganisms using bacteria or actinomycetales
    • Y10S435/874Pseudomonas
    • Y10S435/876Pseudomonas fluorescens

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 길항균주 슈도모나스 플루오레센스 2112(Pseudomonas fluorescens2112) 및 이를 이용한 생물학적 방제법에 관한 것으로 저병해 경작지 토양으로부터 분리선발하여 동정한 본 발명 길항균주 슈도모나스 플루오레센스 2112(기탁번호 KCTC 8944P)는 항진균성 항생물질과 사이드로포어(siderophore)를 생산하여 식물병원성 진균의 RNA 합성 및 단백질 합성을 저해하므로써 식물병원균의 생육을 억제하고 특히 산성 pH 및 고온의 조건에서도 식물병원균 억제 활성을 유지할 뿐만 아니라 실제 토양에서도 그 활성을 유지하는 뛰어난 효과가 있다.The present invention relates to Pseudomonas fluorescens 2112 ( Pseudomonas fluorescens 2112) and a biological control method using the same. By inhibiting RNA synthesis and protein synthesis of phytopathogenic fungi by producing sex antibiotics and siderophores, they inhibit the growth of phytopathogens and maintain phytopathogenic activity, especially at acidic pH and high temperature. Also has excellent effects to maintain its activity.

Description

길항균주 슈도모나스 플루오레센스 2112 및 이를 이용한 생물학적 방제법{Antagonistic soil bacterium Pseudomonas fluorescens and biological control using the same}Antagonistic soil bacterium Pseudomonas fluorescens and biological control using the same

본 발명은 길항균주 슈도모나스 플루오레센스 2112(Pseudomonas fluorescens2112)(기탁번호 KCTC 8944P) 및 이를 이용한 생물학적 방제법에 관한 것이다. 더욱 상세하게는, 본 발명은 항생물질과 사이드로포어를 생산하여 식물병원균을 효과적으로 방제하는 신규한 길항균주 슈도모나스 플루오레센스 2112 및 이를 이용한 생물학적 방제법에 관한 것이다.The present invention relates to Pseudomonas fluorescens 2112 (Accession No. KCTC 8944P) and a biological control method using the antagonist strain Pseudomonas fluorescens 2112. More specifically, the present invention relates to a novel antagonist Pseudomonas fluorescens 2112 for producing antibiotics and sideropores to effectively control phytopathogens and a biological control method using the same.

1950년대 초부터 지금까지 급속하게 개발되어온 유기합성화학농약이 세계의 식량 생산에 크게 기여해온 것은 누구나 다 인정하고 있는 사실이지만 이의 남용에따른 생태계 파괴 등 심각한 폐해가 속출하고 있어 각종 규제가 선진국을 중심으로 날로 강화되고 있다. 이러한 규제 여건 하에서 화학 농약시장의 성장 추세는 점차 감소하고 있는 반면 신규 생물농약이나 미생물제제의 시장은 점차 활기를 띠고 있다.Everyone has acknowledged that organic synthetic chemical pesticides, which have been rapidly developed since the early 1950s, have contributed greatly to the world's food production, but serious damages such as the destruction of ecosystems due to its abuse are continuing. It is strengthening day by day. Under these regulatory conditions, the growth trend of the chemical pesticide market is gradually decreasing, while the market for new biopesticides and microbial products is becoming active.

미생물들이 분비하는 활성물질을 이용한 농업용 항생물질은 토양내 미생물중 방선균을 이용한 것이 대부분이며 의약용 항생물질에 비해 비교적 늦게 개발되었다. 그중 에서도 특히 일본에서 가장 많이 개발되었는데 1958년에 벼도열병 방제용 Blastin이 최초의 실용화 상품으로 알려져 있다.Agricultural antibiotics using active substances secreted by microorganisms are mostly used by actinomycetes among soil microorganisms, and were developed relatively later than medicinal antibiotics. Among them, it was most developed especially in Japan. In 1958, Blastin for control of rice fever was known as the first commercial product.

우리나라에서는 그동안 일부 수입된 미생물제제를 이용한 생물방제법이 시도된 바 있으나 우리나라 기후풍토와 토양환경에 적응능력이 결여되어 그 활성을 발휘하지 못한 경우가 대부분이었다. 따라서 우리지역의 환경에 쉽게 적응되어 토양내 복원 우점화 될 수 있는 우리나라 토양의 토착길항미생물을 선발하고 이를 활용한 생물방제법이 요구되고 있다.In Korea, biocontrol methods using some imported microorganisms have been attempted, but most of them have not been able to perform their activities due to lack of adaptability to the climate climate and soil environment. Therefore, there is a need for a biocontrol method that selects and utilizes indigenous antagonistic microorganisms of Korean soil that can easily adapt to the environment of our region and become a predominantly restoration in the soil.

식물 병충해에 의한 각종 작물 생산의 손실은 세계적으로 전체 작물생산량의 12%에 달하나 그 중에서 20% 정도만이 토양 선충과 세균에 의한 손상이고 나머지 대부분은 식물병원성 진균에 의해 발병된다. 따라서 세균에 의한 식물병해의 방제 필요성보다는 진균성 식물병원균의 방제 필요성이 훨씬 시급하다. 지금까지는 진균방제용 유기화학농약이 주로 사용되어 왔으나 계속 사용하기에는 한계점이 있다.The loss of crop production by plant pests accounts for 12% of the total crop production worldwide, but only 20% of them are damaged by soil nematodes and bacteria, and most of them are caused by phytopathogenic fungi. Therefore, the necessity of controlling fungal phytopathogens is much more urgent than the necessity of controlling plant diseases by bacteria. Until now, organic chemical pesticides for fungal control have been mainly used, but there are limitations to continue use.

미생물 방제법은 환경공해가 없고 독성이 적으며 생산가가 저렴하고 생산설비투자가 적다는 이점이 있을 뿐 아니라 연구개발비가 기존 농약 개발비의 약 1/10- 1/20 정도이며 개발 기간도 1/3 정도 든다는 이점이 있다.The microbial control method has the advantages of no environmental pollution, low toxicity, low production cost, and low investment in production equipment, and the research and development cost is about 1/10-1 / 20th of the existing pesticide development cost, and the development period is about 1/3 There is an advantage in carrying.

길항기작의 원인물질로 알려진 사이드로포어는 수용성인 저분자의 철이온-특이 결합(ferric iron-chelating) 화합물이며 일반적으로 펩타이드(peptide) 사슬로 연결된 황록색 (yellow-green)의 형광 크로모포어(fluorescent chromophore)이다. 이는 펩타이드 사슬의 구성과 크기에 따라 크게 2 가지의 구조적 형태로 나누어지는데, 카테콜(catechol;ο-dihydroxybenzene)의 유도체로 카테콜 아마이드(catechol amides;phenolates, catecholates) 형태와 하이드록사민산 (hydroxamic acid;RCONHOH)의 유도체로 하이드로-크사메이트(hydro- xamates)형태가 있다. 카테콜 형태의 사이드로포어(siderophore)는 엔테로박틴(enterobactin), 파라박틴(parabactin), 아크로박틴(agrobactin), 안구이박틴(anguibactin), 비브리오박틴(vibriobactin), 아조토박틴(azotochelin) 등이 있으며, 하이드록사메이트 (hydroxamate) 형태의 사이드로포어(siderophore)는 페리크롬(ferrichrome), 페리옥사민(ferrioxamine), 코프로겐(coprogen), 노카다민(nocardamine) 등이 있다. 또한 최근에 시트레이트-하이드록사메이트(citrate-hydroxamate) 형태의 사이드로포어(siderophore)로 아쓰로박틴(arthrobactin), 아에로박틴(aerobactin), 시조키넨 (schizokinen) 등이, 그리고 퀴놀린(quinoline)형태의 사이드로포어(siderophore)로 슈도-박틴(pseudo- bactin)이나 표베르틴(pyoverdin) 등이 밝혀져 있다.Siderophores, known as antagonists of antagonism, are water-soluble, low-molecular, ferric iron-chelating compounds, typically yellow-green fluorescent chromophores linked by peptide chains. chromophore). It is divided into two structural forms according to the composition and size of the peptide chain. It is a derivative of catechol (ο-dihydroxybenzene), which is a catechol amide (phenolates, catecholates) form and hydroxamic acid (hydroxamic acid). A derivative of acid (RCONHOH) is in the form of hydro-xamates. The catechol type siderophores include enterrobactin, parabactin, acrobactin, anguibactin, vibriobactin, and azotochelin. Siderophores in the form of hydroxamate include ferrichrome, ferrioxamine, coprogen, and nocardamine. Recently, citrate-hydroxamate forms of siderophores include arthrobactin, aerobactin, schizokinen, and quinoline. Pseudo-bactin and pyoverdin are known as siderophores of the form.

자연환경에서 미생물이 필요로 하는 철(Fe)의 양은 그람양성균과 곰팡이의 경우 0.4 ~4.0 μM 정도, 그람음성균의 경우 0.3 ~ 1.8 μM 정도이다. 이러한 대부분의 철은 호기적인 환경하에서 중성이나 알카리 pH에서 용해상수가 10-38.7정도로 불용성의 페릭-옥시하이드록사이드 폴리머[ferric-oxyhydroxide polymer [Fe(OH3)]로 존재하며, 그 자유 페릭 아이론(free ferric iron) 농도는 일반적으로 pH 7에서 용해상수 10-18정도로 매우 낮다고 볼 수 있다.The amount of iron (Fe) required by microorganisms in the natural environment is about 0.4 to 4.0 μM for Gram-positive bacteria and fungi, and 0.3 to 1.8 μM for Gram-negative bacteria. Most of this iron is in a neutral or alkaline pH under aerobic environment dissolution constant of 10 -38.7 so insoluble ferric-exist as oxyhydroxide polymer [ferric-oxyhydroxide polymer [Fe ( OH 3)], the free ferric iron The concentration of free ferric iron is generally very low, with a dissolution constant of 10-18 at pH 7.

비록 토양에서 철 성분이 전체 무기이온의 1 ∼ 6%로 풍부하다 할지라도 미생물들이 필요로 하는 철이온(Fe3+)의 양은 자신의 생육유지에 충분하지 않으며 모든 토양미생물들간의 경쟁적 요인이 될 수밖에 없다. 따라서 이러한 철이 부족된 환경(low-iron stress)을 극복하기 위해 많은 호기성 및 통성혐기성 미생물들은 생육에 필요한 충분한 양의 철을 효과적으로 얻기 위해 특수한 철조절외막단백(iron regulated outer membrane protein, IROMP )에 의한 고친화철수송계(high affinity iron transport system)를 가지고 있어, 철이온과 친화성이 높고 형광색을 나타내는 저분자량(주로 400 ~ 2,000 daltons)의 가용성인 사이드로포어(siderophore)를 분비하여 철이온과 복합체를 형성한 다음, 외막에 있는 특이인기인자(recognate-specific receptor)에 결합되어 에너지 의존성 과정(energy-dependent process)에 의해 순차적으로 세포질막을 통해 세포내로 받아들여지게 된다. 이러한 고친화철수송계와 관련된 사이드포어의 생합성과 외막단백질(outer membrane protein)은 철이온에 의해 조절되게 된다.Although iron is abundant in the soil with 1 to 6% of the total inorganic ions, the amount of iron ions (Fe 3+ ) required by microorganisms is not sufficient to maintain their growth and will be a competitive factor among all soil microorganisms. There is no choice but to. Thus, in order to overcome this low-iron stress, many aerobic and breathable anaerobic microorganisms are required by a special iron regulated outer membrane protein (IROMP) to effectively obtain sufficient iron for growth. It has a high affinity iron transport system, which releases a low-molecular soluble siderophore that is highly compatible with iron ions and has a fluorescent color (400-2,000 daltons). After the formation of the protein, it binds to a recognate-specific receptor on the outer membrane and is sequentially introduced into the cell through the cytoplasmic membrane by an energy-dependent process. Sidepore biosynthesis and outer membrane proteins associated with these high affinity iron transport systems are controlled by iron ions.

철은 일반적으로 식물병원균의 포자발아(spore germination)와 발아관신장(germ tube elongation)에 필수적인 요인이며, 철이온 농도가 제한 받지 않으면 그로 인해 식물 병원균의 생육이 활발하게 되어 식물뿌리 침투 및 감염의 원인이 된다. 따라서 근권(rhizoshpere)에서의 PGPR은 식물뿌리 표면에 군집을 이루어 살며 철이온 흡수의 경쟁에서 우위를 정함으로서 식물병원균의 생육을 억제시키는데, 이는 대부분 형광성 슈도모나드(fluorescent pseudomonads)를 분비하는 사이드로포어(siderophore)에 의해 뿌리 주변의 철을 결합(chelating)하여 식물병원균의 포자발아와 발아관 신장을 억제하게 된다. 따라서 이러한 경쟁적 길항작용은 토양전염병을 감소시키며, 기주식물의 근권 정착능력을 촉진함으로써 작물의 성장을 양호하게 하여 수확량을 증대할 수 있는 아주 효과적인 생물학적 방제방법이다.Iron is generally an essential factor for spore germination and germ tube elongation of phytopathogens. If iron ions are not confined, the growth of plant pathogens may be active, resulting in plant root infiltration and infection. Cause. Thus, PGPR in the rhizosphere perches on the surface of plant roots and inhibits the growth of phytopathogens by establishing an advantage in the competition of iron ions absorption, which are mostly sideropores that secrete fluorescent pseudomonads. Siderophore inhibits spore germination and germ tube elongation of phytopathogens by chelating iron around the roots. Therefore, this competitive antagonism reduces soil infectious diseases and promotes rooting ability of host plants, which is a very effective biological control method to improve crop growth and increase yield.

따라서, 본 발명자들은 고추역병의 주요 원인균인 파이토프토라 캡씨씨(Phytophthora capsici)에 강력한 길항력을 가지는 균주를 분리·선발하고 이 균주가 생성하는 길항물질인 항진균성 항생물질의 물질적 특성 구명과 구체적 방제기작을 조사하고자 하였다.Therefore, the present inventors have isolated and selected strains having a strong antagonistic activity against Phytophthora capsici , a major causative agent of red pepper disease, and investigated the physical properties of antifungal antibiotics, which are antagonists produced by this strain, We tried to investigate the control mechanism.

본 발명의 목적은 항진균성 항생물질과 사이드로포어를 생산하여 식물병원균을 강력하게 억제하는 길항균주 슈도모나스 플루오레센스 2112를 제공함에 있다. 본 발명의 다른 목적은 상기 길항균주를 이용한 생물학적 방제법을 제공함에 있다.An object of the present invention is to provide an antagonistic strain Pseudomonas fluorescens 2112 which produces antifungal antibiotics and sideropores to strongly inhibit phytopathogens. Another object of the present invention to provide a biological control method using the antagonistic strains.

본 발명의 상기 목적은 자연농업을 수행하는 저병해 경작지 토양으로부터 항생물질과 사이드포어를 생산하여 고추역병균의 발육을 저지하는 길항균주 슈도모나스 속 2112를 분리한 후 이 균주를 슈도모나스 플루오레센스로 동정하고 이 균주가 생산하는 항생물질의 항균활성을 여지 디스크(Paper disc) 방법으로 조사한 다음 항생물질 항균활성에 미치는 pH 및 온도의 영향을 조사하였다. 이어서 본 발명 길항균주 슈도모나스 플루오레센스 2112가 항생물질을 생산하는데 있어서, 탄소원, 질소원, 무기염의 영향을 조사하여 최적 생산조건을 찾은 후 생산된 항생물질를 추출하여 정제 및 동정한 후 고추역병균을 대상균주로 사용하고 방사성 동위원소를 프리커서로 라벨링하여 상기 추출정제된 항생물질의 항균기작을 조사하고 실제로 고추를 대상 기주식물로 사용하여in vivo에서 생물방제 실험을 실시하여 항균활성을 확인하였다. 그리고 본 발명 길항균주 슈도모나스 플루오레센스 2112 가 생산하는 사이드로포어를 정제하고 아미노산 분석하여 동정하므로써 달성하였다.The object of the present invention is to identify antibiotics and Pseudomonas fluorescens after separating the antagonistic strain Pseudomonas genus 2112, which inhibits the development of pepper blight bacteria by producing antibiotics and side pores from the soil of low-pest farmland, which performs natural agriculture. The antimicrobial activity of the antibiotics produced by this strain was investigated by the paper disc method, and then the effects of pH and temperature on the antibiotic antimicrobial activity were investigated. Subsequently, in the production of antibiotics, the present invention antagonist Pseudomonas fluorescens 2112 investigated the effects of carbon source, nitrogen source, and inorganic salt to find the optimum production conditions, and then extracted and purified antibiotics produced. Using the strain and labeling the radioisotope with a precursor, the antimicrobial mechanism of the extracted antibiotic was investigated, and the antimicrobial activity was confirmed by in vivo biocontrol experiments using red pepper as a host plant. And this was achieved by purifying the siderophore produced by the antagonistic strain Pseudomonas fluorescens 2112 of the present invention, and analyzing and identifying the amino acids.

이하, 본 발명의 구성 및 작용을 설명한다.Hereinafter, the configuration and operation of the present invention.

도 1은 PDA 상에서 페어링 배양(pairing culture)법에 따라 본 발명 길항균주 슈도모나스 플루오레센스 2112(Pseudomonas fluorescens2112)에 의해 고추역병균인 파이토프토라 캡씨씨(Phytophthora capsici)의 성장 거리가 저해된 정도를 나타낸 사진도이다.1 is a degree of growth inhibition of the phytophthora capsici ( Phytophthora capsici ), which is the causative bacterium by Pseudomonas fluorescens 2112 of the present invention according to the pairing culture method on PDA ( Pseudomonas fluorescens 2112) Figure is a picture.

도 2는 CAS 배지내에서 본 발명 길항균주 슈도모나스 플루오레센스 2112가 생산한 사이드로포어에 의해 형성된 오렌지 환(orange halo)을 나타낸 사진도이다.Figure 2 is a photograph showing an orange halo formed by the sideropore produced by the present invention antagonist Pseudomonas fluorescens 2112 in CAS medium.

도 3은 투시경 전자현미경으로 본 발명 길항균주 슈도모나스 플루오레센스 2112의 형태를 관찰한 사진도이다.Figure 3 is a photograph of observing the form of the antagonistic strain Pseudomonas fluorescens 2112 of the present invention with a fluoroscopic electron microscope.

도 4는 본 발명 길항균주 슈도모나스 플루오레센스 2112의 동정을 위한 지방산 분석결과를 나타낸다.Figure 4 shows the fatty acid analysis results for the identification of the present invention antagonist Pseudomonas fluorescens 2112.

도 5는 본 발명 길항균주 슈도모나스 플루오레센스 2112를 Biolog?동정시스템으로 동정한 결과를 나타낸다.5 is Biolog of the present invention antagonistic strain Pseudomonas fluorescens 2112 ? It shows the result of identification by identification system.

도 6은 PDA 평판배지에서 본 발명 길항균주 슈도모나스 플루오레센스 2112의 항생물질에 의해 파이토크토라 캡씨씨 유주자의 저해지대를 나타낸 사진도이다.FIG. 6 is a photograph showing the inhibition zone of the phytotoktor capsicum strain by the antibiotic of the present invention antagonist Pseudomonas fluorescens 2112 in a PDA plate medium.

도 7은 파이토프토라 캡씨씨 균사의 성장에 대항하는 본 발명 길항균주 슈도모나스 플루오레센스 2112에 의해 생산된 항생물질의 항진균성 활성을 나타낸 사진도이다.Figure 7 is a photograph showing the antifungal activity of antibiotics produced by the antagonist Pseudomonas fluorescens 2112 of the present invention against the growth of Phytophthora capsicum mycelium.

도 8은 PDB상 브로스에서 본 발명 길항균주 슈도모나스 플루오레센스 2112의 배양에 의해 파이토프토라 캡씨씨의 저해를 나타낸 사진도이다.8 is a photograph showing the inhibition of phytophthora cap seed by culturing the antagonist Pseudomonas fluorescens 2112 of the present invention in broth on PDB.

도 9는 본 발명 길항균주 슈도모나스 플루오레센스 2112로부터 생산된 항생물질의 HPLC 패턴을 나타낸다.9 shows the HPLC pattern of antibiotics produced from the present invention antagonist Pseudomonas fluorescens 2112.

도 10은 파이토프토라 캡씨씨 유주자를 사용하여 본 발명 길항균주 슈도모나스 플루오레센스 2112로부터 생산된 항생물질 활성을 스캐닝한 사진도이다.Figure 10 is a photograph of the antibiotic activity produced from the antagonist Pseudomonas fluorescens 2112 of the present invention using a phytophthora capsicum strainer.

도 11은 본 발명 길항균주 슈도모나스 플루오레센스 2112로부터 얻어진 항진균성 항생물질의 Fab-mass 스펙트럼을 나타낸다.Figure 11 shows the Fab-mass spectrum of the antifungal antibiotics obtained from the present invention antagonist Pseudomonas fluorescens 2112.

도 12는 본 발명 길항균주 슈도모나스 플루오레센스 2112로부터 생산된 항진균성 항생물질의1H-NMR 스펙트럼을 나타낸다.12 shows the 1 H-NMR spectrum of the antifungal antibiotics produced from the present invention antagonist Pseudomonas fluorescens 2112.

도 13은 본 발명 길항균주 슈도모나스 플루오레센스 2112로부터 생산된 항진균성 항생물질의13C-NMR 스펙트럼을 나타낸다.Figure 13 shows the 13 C-NMR spectrum of the antifungal antibiotics produced from the antagonist Pseudomonas fluorescens 2112 of the present invention.

도 14는 고추의 성장에 있어서 본 발명 슈도모나스 플루오레센스 2112의 항진균성 활성을In vivo에서 확인한 결과를 나타낸 사진도이다.14 is a photograph showing the results of in vivo confirming the antifungal activity of Pseudomonas fluorescens 2112 of the present invention in the growth of red pepper.

도 15는 본 발명 길항균주 슈도모나스 플루오레센스 2112로부터 생산된 표베르딘2112(pyoverdin2112)의 정제과정을 나타낸 순서도이다.15 is a flowchart illustrating the purification process of the table Aberdeen 2112 (pyoverdin 2112) produced from the present invention gilhanggyun main Pseudomonas fluorescein sense 2112.

도 16은 세파덱스 G-25 컬럼(Sephadex G-25 column)에 의해 본 발명 길항균주 슈도모나스 플루오레센스 2112가 생산하여 정제한 표베르딘2112의 용출 결과를 나타낸다.16 is a Sephadex G-25 column (Sephadex G-25 column) shows the dissolution results of the present invention gilhanggyun main Pseudomonas fluorescein sense 2112 produces a table 2112 Aberdeen purified by.

도 17은 pH 6.5 수용액에서 본 발명 길항균주 슈도모나스 플루오레센스 2112로부터 정제된 표베르딘2112와 이들의 페릭 복합체(ferric complex)의 UV 흡광 스펙트럼을 나타낸다.FIG. 17 shows UV absorbance spectra of Fyberdine 2112 and their ferric complexes purified from the present invention antagonist Pseudomonas fluorescens 2112 in pH 6.5 aqueous solution.

본 발명은 자연농업을 수행하는 저병해 경작지 토양에서 분리한 토착 길항세균으로부터 슈도모나스 속 균주를 분리한 후 이들 슈도모나스 속 균주들 중에서 항생물질을 생산하여 고추역병균의 발육을 저지하면서 사이드로포어를 생산하는 길항균주를 최종 선발하는 단계; 상기 선발한 본 발명 길항균주 슈도모나스 플루오레센스 2112(Pseudomonas fluorescens2112)를 그람염색 및 현미경으로 관찰하여 형태학적 특징을 조사하고 또 생화학적 성상시험과 API 시험, 지방산 분석 및 Biolog 사의 동정시스템을 이용하여 본 발명 균주를 슈도모나스 플루오레센스로 동정하는단계; 본 발명 길항균주 슈도모나스 플루오레센스 2112를 King's B 브로스에서 배양하여 항생물질을 얻은 후 이 항생물질의 항균활성을 여지 디스크 방법으로 조사하는 단계; 본 발명 길항균주 슈도모나스 플루오레센스 2112로부터 얻은 항생물질의 조정제액을 pH1 ~ 13까지 조정한 후 고추역병균에 대한 길항활성을 측정하여 본 발명 길항균주가 생산하는 항생물질의 pH 안정성을 조사하는 단계; 본 발명 길항균주 슈도모나스 플루오레센스 2112로부터 얻은 항생물질 조정제액을 20 ~ 121℃의 온도범위에서 처리한 후 식물병원균에 대한 항진균활성을 측정하여 본 발명 길항균주 슈도모나스 플루오레센스 2112가 생산하는 항생물질의 열안정성을 조사하는 단계; Davis 최소 배지(Davis minial medium)에서 10종의 탄소원을 첨가하고 본 발명 길항균주를 배양하고 발육균체량을 측정하여 항생물질 생산에 미치는 탄소원의 영향을 조사하는 단계; Davis 최소배지에서 항생물질 최적생산 조건을 나타내는 상기 탄소원과 13종의 무기 및 유기 질소원을 첨가하고 본 발명 길항균주를 배양한 후 발육균체량을 측정하여 항생물질 생산에 미치는 질소원의 영향을 조사하는 단계; Davis 최소배지에 항생물질 최적생산 조건을 나타내는 상기 탄소원과 질소원 및 12종의 염을 첨가하고 본 발명 길항균주 슈도모나스 플루오레센스 2112를 배양한 후 발육균체량을 측정하여 항생물질 생산에 미치는 염의 영향을 조사하는 단계; 본 발명 길항균주 슈도모나스 플루오레센스 2112 배양액에n-부탄올을 첨가하여 진탕한 후 항균활성물질을 감압농축하여 수집한 후 에틸아세테이트로 분획하여 항생물질을 추출하는 단계; 상기 에틸아세테이트 추출물을 메탄올에 녹인 후 Diaion HP-20 컬럼크로마토크라피하는 단계; Diaion HP-20 컬럼 크로마토그라피하여 얻은 활성분획을 다시 세파덱스 LH-20 컬럼크로마토그라피하는 단계; 세파덱스 LH-20 컬럼 크로마토그라피에 의해 얻은 활성분획을 실리카겔 TLC에 전개시켜 항진균활성물질을 추출하는 단계; 실리카겔 TLC에 의해 얻은 시료를 HPLC하여 정제도를 검증하는 단계; 고추역병균인 파이토프토라 캡씨씨를 대상균주로 [3H] 로이신, [3H] 아데닌, [14C] 글루코스를 이용한 Hideyo Yamagachi 등의 방법에 따라 실험을 실시하고 방사성 활성을 측정하여 본 발명 길항균주 슈도모나스 플루오레센스 2112가 생산하는 항생물질의 길항기작을 규명하는 단계; 고추를 대상 기주식물로 사용하여 고추역병균인 파이토프토라 캡씨씨에 대해 본 발명 길항균주 슈도모나스 플루오레센스 2112가 생산하는 항생물질의 발병억제력을 조사하는 단계; 본 발명 길항균주 슈도모나스 플루오레센스 2112를 SM 배지에서 배양하여 사이드로포어를 생산하는 단계; 상기 생산한 사이드로포어 중 페릭사이드로포어(ferric siderophore)를 먼저 정제한 후 탈철화시킨 다음 CM-세파덱스 C-25 및 세파덱스 G-25를 이용하여 순수한 사이드로포어를 정제한 후 TLC 상에서 확인하는 단계; 정제한 사이드로포어의 아미노산을 분석하여 구조를 동정하는 단계로 구성된다.The present invention isolates the Pseudomonas strains from indigenous antagonistic bacteria isolated from low-disement cropland soil, which performs natural farming, and then produces antibiotics among these Pseudomonas strains to prevent the development of pepper blight, while producing sideropores. Final selection of the antagonistic strains; Pseudomonas fluorescens 2112 of the selected antagonist strain Pseudomonas fluorescens 2112 was examined by gram staining and microscopy to examine its morphological characteristics, and also by using biochemical properties and API tests, fatty acid analysis, and Biolog's identification system. Identifying the strain of the present invention with Pseudomonas fluorescens; Culturing the antagonist Pseudomonas fluorescens 2112 of the present invention in King's B broth to obtain antibiotics, and then examining the antimicrobial activity of the antibiotics with a free disk method; Investigating the pH stability of the antibiotic produced by the antagonist strain of the present invention by measuring the antagonistic activity against the bacteriostatic bacterium after adjusting the antibiotic solution obtained from the antagonist Pseudomonas fluorescens 2112 to pH1 ~ 13; The antibiotics produced by the antagonist Pseudomonas fluorescens 2112 of the present invention were measured by measuring the antifungal activity against phytopathogens after treating the antibiotic control agent obtained from the present invention antagonist Pseudomonas fluorescein 2112 at a temperature range of 20 to 121 ° C. Examining the thermal stability of the; Adding 10 carbon sources in a Davis minial medium, culturing the antagonistic strains of the present invention, and measuring the growth of the growth bacteria to investigate the effect of the carbon source on the production of antibiotics; Investigating the effect of nitrogen source on the production of antibiotics by adding the carbon source and 13 kinds of inorganic and organic nitrogen sources showing the optimal antibiotic production conditions in the Davis minimum medium and culturing the antagonistic strain of the present invention and measuring the growth of the growth bacteria; Investigation of the effect of salt on antibiotic production by adding the carbon source, nitrogen source and 12 salts showing the optimal production of antibiotics to Davis Davis medium and culturing the antagonist Pseudomonas fluorescein 2112 of the present invention Making; Extracting antibiotics by adding n -butanol to the culture medium of the antagonist Pseudomonas fluorescens 2112 and shaking the mixture to concentrate the antimicrobial active material under reduced pressure, and then fractionate with ethyl acetate to extract antibiotics; Dissolving the ethyl acetate extract in methanol and then performing Diaion HP-20 column chromatography; Sepadex LH-20 column chromatography of the active fraction obtained by Diaion HP-20 column chromatography again; Extracting the antifungal active substance by developing the active fraction obtained by Sephadex LH-20 column chromatography on silica gel TLC; HPLC purification of the sample obtained by silica gel TLC to verify the purity; Phytophthora capsicum, a bacteriostatic bacterium, was tested according to the method of Hideyo Yamagachi using [ 3 H] leucine, [ 3 H] adenine, [ 14 C] glucose, and the radioactivity was measured. Identifying the antagonistic mechanism of antibiotics produced by the antagonist Pseudomonas fluorescens 2112; Investigating the onset inhibitory power of antibiotics produced by the antagonist Pseudomonas fluorescens 2112 of the present invention to the phytophthora cap C. Culturing the antagonistic strain Pseudomonas fluorescens 2112 of the present invention in SM medium to produce a siderophore; The ferric siderophore of the produced siderophore was first purified and then de-ironed, followed by purification of pure siderophore using CM- Sephadex C-25 and Sephadex G-25, followed by TLC. Confirming; Analyze the amino acid of the purified siderophore to identify the structure.

실시예 1: 길항균주 분리Example 1: Isolation of Antagonist Strains

본 실시예에서는 지역토양내 우점능, 토착능, 복귀능이 강한 길항미생물을 선발하기 위해 경주 아화지역의 토착길항미생물을 이용하는 자연농업의 저병해 경작지 토양을 분리원으로 하여 멸균 생리식염수에 10-2까지 현탁, 희석하고, 이를 LB한천배지에 0.1㎖씩 도말봉으로 접종하여, 30℃에서 1일간 배양시켰다. 항생물질을 생산하는 슈도모나스(Pseudomonas)속의 균주를 분리, 배양하기 위하여 슈도모나스 분리아가(Pseudomonas isolation agar;PIA)를 거쳐 King's B 아가를 사용하여 분리하였으며, 이들을 대상으로 하여 시드름병균 푸사리움 옥시스포름(F. oxysporum)과 고추역병균 파이토프토라 캡씨씨(P. capsici)를 항생물질 생산에 의해 방제할 수 있는 길항균주의 분리·선발을 위하여 PDA에서 대치배양을 실시하여 큰 억제거리를 형성하는 균주를 분리하였다. 또 사이드로포어(Siderophore) 생산성 균주를 분리하기 위해 대부분의 사이드로포어(siderophore) 생산균주가 형광(fluorescens)을 생성하는 점에 착안하여 자당 최소아가(sucrose minimal agar;SMA)에서 항생물질을 생산하는 균주를 대상으로 형광(fluorescens)를 생성하는 균주를 선발하여 이들을 대상으로 CAS(chrome azurol S) 블루 아가(blue agar) 평판배지에 크고 분명한 오랜지색 환을 형성하는 균주를 분리하였다. 분리한 균주들 중 항생물질과 같은 저분자물질 생산성 토착길항균주의 최종 선발을 하기 위해 항생물질 생산성 토착길항균주로 분리된 세균을 대상으로 배양원침액을 Amicon centriprep10 (MW 10,000)에 의해 수집한 저분자물질의 길항력을 푸사리움 솔라니(F. solani),푸사리움 옥시스포름(F. oxysporum)그리고 파이토프토라 캡씨씨(P. capsici)등의 식물병원성 균주를 이용해 페어링 재배시험(pairing culture test), 세포 매스 시험(cell mass test) 등으로 조사하여 선발하였다. 또한 항생물질중 많은 것이 내열성이므로 분리된 길항세균의 배양상징액을 80℃에서 30분간 열처리한 후의 길항력도 세포 매스 시험(cell mass test)으로 조사하였으며, 아울러 대부분의 항생물질이부탄올(butanol) 등 비극성 용매에 용출되는 지용성임을 감안하여n-부탄올(n-butanol)로 추출한 후, 그 길항력을 세포 매스 시험( cell mass test)으로 조사하였다. 또 항생물질생산성 길항미생물 중 사이드로포어(siderophore) 생산성 토착길항균주의 선발을 위하여 SM배지와 CAS배지를 이용하여 분리하였고 이들 균주를 대상으로 다시 CAS liquid assay에 의해 사이드로포어 활성에 따른 CAS의 탈색율과 Arnow phenolic assay와 Csaky hydroxamate assay에 의한 사이드로포어 활성도 측정법을 이용하여 사이드로포어 생산능이 가장 우수한 균주를 최종 선발하였다. 결과적으로, 자연농업 수행 저병해 경작지 토양에서 분리된 토착길항세균을 대상으로 슈도모나스(Pseudomonas)속을 분리하는 배지인 PIA배지를 이용하여 슈도모나스 (Pseudomonase) 속을 120여종 분리하였고, 이들을 대상으로 고추역병균 파이토프토라 캡씨씨(Phytophthora capsici)와 대치배양과 발육균체량 측정법을 실시하여 고추역병균에 길항하는 길항세균을 분리하였다. 이들 고추역병균 파이토프토라 캡씨씨(P. capsici)에 대해 강력한 발육저지대를 형성하는 길항세균들을 대상으로 SMA배지에서 형광(fluorescens)의 생성도 확인 할 수가 있었다. 이들을 사이드로포어(siderophore) 검출용 CAS배지에서 사이드로포어를 강력히 생성하는 균주의 분리하였는데 그 중 큰 오렌지색의 변색환을 생성하고 고추역병균 파이토프토라 캡씨씨(Phytophthora capsici)에 가장 큰 길항력을 가지는 토착길항미생물 PLP 2112를 최종 선발하였다(도 1, 도 2, 표 1).In this example, 10 -2 in sterile saline solution is used as a source of separation of low-pest agricultural soils of natural agriculture using indigenous antagonists of Gyeongju Ahwa area to select antagonistic microorganisms that have strong dominant, indigenous and reversible ability in local soil. Suspended and diluted until, and inoculated with 0.1 ml each of the smear rod in LB agar medium, and incubated for 1 day at 30 ℃. In order to isolate and cultivate the antibiotic-producing Pseudomonas genus, Pseudomonas isolation agar (PIA) was isolated using King's B agar. ( F. oxysporum) and P. capsici ( P. capsici) are strains that form a large inhibitory distance by replacing them in PDA to isolate and select antagonistic strains that can be controlled by antibiotic production. Was separated. In order to isolate Siderophore-producing strains, most siderophore-producing strains produce fluorescens, producing antibiotics from sucrose minimal agar (SMA). Strains that generate fluorescens were selected for the strains to isolate large and clear orange rings on CAS (chrome azurol S) blue agar plate medium. Amicon centriprep was applied to the bacteria isolated from antibiotic-producing indigenous antagonists for the final selection of low-molecular-product indigenous antagonists such as antibiotics. The antagonism of low molecular weight collected by 10 (MW 10,000) was determined by phytopathogenic activities such as F. solani, F. oxysporum and P. capsici. The strains were selected by investigating them by pairing culture test, cell mass test and the like. In addition, since many of the antibiotics were heat-resistant, the antagonistic force after heat-treating the culture supernatant of the isolated antagonist bacteria at 80 ° C. for 30 minutes was also examined by a cell mass test, and most of the antibiotics were butanol. n considering that the oil-soluble to be eluted in a non-polar solvent-extracted with butanol (n -butanol), were examined the way the drag force test cell mass (cell mass test). In addition, for the selection of siderophore-producing indigenous antagonist strains among antibiotic-producing antagonists, CAS was isolated using SM medium and CAS medium. The strains with the best siderophore production capacity were finally selected using the rate and siderophore activity assay by Arnow phenolic assay and Csaky hydroxamate assay. As a result, 120 species of Pseudomonase genus were isolated from PIA medium, which is a medium that isolates Pseudomonas genus from indigenous antagonistic bacteria isolated from low-cultivated soil of natural farming. Phytophthora capsici ( Phytophthora capsici ) and the cultivation and growth quantitative measurement method was performed to isolate the antagonistic bacteria antagonistic to the causative bacterium. The production of fluorescens in SMA media was also confirmed in the antagonistic bacteria that form a strong development zone against P. capsici . These isolates were isolated from strains that strongly produced siderophore in CAS for siderophore detection, which produced a large orange discoloration ring and was the largest antagonist to the phytophthora capsici . Indigenous antagonistic microorganisms PLP 2112 with final selection (Fig. 1, 2, Table 1).

파이토프토라 캡씨씨에 대한 토착성 길항균주의 선발Selection of indigenous antagonistic strains for phytophthora cap seed 균주Strain 페어링 거리(mm)Pairing distance (mm) 사이드로포어생산(mm)* Side low pore production (mm) * 세포량 저해(%)Cell volume inhibition (%) BLP-3034BLP-3034 66 00 72.772.7 BLP-5057BLP-5057 77 00 84.284.2 BLP-8117BLP-8117 66 00 87.587.5 BLP-4045BLP-4045 55 00 64.864.8 BLP-5042BLP-5042 88 55 56.556.5 BLP-6036BLP-6036 33 1313 85.485.4 PLP-4059PLP-4059 55 99 75.475.4 PLP-2071PLP-2071 66 1111 85.485.4 PLP-5046PLP-5046 1One 77 68.168.1 PLP-2112PLP-2112 99 88 89.889.8 * CAS 아가 플레이트 상에서 외피 사이드로포어에 의해 형성된 환의 직경* Diameter of the ring formed by the shell sidelopor on the CAS agar plate

실시예 2: 본 발명 길항균주의 동정Example 2 Identification of Inventive Antagonist Strains

상기 실시예 1에서 분리선발한 슈도모나스 속 2112 균주의 분류학적 동정을 위해 APItest(bioMerieux)와 Biolog사의 동정시스템(MicroLogTM3), 그리고 각종 생화학적 성상검사를 사용하였고, 그람염색 및 투시경 전자현미경(transmission electron microscope, TEM)으로 그 형태를 관찰하였다. 이를 바탕으로 버지의 균주검정법(Bergey's Manual of Determinative Bacteriology) 색인을 이용하여 최종 동정하였다. 실험결과, 본 발명 슈도모나스 속 2112 균주는 그람음성의 간균으로 판별되었으며, 그 미세형태를 확인하기 위해 전자현미경으로 관찰한 결과 2 ~ 3개의 편모를 가지는 간균으로 판명되었다(도 3). 또한 각종 생화학적 성상시험과 APItest( 표 2), 지방산 분석(도 4) 등의 각종 슈도모나스(Pseudomonas)동정에 필요한 분석 방법을 통해 비교, 동정해 본 결과 슈도모나스 플루오레센스 바이오타입F(Pseudomonas fluorescensbiotype F)에 58.3%의 근연성을 보였으며, 이를 Biolog사의 동정시스템을 이용하여 확인 동정하여 본 결과 슈도모나스 플루오레센스 바이오타입 F(P. fluorescensbiotype F)에 74.5%의 근연성(도 5)을 보임으로 최종적으로 슈도모나스 플루오레센스 바이오타입 F 내지는 그 근연종으로 동정하였다.API for Taxonomic Identification of Pseudomonas Genus 2112 Strain Isolated from Example 1 Test (bioMerieux), Biolog's identification system (MicroLog TM 3), and various biochemical properties were used, and the morphology was observed by gram staining and transmission electron microscope (TEM). Based on this, the final strain was identified using the Bergey's Manual of Determinative Bacteriology index. As a result, the strain Pseudomonas genus 2112 of the present invention was identified as Gram-negative bacillus, and as a result of observing with an electron microscope to confirm its micromorphism, it was found to be bacilli having two to three flagella (FIG. 3). In addition, various biochemical test and API Pseudomonas fluorescens biotype F ( Pseudomonas fluorescens biotype F) was found to be 58.3% compared to the Pseudomonas ( Pseudomonas) identification method, such as test (Table 2) and fatty acid analysis (Fig. 4). It was shown to be ductile and confirmed using Biolog's identification system. As a result, Pseudomonas fluorescens biotype F ( P. fluorescens biotype F) showed 74.5% inductance (Fig. 5) and finally Pseudomonas fluore Sense biotype F or its related species was identified.

상기 동정된 본 발명 슈도모나스 플루오레센스 2112 균주는 생명공학연구소에 1999년 6월 8일 KCTC 8944P로 기탁하였다.The identified Pseudomonas fluorescens 2112 strain of the present invention was deposited with KCTC 8944P on June 8, 1999 at the Biotechnology Research Institute.

파이토프토라 캡씨씨에 대항한 길항균주 슈도모나스 플루오레센스 2112의 동정Identification of antagonistic strain Pseudomonas fluorescens 2112 against phytophthora capsicum 시험exam PLPPLP 슈도모나스 플루오레센스Pseudomonas Fluorescence 24시간24 hours 48시간48 hours APItestAPItest 질산칼륨Potassium Nitrate ++ ++ ±± 트립토판Tryptophan ++ ++ -- 글루코스Glucose -- -- -- 아르기닌Arginine -- -- ++ 우레아Urea -- -- -- 에스컬린Escalin ++ ++ ++ 젤라틴gelatin ++ ++ ±± p-니트로-페닐-β D-갈락토피라노사이드p-nitro-phenyl-β D-galactopyranoside -- -- -- 글루코스Glucose ++ ++ ++ 아라비노스Arabinos ++ ++ ++ 만노스Mannose ++ ++ ++ 만니톨Mannitol ++ ++ ++ N-아세틸글루코사민N-acetylglucosamine ++ ++ ±± 말토스Maltose -- -- -- 글루코네이트Gluconate ++ ++ ++ 카프레이트Caprate ++ ++ ++ 아디페이트Adipate -- -- -- 말레이트Malate ++ ++ ++ 시트레이트Citrate ++ ++ ++ 페닐-아세테이트Phenyl-acetate -- -- -- 테트라메틸-p-페닐렌에디아민Tetramethyl-p-phenylenediamine ++ ++ ++ 셀 형성Cell formation rodrod rodrod 그람균주Gram strain -- -- 편모수Single parameter 1One 1One 포자생산Spore production -- -- 형광색소Fluorescent dyes ++ ++ 동정 슈도모나스 플루오레센스Pseudomonas fluorescein [주] ±: 30 ~ 60% 반응[Note] ±: 30 ~ 60% response

실시예 3: 본 발명 길항균주가 생산하는 항생물질의 항균활성Example 3: Antimicrobial Activity of Antibiotic Produced by the Antagonist of the Present Invention

본 발명 길항균주 슈도모나스 플루오레센스 2112으로 부터 항진균성 항생물질을 얻기 위하여 King's B broth에 균을 접종한 뒤 28℃에서 4일간 180rpm에서 진탕배양하였다. 이를 8,000×g에서 20분간 원심분리하여 원침상등액을 회수하였으며, 이 원침상등액을 항진균 활성검사에 사용하였다. 항균활성은 여지 디스크(paper disc) 방법으로 조사하였다. 즉, PDA 배지에 파이토프토라 캡씨씨의 포자를 도말한 후 직경 6mm 디스크에 100℃ water bath에서 10분간 살균한 항균활성분획을 침적시켜 28℃에서 2∼4일간 배양하면서 파이토프토라 캡씨씨의 균사생장을 억제하는 디스크 주위의 항진균성 억제환의 유무로 조사하였다. 실험결과, 고추역병균 파이토프토라 캡씨씨의 유주자(zoospore) 현탁액을 PDA 배지에 도말한 후 조정제된 항생물질을 침적한 디스크 페이터(disc paper)를 놓았을 때에 슈도모나스 캡씨씨의 유주자 발아의 저지로 디스크 페이터(disc paper) 주위로 생육저해환이 나타났으며(도 6), 균사체 성장억제를 확인하기 위하여 V8 쥬스배지를 조정제된 항생물질과 혼합 분주하여 제작한 V8 쥬스배지2112에 파이토프토라 캡씨씨를 6mm 크기의 디스크로 배지 중앙에 접종하여 균사의 성장도을 확인하였고, 또한 PDB에 PDA 배지에서 키운 파이토프토라 캡씨씨를 6mm 크기의 디스크로 접종하고 여기에 조정제된 항생물질을 첨가하여 30℃에서 배양했을 때에도 디스크로 접종한 디스크의 균사체 성장을 볼 수가 없었다(도 7, 도 8). 따라서 슈도모나스 플루오레센스 2112가 생산하는 항진균성 항생물질은 파이토프토라 캡씨씨의 유주자생육과 발아과정 그리고 균사생장을 모두 저해하는 항진균성 항생물질임을 알 수 있었다.Inoculation of King's B broth in order to obtain an antifungal antibiotic from the antagonist Pseudomonas fluorescens 2112 of the present invention was incubated at 180 rpm for 4 days at 28 ℃. The centrifuged supernatant was recovered by centrifugation at 8,000 × g for 20 minutes, and the centrifugal supernatant was used for antifungal activity test. Antimicrobial activity was investigated by paper disc method. In other words, the spores of the phytophthora cap seed on the PDA medium were deposited on a 6 mm diameter disc and sterilized with an antimicrobial activity fraction sterilized for 10 minutes in a 100 ° C. water bath, followed by incubation at 28 ° C. for 2 to 4 days. We investigated the presence of antifungal inhibitory rings around the disc that inhibited mycelial growth. As a result of the experiment, a zoospore suspension of Capsicum phytophthora cap seeds was smeared onto PDA medium, and the disc paper on which the adjusted antibiotics were deposited was placed as a jersey germination germ of Pseudomonas cap seeds. Growth inhibition was shown around the disc paper (FIG. 6), and the Phytophthora cap seed on V8 juice medium 2112 prepared by mixing and dispensing the V8 juice medium with the adjusted antibiotics to confirm mycelial growth inhibition. Was inoculated in the center of the medium with a 6mm sized disk to check the growth of the hyphae. In addition, inoculated with Pitoptora cap seed grown in PDA medium with a 6mm sized disk in PDB and adjusted antibiotics were added at 30 ° C. Even when cultured, the mycelial growth of the disk inoculated with the disk could not be seen (FIGS. 7 and 8). Therefore, the antifungal antibiotics produced by Pseudomonas fluorescens 2112 were antifungal antibiotics that inhibited both the growth and the germination and the mycelial growth of Phytopytora cap.

실시예 4: 본 발명 길항균주가 생산하는 항생물질의 특성Example 4 Characteristics of the Antibiotic Produced by the Antagonist of the Present Invention

실험예 1: pH 안정성Experimental Example 1: pH Stability

본 발명 길항세균 슈도모나스 플루오레센스 2112가 생성하는 항진균성 항생물질의 pH에 따른 안정성을 검토하기 위하여 조정제된 상태에서 수행하였다. pH에 대한 안정성은 조정제액을 1M HCl과 NaOH로 pH 1∼pH 13까지 조정한 후 4℃에서 17시간 전처리하였고, 이를 다시 pH 7로 조정한 후 파이토프토라 캡씨씨의 포자를 접종한 50mL의 PDB에 첨가한 후, 발육균체량 측정법으로 길항활성 변화를 조사하였다. 실험결과, 표 3에 나타낸 바와 같이 상기 항생물질은 산성 pH 조건에서는 매우 안정하였으나 알칼리성 용액에서는 불안정한 물질로 판단되었다.In order to examine the stability according to the pH of the antifungal antibiotics produced by the antagonistic Pseudomonas fluorescens 2112 of the present invention was carried out in a adjusted state. The stability to pH was adjusted to pH 1∼pH 13 with 1M HCl and NaOH, followed by pretreatment at 4 ° C. for 17 hours. After addition to the PDB, the antagonistic activity was examined by the growth cell mass measurement. As a result, as shown in Table 3, the antibiotic was found to be very stable under acidic pH but unstable in alkaline solution.

슈도모나스 플루오레센스 2112로부터 생산된 항진균 항생물질의 pH 안정성PH Stability of Antifungal Antibiotic Produced from Pseudomonas Fluorescens 2112 pHpH 상대 저해율(%)Relative Inhibition Rate (%) 1One 37.837.8 22 45.945.9 33 50.050.0 44 63.563.5 55 68.568.5 66 77.577.5 77 82.982.9 88 86.586.5 99 86.986.9 1010 00 1111 00 1212 00 1313 00 No antibioticNo antibiotic 00 NoneNone 100.0100.0

실험예 2: 열 안정성Experimental Example 2: Thermal Stability

본 발명 길항균주가 생성하는 항진균성 항생물질의 온도에 따른 안정성을 검토하기 위하여 조정제된 상태에서 수행하였다. 온도에 대한 안정성은 조정제액을 20℃∼121℃까지의 온도범위에서 30분간(단, 121℃의 경우는 20분) 처리한 후의 항진균성 활성감소를 발육균체량 측정법으로 조사하였다. 실험결과, 표 4에 나타낸 바와 같이 열에 대단히 안정하여 80℃까지 30분 동안 열처리하여도 항균활성을 그대로 유지하였다. 따라서 본 발명 길항균주가 생산하는 항생물질은 열에 아주 안정한 성질이 있음을 확인하였다.In order to examine the temperature-dependent stability of the antifungal antibiotics produced by the antagonist strain of the present invention was carried out in the adjusted state. Stability with respect to temperature was investigated by antimicrobial activity reduction method after 30 minutes (20 minutes in case of 121 degreeC) of the crude liquid at the temperature range from 20 degreeC to 121 degreeC. As a result of the experiment, as shown in Table 4, it was very stable to heat, and even after heat treatment for 30 minutes to 80 ℃, the antibacterial activity was maintained as it is. Therefore, it was confirmed that the antibiotic produced by the antagonistic strain of the present invention has a very stable property against heat.

슈도모나스 플루오레센스 2112로부터 생산된 항진균성 항생물질의 열안정성Thermal Stability of Antifungal Antibiotics from Pseudomonas Fluorescens 2112 온도(℃)Temperature (℃) 상대 저해율(%)Relative Inhibition Rate (%) 4040 86.586.5 6060 83.383.3 8080 50.550.5 100100 00 121121 00 No antibioticNo antibiotic 00 NoneNone 100.0100.0

실시예 5: 본 발명 길항균주의 항생물질 생산 최적조건Example 5 Optimal Condition of Antibiotic Production of the Antagonist of the Invention

실험예 1: 탄소원의 영향Experimental Example 1: Influence of Carbon Source

본 실험예에서는 Davis 최소 배지에 글루코스를 제외시키고 10종의 탄소원을 1.0%씩 첨가하여 30℃에서 3일간 본 발명 길항균주 슈도모나스 플루오레센스 2112를 배양한 후, 그 원침상등액을 이용하였으며 발육균체량 측정법에 따라 항진균 활성을 조사하였다. 실험결과, 표 5에서 볼 수 있는 바와 같이 항진균 활성과 길항세균의 성장에 있어 글리세롤이 가장 좋은 효과를 보였다. 이는 슈도모나스 속 최적배지인 King's B배지의 성분과 동일한 것으로 글리세롤이 슈도모나스 속의 성장에필수 성분임을 알 수 있었다.In the present experimental example, glucose was excluded from the Davis minimal medium, and 10 carbon sources were added at 1.0%, followed by culturing the present invention antagonist Pseudomonas fluorescens 2112 at 30 ° C. for 3 days. According to the antifungal activity was investigated. As shown in Table 5, glycerol showed the best effect on antifungal activity and growth of antagonistic bacteria. This is the same ingredient of King's B medium, which is the optimum medium in Pseudomonas. It was found to be an essential ingredient for the growth of the genus.

슈도모나스 플루오레센스 2112로부터 항생물질에 생산에 대한 탄소원 영향Effect of Carbon Sources on the Production of Antibiotics from Pseudomonas Fluorescens 2112 탄소원Carbon source 세포성장(Cell/mL)Cell growth (Cell / mL) 저해비율(%)Inhibition Ratio (%) NoneNone 5.10 × 107 5.10 × 10 7 100.0100.0 아라비노스Arabinos 6.59 × 108 6.59 × 10 8 77.577.5 사카로스Saccharose 7.64 × 108 7.64 × 10 8 281.8281.8 글리세롤Glycerol 8.18 × 108 8.18 × 10 8 516.7516.7 글루코스Glucose 6.39 × 108 6.39 × 10 8 155.0155.0 라미라린Lamirarin 6.32 × 107 6.32 × 10 7 193.8193.8 갈락토스Galactose 6.63 × 108 6.63 × 10 8 67.467.4 크실로스Xylose 7.65 × 108 7.65 × 10 8 238.5238.5 락토오스Lactose 6.09 × 107 6.09 × 10 7 124.0124.0 말토스Maltose 6.27 × 107 6.27 × 10 7 155.0155.0 프럭토스Fructose 6.91 × 108 6.91 × 10 8 182.4182.4 [주] 기초배지[K2HPO40.7%, KH2PO40.2%, (NH4)2SO40.1%, 소듐 시트레이트 0.05% 및MgSO4·7H2O 0.01% pH 7.0]에 탄소원(1.0%)를 추가한 후 슈도모나스 플루오레센스2112를 30℃에서 3일동안 배양하였다.[Note] The carbon source in the base medium [K 2 HPO 4 0.7%, KH 2 PO 4 0.2%, (NH 4 ) 2 SO 4 0.1%, sodium citrate 0.05% and MgSO 4 · 7H 2 O 0.01% pH 7.0] Pseudomonas fluorescens 2112 was incubated at 30 ° C. for 3 days.

실험예 2: 질소원의 영향Experimental Example 2: Influence of Nitrogen Source

본 실험예에서는 Davis 최소 배지에 암모니움 설페이트(ammonium sulfate)를 제외시키고 앞의 결과에서 선택된 탄소원을 최적 농도로 넣어준 후 13종의 무기 및 유기 질소원을 0.5%씩 첨가하여 상기 실험예 1의 탄소원의 경우와 동일한 방법으로 항생물질 생산에 대한 영향을 조사하였다. 실험결과 표 6에서 볼 수 있는 것과 같이 육수(beef extract), NaNO3, 이스트 추출물(yeast extract), 트립톤(tryptone), 펜토오스 펩톤(proteose peptone) 등에서 질소원 무첨가시 보다 높은 항진균 활성을 나타내었으며, 슈도모나스(Pseudomonas)속의 최적배지인 King's B배지의 성분인 프로테오스 펩톤(proteose peptone)에서 높은 활성과 균 성장률을 나타내었나 트립톤(tryptone)에 의해서 적은 균의 성장률을 보이지만 항진균 물질 생성은 더 많은 효과를 보였다.In the present experimental example, the ammonium sulfate was removed from the Davis minimal medium, and the carbon source selected in the previous result was put in an optimal concentration, and then 13 kinds of inorganic and organic nitrogen sources were added in 0.5% increments, respectively. In the same way as in the case of antibiotics production was investigated. As shown in Table 6, it showed higher antifungal activity in the case of no addition of nitrogen source in beet extract, NaNO 3 , yeast extract, tryptone, and pentose peptone. , Proteose peptone, a component of King's B medium, which is the optimum medium of Pseudomonas , showed high activity and growth rate, but showed less growth rate by tryptone, but more antifungal production It showed a lot of effects.

슈도모나스 플루오레센스 2112로부터 항생물질 생산에 대한 질소원의 영향Effect of Nitrogen Sources on Antibiotic Production from Pseudomonas Fluorescens 2112 질소원Nitrogen source 세포성장(Cell/mL)Cell growth (Cell / mL) 저해율(%)% Inhibition NoneNone 7.67 × 107 7.67 × 10 7 100.0100.0 (NH4)2SO4 (NH 4 ) 2 SO 4 3.37 × 108 3.37 × 10 8 466.7466.7 우레아Urea 2.55 × 108 2.55 × 10 8 336.0336.0 박토 펩톤Bakto peptone 5.39 × 108 5.39 × 10 8 254.5254.5 NH4H2PO4 NH 4 H 2 PO 4 3.42 × 108 3.42 × 10 8 323.1323.1 몰트 추출물Malt extract 2.52 × 108 2.52 × 10 8 442.1442.1 KNO3 KNO 3 3.03 × 108 3.03 × 10 8 365.2365.2 육수gravy 4.69 × 108 4.69 × 10 8 840.0840.0 NaNO3 NaNO 3 2.97 × 107 2.97 × 10 7 700.0700.0 이스트 추출물Yeast extract 9.27 × 108 9.27 × 10 8 840.0840.0 (NH4)2S2O8 (NH 4 ) 2 S 2 O 8 7.67 × 105 7.67 × 10 5 204.9204.9 트립톤Trypton 7.85 × 108 7.85 × 10 8 1200.01200.0 프로테오스 펩톤 NO. 3Proteose peptone NO. 3 8.18 × 108 8.18 × 10 8 289.7289.7 (NH4)2HPO4 (NH 4 ) 2 HPO 4 2.78 × 108 2.78 × 10 8 271.0271.0 [주] 배지[K2HPO40.7%, KH2PO40.2%, 소듐 시트레이트 0.05%, MgSO4·7H2O 0.01%및 글리세롤 1.0%, pH 7.0]에 질소원 0.1%를 첨가한 후 슈도모나스플루오레센스 2112를 30℃에서 3일간 배양하였다.Pseudomonas after adding nitrogen source 0.1% to medium [K 2 HPO 4 0.7%, KH 2 PO 4 0.2%, sodium citrate 0.05%, MgSO 4 .7H 2 O 0.01% and glycerol 1.0%, pH 7.0] Fluorescein 2112 was incubated at 30 ° C. for 3 days.

실험예 3: 무기염의 영향Experimental Example 3: Effect of Inorganic Salts

본 실험예에서는 무기염을 제외한 Davis 최소 배지에 상기 실험예 1과 실험예 2에서 결정된 탄소원과 질소원을 최적의 농도로 첨가한 후 12종의 염을 5mM 농도로 넣어주어 항진균성 항생물질 생산에 미치는 영향을 조사하였다. 실험결과, 표7에서 볼 수 있는바와 같이 항진균 활성과 길항세균의 성장에 있어 FeCl2, LiCl 그리고 MgCl2가 가장 좋은 효과를 보였다. 특히 LiCl 는 다른 무기염에 비해 절반의 길항세균의 성장이지만 탁월한 길항력을 보임으로써 LiCl 가 생산 유도에 촉진적인 작용을 하는 것으로 사료된다.In this experimental example, after adding the carbon source and nitrogen source determined in Experimental Example 1 and Example 2 at the optimum concentration to the Davis minimum medium except inorganic salts, 12 kinds of salts were added at a concentration of 5mM to produce antifungal antibiotics. The impact was investigated. As shown in Table 7, FeCl 2 , LiCl and MgCl 2 showed the best effect on antifungal activity and growth of antagonistic bacteria. In particular, LiCl grows about half of the antagonistic bacteria compared to other inorganic salts, but it shows an excellent antagonistic activity.

슈도모나스 플루오레센스 2112로부터 항생물질의 생산에 미치는 무기염의 영향Effect of inorganic salts on the production of antibiotics from Pseudomonas fluorescens 2112 미네랄 염Mineral salts 세포성장(Cell/mL)Cell growth (Cell / mL) 저해율(%)% Inhibition NoneNone 3.46 × 108 3.46 × 10 8 100100 FeCl2 FeCl 2 7.41 × 108 7.41 × 10 8 242.9242.9 BaCl2 BaCl 2 2.34 × 108 2.34 × 10 8 130.8130.8 RbClRbCl 7.34 × 108 7.34 × 10 8 89.589.5 Na2HPO4 Na 2 HPO 4 5.29 × 108 5.29 × 10 8 154.5154.5 CaCO3 CaCO 3 6.35 × 108 6.35 × 10 8 51.551.5 ZnSO4 ZnSO 4 2.01 × 108 2.01 × 10 8 56.756.7 MgCl2 MgCl 2 9.38 × 108 9.38 × 10 8 283.3283.3 KClKCl 3.38 × 108 3.38 × 10 8 141.7141.7 LiClLiCl 3.65 × 108 3.65 × 10 8 340.0340.0 K2HPO4 K 2 HPO 4 5.73 × 108 5.73 × 10 8 130.8130.8 NaClNaCl 9.97 × 108 9.97 × 10 8 94.494.4 CaCl2 CaCl 2 2.61 × 108 2.61 × 10 8 42.542.5 [주] 미네랄 염을 배지[이스트 추출물 0.5%, 소듐 시트레이트 0.05% 및 글리세롤1.0%, pH7.0]에 첨가한 후 슈도모나스 플루오레센스 2112를 30℃에서 3일간배양하였다.NOTE Mineral salts were added to the medium [yeast extract 0.5%, sodium citrate 0.05% and glycerol 1.0%, pH 7.0] and Pseudomonas fluorescens 2112 was incubated at 30 ° C. for 3 days.

실시예 6: 본 발명 길항균주가 생산하는 항생물질의 분리, 정제 및 구조분석Example 6: Isolation, Purification and Structural Analysis of Antibiotic Produced by the Antagonist of the Invention

제 1 공정: 항생물질 추출First step: antibiotic extraction

본 발명 길항균주 슈도모나스 플루오레센스 2112로 부터 생산된 항균활성물질을 대량으로 분리, 정제하기 위하여 배양액 9,000mL를 4℃, 8,000×g에서 20분간원심분리한 후 상징액에 항균활성의 이행량이 많은n-부탄올을 동량을 가하여 진탕한 뒤n-부탄올층을 분리하여 모으고 이를 유리 미세섬유질 필터(glass microfiber filter)(Whatman, GF/A)로 거른 후 이행 전용된 항균활성물질을 50℃이하에서 감압농축 하였다. 이를 100% 메탄올에 녹는 물질만 회수한 후 감압농축하고, 다시 이를 3차 증류수에 녹인 후 불용성물질을 Whatman No. 2 여과지(filter paper)로 거른 후 에틸 아세테이트(ethyl acetate)를 동량 첨가하여 분획하여 에틸 아세테이트층에 녹아있는 항생물질을 회수할 수 있었다.In order to separate and purify the antimicrobial active material produced from Pseudomonas fluorescens 2112 of the present invention in large quantities, 9,000 mL of the culture solution was centrifuged at 4 ° C. and 8,000 × g for 20 minutes, and n had a large amount of antimicrobial activity in the supernatant. After adding the same amount of butanol and shaking, the n -butanol layer was separated and collected, which was a glass microfiber filter (Whatman , GF / A), and then the concentrated antimicrobial active material was concentrated under reduced pressure below 50 ℃. After recovering only the material dissolved in 100% methanol and concentrated under reduced pressure, and then dissolved it in the tertiary distilled water again insoluble material What. After filtering with 2 filter paper (ethyl acetate), an equal amount of ethyl acetate was added to recover the antibiotics dissolved in the ethyl acetate layer.

제 2 공정: Diaion HP-20 컬럼 크로마토그라피Second Process: Diaion HP-20 Column Chromatography

본 공정에서는 상기 제 1공정에서 얻은 항생물질중 항균활성 물질을 분리, 정제하기 위하여 감압농축된 에틸 아세테이트 추출물을 메탄올에 녹인 후 Diaion HP-20 column(2.5×80cm)에 로딩(loading)한 후 메탄올(methanol)을 0%, 50%, 100% 비율로 각각 1L씩 유출시켰다. 각 분획을 농축한 뒤 10% 메탄올(methanol)에 녹여 여지 디스크(paper disc) 방법으로 항균활성을 조사하여 항진균활성을 나타내는 분획을 모아 감압 농축하였다.In this step, in order to isolate and purify the antimicrobial active material from the antibiotics obtained in the first step, the concentrated ethyl acetate extract was dissolved in methanol, and then loaded on a Diaion HP-20 column (2.5 × 80 cm), followed by methanol. (methanol) was allowed to flow 1 L at 0%, 50% and 100%. Each fraction was concentrated, dissolved in 10% methanol, and the antimicrobial activity was investigated using a paper disc method. The fractions showing antifungal activity were collected and concentrated under reduced pressure.

제 3 공정: 세파덱스 LH-20 컬럼Third Process: Sephadex LH-20 Column

본 공정에서는 Diaion HP-20 컬럼 크로마토그라피에 의해서 얻은 활성분획을 LH-20 컬럼(2.5 × 50cm)에 의해서 메탄올로 튜브당 10mL 씩 겔 여과(gel filtration)한 후 각 분획의 항균활성을 조사하여 항균활성이 나타나는 분획을 모아 감압 농축하였으며, 상기 과정을 2회에 걸쳐 반복하였다. 이때, 세파덱스 LH-20 겔 크로마토그라피 조건은 50℃에서 감압농축하여 10min/mL 속도로 실시하였고, 각 분획별로 길항력을 테스트하여 길항물질을 추적하였다.In this process, the active fraction obtained by Diaion HP-20 column chromatography was gel filtered by 10 mL per tube with methanol by LH-20 column (2.5 × 50 cm), and the antibacterial activity of each fraction was investigated. Fractions showing activity were collected and concentrated under reduced pressure, and the procedure was repeated twice. At this time, Sephadex LH-20 gel chromatography was carried out at a concentration of 10 minutes / mL under reduced pressure at 50 ℃, the antagonist was traced by testing the antagonism for each fraction.

제 4 공정: 실리카겔 TLC에 의한 항진균활성물질 추출Fourth Step: Extraction of Antifungal Active Substance by Silica Gel TLC

세파덱스 LH-20 컬럼 크로마토그라피에 의해서 얻은 활성분획을 TLC에 의해n-부탄올 : 아세트산 : 물을 4 : 2 : 4의 비율로 만든 전개액으로 전개시켜 항진균활성이 있는 Rf치가 약 0.89 부근인 밴드로부터 항진균 항생물질을 추출하였다. 그리고 이 밴드부위를 모아 항균활성을 조사하여 HPLC를 이용하여 정제도를 확인하였다.The active fraction obtained by Sephadex LH-20 column chromatography was developed by TLC with a developing solution in which n -butanol: acetic acid: water was 4: 2: 4, and the antifungal Rf value was about 0.89. Antifungal antibiotics were extracted from. The bands were collected and their antimicrobial activity was investigated to determine the degree of purification using HPLC.

제 5 공정: HPLC에 의한 항진균활성물질의 정제도 확인Step 5: Confirmation of Purification of Antifungal Active Substance by HPLC

본 공정에서는 상기 제 4 공정에서 실리카겔 TLC에 의해서 얻은 시료를 HPLC에 의해서 정제도를 검증하였다. 이때 HPLC분석조건은 LC-NH2컬럼을 이용하였으며, 용출 용매로 75% 아세토니트릴을 사용하여 11.0mL/min의 속도로 용출시켰으며 260nm에서 흡광도를 측정하였다. 실험결과, 도 9에 정제도를 나타낸 바와 같이 정제순도를 검증하였다.In this step, the purity of the sample obtained by silica gel TLC in the fourth step was verified by HPLC. The HPLC analysis conditions were LC-NH 2 column, eluting at a rate of 11.0mL / min using 75% acetonitrile as elution solvent and the absorbance was measured at 260nm. As a result, the purification purity was verified as shown in FIG.

제 6 공정: 항진균활성물질의 구조6th Step: Structure of Antifungal Active Substance

본 공정에서는 먼저 상기 제 5 공정에서 정제하여 정제도를 확인한 항진균활성물질 각각의 활성 측정은 파이토프토라 캡시씨의 유주자를 대상으로 PDA 배지에서 실시하였으며, 포자를 배지에 도말한 후 6mm 여지 디스크에 길항물질을 흡습시켜 놓아 그 주위에 억제환의 형성 유무로 확인하였다(도 10). 이어서 이 물질 구조의 분석은 슈도모나스 속이 생성하여 라이조스피어(Rhizosphere)등의 근권 식물병원성 진균에 생물방제(biocontrol) 효과를 보이는 항진균성 물질이 아세틸플로로글루시놀(acetylphloroglucinol)계 물질이라는 보고를 근거로 하여 매스 스펙트럼(mass spectrum;MS)에서 분자량 210인 것을 알았으며,1H-NMR에서 아세틸 피크(acetyl peak)를 잘 나타내었으며,13C-NMR에서 카보닐 카본(carbonyl carbon)과 아세틸(acetyl)의 -CH3카본, 치환된 아로마틱 환(aromatic ring)의 카본 피크(carbon peak)들이 관측되었으며(도 11, 도 12, 도 13), 이를 근거로 해서 추정한 결과 항진균 활성물질은 보고된 아세틸플로로글루시놀(acetylphloroglucinol)계 물질의 MS 데이타 그리고 NMR 데이타와 Biomolecular NMR spectroscopy와 Introduction to spectroscopy를 근거로 비교하여 분자량 210을 가지는 슈도모나스(Pseudomonas)유래성 항진균 항생물질인 2, 4-diacetylphloro- glucinol(C10O5H10)으로 동정이 되었고, 그 구조는 하기 식(I)에 나타낸 바와 같다.In this step, the activity of each of the antifungal active substances purified in the fifth step to confirm the degree of purification was carried out in PDA medium for phytophthora capsy's resident, and then antagonized in 6 mm disk after spores were spread on the medium. The material was absorbed and confirmed by the presence or absence of formation of a suppression ring around it (FIG. 10). Then analysis of the material structure is based on a report that Pseudomonas trick generated rayijo spear (Rhizosphere) rhizosphere plant biocontrol pathogenic fungi (biocontrol) showing the effect of the antifungal substance Eagle rusinol (acetylphloroglucinol) substance acetyl flow such In the mass spectrum (MS), it was found to have a molecular weight of 210, and showed an acetyl peak in 1 H-NMR, and carbonyl carbon and acetyl in 13 C-NMR. Carbon peaks of -CH 3 carbon, substituted aromatic ring of (CH 11) were observed (FIGS. 11, 12, 13). Pseudo having a molecular weight of 210 based on MS data and NMR data of roglucinol (acetylphloroglucinol) -based material and biomolecular NMR spectroscopy and Introduction to spectroscopy monas) -derived antifungal antibiotic 2, 4-diacetylphloro-glucinol (C 10 O 5 H 10 ) was identified, the structure is shown in the following formula (I).

실시예 7: 본 발명 길항균주가 생산한 항생물질의 길항기작Example 7 Antagonistic Mechanism of Antibiotic Produced by the Antagonist of the Present Invention

본 실시예에서는 본 발명 길항균주 슈도모나스 플루오레센스 2112로부터 얻은 정제된 항생물질을 이용하여 식물병원성 진균에 대한 길항기작을 고추역병균 파이토프토라 캡씨씨를 대상균주로 하여 길항기작의 분자생물학적인 규명을 위하여 단백질, 핵산, 세포벽 합성 전구체로 각각 [3H] 로이신(Leucine), [3H] 아데닌(Adenine), [14C] 글루코스(Glucose)를 이용하여 Hideyo Yamaguchi 등이 실시한 방법으로 실험하였다. 즉 20% 희석한 PDB 0.85mL에 정제된 항생물질(대조구는 50% 메탄올 첨가) 30㎕과 파이토프토라 캡씨씨의 포자현탁액 0.1mL을 접종하여 30℃에서 1시간 전배양을 하였으며, 여기에 각각의 라벨 프리커서(labeled precursor)를 20㎕ 첨가하여 24시간 진탕배양하였다. 첫번째 [3H] 로이신의 조사는 뜨거운 트리클로로아세트산-불용성 물질(Hot trichloroactic acid(TCA)-insoluble material)에 포함된 라벨 로이신의 혼입량으로 결정하였다. 반응은 10% TCA 동일 부피를 첨가하고 90℃ 15분간 가열하고 그 반응액에 포함된 불용성 물질(insolublematerial)을 유리 미세섬유 필터(glass microfiber filter;Whatman, GF/A)로 수거하고 2회 세척한 후 공기건조(air dry)하였다. 이 필터에 포함된 방사성 활성(radio activity)을 측정하였다. 두 번째 [3H] 아데닌의 조사는 차가운 TCA-불용성(RNA 플러스 DNA[Cold TCA-insoluble(RNA plus DNA)] 물질에 포함된 라벨 아데닌(labeled adenin)의 혼입량으로 결정하였다. 반응은 10% 차가운 TCA 1mL를 첨가한 후 차가운 TCA-불용성(RNA 플러스 DNA)[cold TCA-insoluble(RNA plus DNA)]를 글래스 미세섬유 필터(glass microfiber filter)로 수집하였다. 또 다른 샘플에 1mL 1N KOH를 첨가하고 60℃ 2시간 처리 후 1.8mL의 20% 차가운 TCA를 첨가 침전시킨 후 0℃에서 하룻밤 방치시킨 후 유리 미세섬유 필터(glass microfiber filter)로 수거하여 이 필터(filter)에 포함된 방사성 활성(radio activity;DNA)을 측정하였다. 세 번째, [14C] 글루코스의 조사는 1N NaOH를 1mL 첨가한 후, 끓는 물(boiling water)에 20분간 분해한 후 유리 미세섬유 필터(glass microfiber filter)로 수거하였다. 이를 멸균수로 2회 세척하였으며, 공기건조(air dry)시켜 이 필터에 포함된 방사성 활성을 측정하였다. 실험결과, 표 8에서 볼 수 있는 것과 같이 병원성 진균의 RNA 합성 저해와 단백질 합성을 저해하는 기작임을 알 수 있었다.In this example, the molecular mechanism of the antagonistic mechanism of phytopathogenic fungi using the purified antibiotics obtained from the antagonistic strain Pseudomonas fluorescens 2112 of the present invention was determined as the target strain of P. phytophthora capsicum. each [3 H] leucine (leucine), was tested by the [3 H] adenine (adenine), methods such as Hideyo Yamaguchi conducted using the [14 C] glucose (glucose) to proteins, nucleic acids, cell wall synthesis precursors to. In other words, 30 μl of purified antibiotics (controlled 50% methanol added) and 0.1 mL of the spore suspension of Phytoptotor Caps seed were inoculated in 0.85 mL of PDB diluted to 20%, and precultured at 30 ° C. for 1 hour, respectively. 20 μl of a labeled precursor of was added thereto, followed by shaking culture for 24 hours. The first investigation of [ 3 H] leucine was determined by the incorporation of the label leucine contained in a hot trichloroactic acid (TCA) -insoluble material. The reaction was carried out by adding the same volume of 10% TCA, heating at 90 ° C. for 15 minutes, and filtering the insoluble material contained in the reaction solution into a glass microfiber filter. , GF / A), washed twice, and air dried. The radio activity contained in this filter was measured. A second investigation of [ 3 H] adenine was determined by the incorporation of labeled adenin contained in cold TCA-insoluble (RNA plus DNA) material. After adding 1 mL of TCA, cold TCA-insoluble (RNA plus DNA) was collected with a glass microfiber filter, and another sample was added 1 mL 1N KOH. After 2 hours of treatment at 60 ° C, 1.8 mL of 20% cold TCA was added and precipitated, and then allowed to stand overnight at 0 ° C. The resultant was collected by a glass microfiber filter, and the radioactivity contained in the filter was obtained. (DNA) The third, [ 14 C] glucose irradiation was added 1 mL of 1N NaOH, decomposed in boiling water for 20 minutes and collected with a glass microfiber filter. It was washed twice with sterile water and air dry This was measured on a radioactivity contained in the filter was found to be a result, as can be seen in Table 8, the mechanism to inhibit the RNA synthesis inhibitors, and protein synthesis of pathogenic fungi.

파이토프토라 캡씨씨의 성장에 있어서 슈도모나스 플루오레센스 2112의 항진균성 기작Antifungal Mechanism of Pseudomonas Fluorescens 2112 in the Growth of Phytophthora Cap 세포 구성Cell composition 라벨 프로커서Label Procursor 데이타(CPM)Data (CPM) 대조구Control 슈도모나스 플루오레센스2112로 처리Treated with Pseudomonas fluorescens 2112 DNA 및 RNADNA and RNA [3H]아데닌[ 3 H] adenine 991,782991,782 324,349324,349 DNADNA [3H]아데닌[ 3 H] adenine 61,28561,285 57,43557,435 단백질protein [3H]로이신[ 3 H] leucine 2,644,2082,644,208 335,252335,252 세포벽Cell wall [14C]글루코스[ 14 C] glucose 35,80535,805 37,43937,439

실시예 8:Example 8: In vivoIn vivo 포트 방제실험Port Control Experiment

본 발명 항생물질(Antibiotic) 생산성 길항미생물이 실제 토양에서 식물병원균에 방제력을 발휘하는지 여부를 검증하기 위하여 고추를 대상 기주식물로 포트에서 방제실험을 실시하였으며, 상토로 밭흙 : 퇴비 : 모래를 2 : 1 : 1로 섞은 것을 사용하였다. 28℃, 70% 습도를 유지한 항온항습실에서 3 엽기의 기주식물 고추를 직경 15㎝ 포트에 이식하여 3일간 정착시킨 후, 미리 V8 쥬스 한천배지에서 배양·형성시킨 파이토프토라 캡씨씨의 유주자를 회수하여 350개/mL의 유주자를 5mL 관주 접종한 후, 1일간 습실(28℃, 습도70%)처리하고 여기에 선발된 방제균을 6.0×108/mL의 균수로 5mL 처리하여 하루동안 더 습실배양하였다. 이를 28℃, 70% 항온항습실에서 키우면서 주기적으로 발병을 확인하였으며, 이때 대조구로 방제균 무처리구와 비교하여 고추역병의 발병억제력을 확인하였다. 실험결과, 도 14에서 볼 수 있는 바와 같이 고추역병균 파이토프토라 캡시씨에 탁월한 방제력을 가지고 있음을 확인할 수 있었다.In order to verify whether the antibiotic antimicrobial productivity antagonistic microorganisms exert control against phytopathogens in real soil, pepper experiments were carried out in a pot as a host plant, and soil soil: compost: sand 2: A mixture of 1: 1 was used. In the constant temperature and humidity room maintained at 28 ° C. and 70% humidity, three-leaved host peppers were transplanted into a pot of 15 cm in diameter and settled for 3 days, followed by cultivation of phytophthora cap seeds seeded in V8 juice agar medium. After recovering and inoculating 5 mL irrigation with 350 mL / mL incubator, the solution was treated for 1 day in a wet room (28 ° C., 70% humidity), and 5 mL of the selected control bacteria was treated with 6.0 × 10 8 / mL of bacterial counts. Wet culture. The disease was periodically confirmed by raising it in a constant temperature and humidity room at 28 ° C. and 70%. At this time, it was confirmed that the control of the onset of pepper blight was compared to the control-free bacteria. As a result of the experiment, as shown in Figure 14, it was confirmed that the pepper bacterium bacterium Phytophthora capsi has excellent control.

실시예 9: 본 발명 길항 균주가 생산하는 사이드로포어 정제 및 특성Example 9 Purification and Characterization of Sidelopores Produced by the Antagonist Strains of the Invention

제 1 공정: 사이드로포어 생산First Process: Side Lopore Production

본 발명 길항균주 슈도모나스 플루오레센스 2112로 부터 사이드로포어를 생산하기 위하여 SM배지에 접종하여 30℃에서 180rpm으로 3일간 진탕배양을 하였다. 이 배양액을 4℃에서 8,000rpm으로 20분간 원심분리하여 얻은 원침상등액을 회수하여 이를 사용하였다.In order to produce the sideropore from Pseudomonas fluorescens 2112 antagonist of the present invention was inoculated in SM medium and cultured for 3 days at 30 ℃ 180 rpm. The culture solution was centrifuged at 8,000 rpm for 20 minutes to recover the original needle supernatant, which was used.

제 2 공정: 사이드로포어 정제Second Process: Sidelopor Purification

상기 제 1 공정에서 생산한 사이드로포어를 먼저 구조적으로 안정한 페릭 사이드로포어(ferric siderophore)로 추출하고 CM-세파덱스 C-25를 이용하여 이온교환 크로마토그라피로 단일 페릭 사이드로포어(ferric siderophore)를 정제한 후 이 EDTA를 사용하여 탈철화시켜 세파덱스 G-25를 이용하여 순수한 사이드로포어를 정제하고 이를 TLC 상에서 확인하였다. 실험결과, 정제한 사이드로포어는 도 15에 나타낸 바와 같았다. 철이온이 제한된 사이드로포어 생산용 배지인 SM 배지를 이용하여 48 시간 진탕배양된 배양액의 원침상등액에 FeCl3(100㎎/ℓ)를 첨가한 다음 진한 적갈색을 나타내는 것을 확인하고, CHCl3/페놀(1:1, v/w)을 이용하여 추출을 행한 후 에틸 에테르(ethyl ether)로 페놀(phenol)을 제거하였다. 이때 조제 Fe(Ⅲ)-사이드로포어 복합체(crude Fe(Ⅲ)siderophore complex)는 철이 결합되지 않은 조제 사이드로포어(crude siderophore) 보다 추출효율이 증대하였다. 이는 Fe(Ⅲ)-사이드로포어 복합체의 CHCl3/페놀에 대한 용해도를 증가시켰기 때문임을 알 수 있었다. 상기의 추출물은 0.05M 소듐 아세테이트 버퍼(sodium acetate buffer;pH 6.5)로 완충시킨 CM 세파덱스 C-25 양이온 교환 컬럼에 로딩하여 1 개의 하이 피크(high peak)와 2 개의 로우 피크(low peak)가 나타났으며, 그 중 첫번째 피크는 적갈색의 페릭 사이드로포어 복합체(ferric siderophore complex)이었으며, 두 번째 피크는 첫번째 피크의 분해산물로서 비활성 부분이며 세번째 피크는 철이 결합되지 않은 사이드로포어로 확인되었다. 첫번째 피크를 2차 CM 세파덱스 C-25 양이온 교환 컬럼 크로마토그라피를 수행하여 진한 적갈색의 단일 피크를 확인할 수 있었으며, 이를 용출시켜 얻은 분획을 동결건조하여 -20℃에서 저장하였다. 동결건조된 조제 Fe(Ⅲ)-사이드로포어 복합체(crude Fe(Ⅲ)-siderophore complex)를 5% 8-하이드록시-퀴놀린(8-hydroxy- qunoline)으로 pH 4.0에서 탈철화 시켰다. 탈철화 후 다시 형광색을 띄는 것을 확인하고 두차례의 세파덱스 G-25 겔 여과 컬럼 크로마토그라피를 행하여 단일 피크를 얻을 수 있었다(도 16).The siderophore produced in the first process was first extracted with a structurally stable ferric siderophore, and a single ferric siderophore with ion exchange chromatography using CM-Sephadex C-25. Purified and then deironed using this EDTA to purify pure siderophore using Sephadex G-25 and confirmed on TLC. As a result, the purified sidelopor was as shown in FIG. Confirmed that the iron is on, the addition of FeCl 3 (100㎎ / ℓ) for 48 hours with shaking centrifuged supernatant of the culture broth by the use of SM medium for spore production medium in a restricted side represents the following dark red-brown, and CHCl 3 / phenol Extraction was performed using (1: 1, v / w) and phenol was removed with ethyl ether. At this time, the crude Fe (III) siderophore complex (crude Fe (III) siderophore complex) was more effective than the crude siderophore (crude siderophore) is not extracted. It was found that this was because the solubility of the Fe (III) -siderophore complex in CHCl 3 / phenol was increased. The extract was loaded on a CM Sephadex C-25 cation exchange column buffered with 0.05M sodium acetate buffer (pH 6.5) to show one high peak and two low peaks. Among them, the first peak was a reddish brown ferric siderophore complex, the second peak was a degradation product of the first peak, and the third peak was identified as a siderophor without iron binding. The first peak was subjected to secondary CM Sephadex C-25 cation exchange column chromatography to identify a single dark reddish brown peak, and the fraction obtained by eluting it was lyophilized and stored at -20 ° C. The lyophilized crude Fe (III) -siderophore complex was deironed at pH 4.0 with 5% 8-hydroxyquinoline. After de-ironing, the fluorescence was again confirmed, and two peaks of Sephadex G-25 gel filtration column chromatography were performed to obtain a single peak (FIG. 16).

제 3 공정: 사이드로포어의 동정Third Process: Identification of Sidelopores

상기 제 2 공정에서 정제한 사이드로포어를 6N HCl과 47% HI로 가수분해시켜서 아미노산 분석기로 분석을 행하였고, 정제된 사이드로포어의 최대 흡수 파장을 기존 사이드로포어의 그것과 비교하여 그 구조를 규명하였다. 상기 제 2 공정에서 정제과정을 통하여 슈도모나스 플루오레센스 2112가 생산하는 사이드로포어가 거의 단일물질로 정제된 것으로 판명됨에 따라 이 물질을 아미노산 분석 등 여러 가지 분석을 통해 하기의 동정하였다.동정한 물질은 표베르딘2112(pyoverdin2112)으로 명명하였다. 즉, 슈도모나스 플루오레센스 2112가 생산하는 표베르딘2112는 pH 6.5에서 355∼380nm에서 최대의 UV 흡광 스펙트럼을 나타내었으며, 페릭-표베르딘2112는 390∼405nm에서 최대의 흡광 스펙트럼을 나타내었다(도 17). 이들 결과는 지금까지 알려진 대부분 슈도모나스 속(Pseudomonasspp.)들이 생산하는 표베르딘과 거의 일치하는 UV 흡수 파장을 보여주었다. 또한 정제된 표베르딘2112을 6 N HCl로 가수분해하여 구성 아미노산을 분석한 결과 글라이신(glycine), 쓰레오닌(threonine), 글루타민산(glutamic acid), 세린(serine), 알라닌(alanine), 라이신(lysine)이 확인되었으며, 이들의 구성비는 3:2:2:1:1:1로 나타났다(표 9). 이로부터 정제된 표베르딘2112는 지금까지 알려진 슈도모나스 속이 생산하는 사이드로포어 가운데 페리박틴(ferribactin)이나 슈도박틴(pseudobactin)과는 달리 타 슈도모나스의 표베르딘과 유사한 UV 최대 흡광 스펙트럼(spectrum)을 나타내었으며, 일반적으로 6∼12개 정도의 펩타이드로 구성한다는 슈도모나스의 표베르딘의 특성 등을 고려해 볼 때, 선발된 길항균주 슈도모나스 플루오레센스 2112가 생산하는 사이드로포어는 공지의 표베르딘 형태의 물질로 사료되며, 다만 아미노산 구성면에서 조금 상이한 것으로 보인다.The siderophore purified in the second step was hydrolyzed with 6N HCl and 47% HI, and analyzed by an amino acid analyzer. The maximum absorption wavelength of the purified siderophore was compared with that of the existing sideropore. Was identified. Since the siderophore produced by Pseudomonas fluorescein 2112 was found to be purified almost as a single substance through the purification process in the second process, the substance was identified through various analyzes such as amino acid analysis. It was named in Table Aberdeen 2112 (pyoverdin 2112). That is, the table verdin 2112 produced by Pseudomonas fluorescens 2112 exhibited a maximum UV absorption spectrum at 355-380 nm at pH 6.5, and the ferric-veverdin 2112 exhibited a maximum absorption spectrum at 390-405 nm ( 17). These results showed UV absorption wavelengths that closely matched the table verdin produced by most of the Pseudomonas spp. Known to date. Hydrolyzed purified table verdin 2112 with 6 N HCl to analyze the constituent amino acids, glycine (glycine), threonine (threonine), glutamic acid (glutamic acid), serine (serine), alanine (alanine), lysine (lysine) was identified and their composition ratio was 3: 2: 2: 1: 1: 1 (Table 9). The therefrom purification table Aberdeen 2112 is known UV maximum absorption spectrum similar to Pseudomonas lie to the side of producing Unlike pores of Perry baktin (ferribactin) or shoe gambling tin (pseudobactin) other and of Pseudomonas Table Aberdeen so far (spectrum) Considering the characteristics of Pseudomonas feverberdin, which is generally composed of about 6-12 peptides, the siderophore produced by the selected antagonist Pseudomonas fluorescens 2112 is known feverberdin It is considered to be in the form of a substance, but appears to be slightly different in terms of amino acid composition.

슈도모나스 플루오레센스 2112로부터 생산된 표베르딘 2112의 가수분해물로부터 얻어진 아미노산의 구성성분Constituents of Amino Acids Obtained from Hydrolysates of Fyoberdin 2112 Produced from Pseudomonas Fluorescens 2112 아미노산amino acid 몰 %Mole% 구성비율(%)Composition ratio (%) 글라이신Glycine 32.5332.53 33 쓰레오닌Threonine 25.0325.03 22 글루타민산Glutamic acid 18.1618.16 22 세린Serine 12.2812.28 1One 알라닌Alanine 9.549.54 1One 라이신Lysine 12.8912.89 1One [주] 표베르딘2112샘플은 6N HCl내 110℃에서 24시간 동안 진공하에서 가수분해하여얻어졌다.Note: A sample of Verberdin 2112 was obtained by hydrolysis in vacuo at 110 ° C. in 6N HCl for 24 hours.

이상, 상기 실시예와 실험예를 통하여 설명한 바와 같이 저병해 경작지 토양으로부터 분리선발하여 동정한 본 발명 길항균주 슈도모나스 플루오레센스 2112는 항진균성 항생물질과 사이드로포어를 생산하여 식물병원성 진균의 RNA 합성 및 단백질 합성을 저해하므로써 식물병원균의 생육을 억제하고 특히 산성 pH 및 고온의 조건에서도 식물병원균 억제 활성을 유지할 뿐만 아니라 실제 토양에서도 그 활성을 유지하는 뛰어난 효과가 있으므로 생물농약 산업상 매우 유용한 발명인 것이다.As described above, the antagonistic strain Pseudomonas fluorescens 2112 of the present invention, isolated and identified from low-border cropland soil as described through the above examples and experimental examples, produces antifungal antibiotics and sideropores to synthesize RNA of phytopathogenic fungi. And by inhibiting the protein synthesis inhibits the growth of phytopathogens, especially in acidic pH and high temperature conditions, as well as maintaining the activity of inhibiting phytopathogens, in addition to the excellent effect of maintaining the activity in the soil, it is a very useful invention in the biopesticide industry.

Claims (2)

토양으로부터 분리한 항진균성 항생물질 및 사이드로포어 생산성 길항균주 슈도모나스 플루오레센스 2112(기탁번호 KCTC8944P)Antifungal antibiotics and sideropore productivity isolated from soil Antagonist Pseudomonas fluorescens 2112 (Accession No. KCTC8944P) 제 1항 기재의 길항균주 슈도모나스 플루오레센스 2112를 고추에 처리하여 고추역병균(Phytophthora capsici)의 생육을 억제함을 특징으로 하는 생물방제법.A biocontrol method comprising the treatment of antagonistic strain Pseudomonas fluorescens 2112 according to claim 1 to red pepper to inhibit the growth of Phytophthora capsici .
KR1019990043524A 1999-10-08 1999-10-08 Antagonistic soil bacterium Pseudomonas fluorescens and biological control using the same Expired - Fee Related KR100347721B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990043524A KR100347721B1 (en) 1999-10-08 1999-10-08 Antagonistic soil bacterium Pseudomonas fluorescens and biological control using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990043524A KR100347721B1 (en) 1999-10-08 1999-10-08 Antagonistic soil bacterium Pseudomonas fluorescens and biological control using the same

Publications (2)

Publication Number Publication Date
KR20010036495A KR20010036495A (en) 2001-05-07
KR100347721B1 true KR100347721B1 (en) 2002-08-09

Family

ID=19614558

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990043524A Expired - Fee Related KR100347721B1 (en) 1999-10-08 1999-10-08 Antagonistic soil bacterium Pseudomonas fluorescens and biological control using the same

Country Status (1)

Country Link
KR (1) KR100347721B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101127045B1 (en) * 2009-03-26 2012-03-26 영남대학교 산학협력단 A composition containing antagonistic rhizobacteria consortium for inhibiting phytophtor capsici and promoting red pepper growth

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103739353B (en) * 2013-12-14 2015-07-22 王龙潮 Biological resource aqueous fertilizer for wheat and preparation method thereof
CN114477359B (en) * 2022-01-20 2023-07-25 湘潭大学 Application of hydroxamic acid type siderophores in bacteria carrying antibiotic resistance genes in enriched environment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101127045B1 (en) * 2009-03-26 2012-03-26 영남대학교 산학협력단 A composition containing antagonistic rhizobacteria consortium for inhibiting phytophtor capsici and promoting red pepper growth

Also Published As

Publication number Publication date
KR20010036495A (en) 2001-05-07

Similar Documents

Publication Publication Date Title
Winkelmann Pyrrolnitrin from Burkholderia cepacia: antibiotic activity against fungi and novel activities against streptomycetes
KR100908635B1 (en) New strains of Streptomyces to control plant disease
EP2694535B1 (en) Means for treating microbial diseases in cultivated plants
Meliani et al. Plant growth-promotion and IAA secretion with Pseudomonas fluorescens and Pseudomonas putida
CN111732643B (en) A kind of lipopeptide molecule and its application
CN116970521B (en) Bacillus Velez GUMHT p116 and its application
KR100747701B1 (en) Antagonistic Bacillus licheniformis K11 and Plant Growth Promotion and Biological Control using it
KR100747700B1 (en) Antagonistic strain Bacillus subtilis and plant growth promotion and biological control method using the same
US5543301A (en) Method of identifying Bacillus cereus having biocontrol activity
US6034124A (en) Fungicidal toxins from biocontrol bacteria
Manasa et al. Antimicrobial and antioxidant potential of Streptomyces sp. RAMPP-065 isolated from Kudremukh soil, Karnataka, India
KR100347721B1 (en) Antagonistic soil bacterium Pseudomonas fluorescens and biological control using the same
Khandelwal et al. Siderophoregenic bradyrhizobia boost yield of soybean
KR20020051803A (en) Bacillus Amyloliquefaciens CHO104 with Antagonic Property and Antimicrobial Compound Produced by This Strain
KR100305197B1 (en) Novel antagonistic strain of Pseudomonas fluorescens GL7 and its genetic development by siderophore overproduction and reporter gene insertion
Tumbarski et al. Isolation, identification and antibiotic susceptibility of Curtobacterium flaccumfaciens strain PM_YT from sea daffodil (Pancratium maritimum L.) shoot cultures
CN108925565A (en) A kind of application of depsidone class compound
Seong et al. Effect of siderophore on biological control of plant pathogens and promotion of plant growth by Pseudomonas fluorescens ps88
CN115261422A (en) Preparation method and application of new species thiolutin
KR20040034764A (en) A new Streptomyces sp. 8E12 and its use as a herbicidal agent
EP0472186B1 (en) Antibiotics AB-023 and process for preparing them
Rank et al. Study on isolation, screening and evaluation of chlorpyrifos degradation ability of Klebsiella Pneumoniea HD5
Devi et al. Identification, Biocontrol and Plant Growth Promotion Potential of Endophytic Streptomyces sp. a13
JP3523290B2 (en) Compounds 31668P and 31668U, methods for their preparation and their use
KR100457462B1 (en) Pseudomonas aeruginosa having antimicrobial activity against Legionella sp. and a method for preparing pyocyanine using the same

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 19991008

A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 19991022

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 19991008

Comment text: Patent Application

PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20020131

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20020711

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20020724

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20020725

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee