KR100346028B1 - Wastewater treatment process using return sludge reaction tank - Google Patents
Wastewater treatment process using return sludge reaction tank Download PDFInfo
- Publication number
- KR100346028B1 KR100346028B1 KR1019990051249A KR19990051249A KR100346028B1 KR 100346028 B1 KR100346028 B1 KR 100346028B1 KR 1019990051249 A KR1019990051249 A KR 1019990051249A KR 19990051249 A KR19990051249 A KR 19990051249A KR 100346028 B1 KR100346028 B1 KR 100346028B1
- Authority
- KR
- South Korea
- Prior art keywords
- tank
- reaction tank
- sludge
- sewage
- nitrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/12—Activated sludge processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/30—Aerobic and anaerobic processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Microbiology (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
본 발명은 반송반응조를 이용한 하수고도처리 시스템 및 그 방법에 관한 것으로, 더욱 자세하게는 기존의 하수고도처리 시스템에 반송반응조를 추가하여 인과 질소의 처리 효율을 월등히 향상시킬 수 있는 하수고도처리 시스템 및 그 방법에 관한 것이다.The present invention relates to an advanced sewage treatment system using a return reaction tank and a method thereof, and more particularly, to a sewage advanced treatment system capable of significantly improving phosphorus and nitrogen treatment efficiency by adding a return reaction tank to an existing sewage advanced treatment system. It is about a method.
본 발명에 따른 하수고도처리시스템은 질소와 인 등의 영양물질을 제거하기 위한 하수고도처리시스템에 있어서, 혐기조, 적어도 하나 이상의 제1 무산소조, 적어도 하나 이상의 제1 호기조, 최종침전지를 포함하는 주반응조; 및 상기 최종침전지에 침전된 슬러지를 반송받아, 이를 처리하여, 상기 주반응조로 유입시킴과 동시에 잉여 슬러지를 외부로 배출하는 반송반응조를 포함하되, 상기 반송반응조는 제2 호기조를 구비하여, 상기 제2 호기조에서는 상기 반송된 슬러지에 대해 암모니아성 질소를 질산성 질소로 전환시키는 것을 특징으로 한다.The sewage altitude treatment system according to the present invention is a sewage altitude treatment system for removing nutrients such as nitrogen and phosphorus, the main reaction tank including an anaerobic tank, at least one or more first anoxic tanks, at least one or more first aerobic tanks, and a final settler. ; And a conveying reaction tank which receives the sludge precipitated in the final settler, processes it, inflows into the main reaction tank, and simultaneously discharges the excess sludge to the outside, wherein the conveying reaction tank includes a second aeration tank. In the second stage, the ammonia nitrogen is converted to nitrate nitrogen for the conveyed sludge.
Description
본 발명은 반송반응조를 이용한 하수고도처리 시스템 및 그 방법에 관한 것으로, 더욱 자세하게는 기존의 하수고도처리 시스템에 반송반응조를 추가하여 인과 질소의 처리 효율을 월등히 향상시킬 수 있는 하수고도처리 시스템 및 그 방법에 관한 것이다.The present invention relates to an advanced sewage treatment system using a return reaction tank and a method thereof, and more particularly, to a sewage advanced treatment system capable of significantly improving phosphorus and nitrogen treatment efficiency by adding a return reaction tank to an existing sewage advanced treatment system. It is about a method.
최근 생활하수, 산업폐수, 축산폐수 등 오염물이 증가하면서, 종래의 활성슬러지법의 2차 처리시설로는 BOD, SS외의 질소, 인 등 영양염류가 제거되지 않아, 하천 및 호소의 수질을 개선하는데 한계가 있었다.Recently, with the increase of contaminants such as domestic sewage, industrial wastewater, and livestock wastewater, the secondary treatment facilities of the conventional activated sludge method do not remove nutrients such as nitrogen, phosphorus, other than BOD, SS, and improve the quality of rivers and lakes. There was a limit.
이러한 문제를 극복하고자 질소, 인 등의 영양염류를 제거할 수 있는 하수고도처리 시스템이 제안되고 있다. 일반적으로, 질소와 인 등의 영양염류를 제거하는 방법으로 크게 물리화학적인 방법과 생물학적인 방법으로 대별된다. 여기서, 물리화학적인 방법은 화학약품을 첨가하여 제거효율을 향상시키므로, 지속적으로 약품을 투입해야 하고, 슬러지 발생량이 증가하여 비경제적인 단점을 가지고 있다. 이에 반해, 생물학적인 처리방법은 공정의 안정성과 신뢰성 및 장기적인 안목에서 경제적인 장점을 가지고 있고, 이것 때문에 영양물질을 제거하는 방법으로 선호되고 있다. 이와 같이 질소와 인 등의 영양물질을 제거하기 위한 하수고도처리 시스템은 대부분 혐기조, 호기조 또는 무산소조의 배열 및 운영에 따라 개발된 공법으로, 이의 종류로는 A2O, MUCT, VIP, P/L, 5단계 Bardenpho, MLE, SBR 등이 있다. 하지만, 이러한 종래의 하수고도처리 시스템은 우리나라와 같이 겨울철의 수온 저하 및 유입수질이 설계수질 이하로 유입되는 경우가 빈번한 경우에는, 안정된 처리 수질을 유지할 수 없다. 즉, 질산화 미생물의 증식속도는 수온의 영향을 받기 때문에 저수온(13도 이하) 시에는 질산화 미생물이 충분한 반응을 하지 못하게 된다.이러한 문제점을 개선하기 위해서는 질산화에 필요한 호기조의 용량을 증가시켜, 미생물 체류시간(SRT)을 늘려야 한다.In order to overcome this problem, an advanced sewage treatment system capable of removing nutrients such as nitrogen and phosphorus has been proposed. Generally, nutrients such as nitrogen and phosphorus are largely classified into physicochemical and biological methods. Here, the physicochemical method improves the removal efficiency by adding chemicals, and thus, the chemicals must be continuously added and the amount of sludge generated increases, which has an uneconomical disadvantage. In contrast, biological treatments have economic advantages in the stability and reliability of the process and in the long term, and are therefore preferred as a method of removing nutrients. As such, the sewage advanced treatment system for removing nutrients such as nitrogen and phosphorus is mostly developed according to the arrangement and operation of anaerobic, aerobic, or anaerobic tanks.These types are A2O, MUCT, VIP, P / L, 5 Phases Bardenpho, MLE, SBR and so on. However, such a conventional sewage treatment system cannot maintain stable treatment water quality when the water temperature decrease and the inflow water quality of winter in Korea are frequently introduced below the design water quality. In other words, the rate of growth of nitrifying microorganisms is affected by the water temperature, so that the nitrifying microorganisms do not react sufficiently at low water temperature (13 degrees or less). You need to increase the time (SRT).
따라서, 본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위한 것으로, 본 발명의 목적은 기존의 하수고도처리 시스템에 반송반응조를 추가하여 유입수질 및 운전조건의 변화에도 아무런 문제없이 인과 질소 등의 영양물질의 처리 효율을 향상시킬 수 있는 하수고도처리 시스템 및 그 방법을 제공하는데 있다.Therefore, the present invention is to solve the problems of the prior art as described above, the object of the present invention is to add a return reaction tank to the existing sewage advanced treatment system, such as phosphorus and nitrogen without any problem in the change of influent quality and operating conditions The present invention provides an advanced sewage treatment system and method for improving the treatment efficiency of nutritional substances.
도1은 종래의 A2O공정에 본 발명이 적용된 예를 나타낸 공정 처리도.1 is a process chart showing an example in which the present invention is applied to a conventional A2O process.
도2는 종래의 Bardenpho공정에 본 발명이 적용된 예를 나타낸 공정 처리도.Figure 2 is a process chart showing an example in which the present invention is applied to a conventional Bardenpho process.
도3은 종래의 VIP공정에 본 발명이 적용된 예를 나타낸 공정 처리도.Figure 3 is a process treatment diagram showing an example in which the present invention is applied to a conventional VIP process.
도4는 종래의 MLE공정에 본 발명이 적용된 예를 나타낸 공정 처리도.4 is a process chart showing an example in which the present invention is applied to a conventional MLE process.
*도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings
11,21,31 : 혐기조 12,22,24,32,41 : 무산소조11,21,31: Anaerobic tank 12,22,24,32,41: Anaerobic tank
13,23,25,33,42 : 호기조 14,16,26,28,34,35,37,44 : 반송라인13,23,25,33,42: Hogigi 14,16,26,28,34,35,37,44: Return line
15,27,36,43 : 최종침전지 17,29,38,45 : 반송반응조15,27,36,43: final settler 17,29,38,45: return reactor
상기 목적을 달성하기 위한 본 발명에 따른 하수고도처리시스템은 질소와 인 등의 영양물질을 제거하기 위한 하수고도처리시스템에 있어서, 질소와 인 등의 영양물질을 제거하기 위한 하수고도처리시스템에 있어서, 혐기조, 적어도 하나 이상의 제1 무산소조, 적어도 하나 이상의 제1 호기조, 최종침전지를 포함하는 주반응조; 및 상기 최종침전지에 침전된 슬러지를 반송받아, 이를 처리하여, 상기 주반응조로 유입시킴과 동시에 잉여 슬러지를 외부로 배출하는 반송반응조를 포함하되, 상기 반송반응조는 제2 호기조를 구비하여, 상기 제2 호기조에서는 상기 반송된 슬러지에 대해 암모니아성 질소를 질산성 질소로 전환시키는 것을 특징으로 한다.The sewage altitude treatment system according to the present invention for achieving the above object is a sewage altitude treatment system for removing nutrients such as nitrogen and phosphorus, and in a sewage altitude treatment system for removing nutrients such as nitrogen and phosphorus. A main reaction tank including an anaerobic tank, at least one first anaerobic tank, at least one first aerobic tank, and a final settler; And a conveying reaction tank which receives the sludge precipitated in the final settler, processes it, inflows into the main reaction tank, and simultaneously discharges the excess sludge to the outside, wherein the conveying reaction tank includes a second aeration tank. In the second stage, the ammonia nitrogen is converted to nitrate nitrogen for the conveyed sludge.
또한, 본 발명에 따른 하수고도처리방법은 질소와 인 등의 영양물질을 제거하기 위한 하수고도처리방법에 있어서, 혐기조, 적어도 하나 이상의 제1 무산소조, 적어도 하나 이상의 제1 호기조를 통해 유입된 하수를 처리하는 제1단계; 상기 제1단계에서 처리된 하수를 침전시키는 제2단계; 상기 제2단계에서 침전된 슬러지 모두를 반송시키는 제3단계; 및 상기 반송된 슬러지를 호기조건에서 활성화시켜, 상기 제1단계로 반송함과 동시에 잉여 슬러지를 외부로 배출하는 제4단계를 포함하는 것을 특징으로 한다.In addition, the sewage altitude treatment method according to the present invention is a sewage altitude treatment method for removing nutrients such as nitrogen and phosphorus, the sewage introduced through an anaerobic tank, at least one or more first anaerobic tank, at least one or more first aerobic tank. A first step of processing; A second step of precipitating the sewage treated in the first step; A third step of conveying all the sludge precipitated in the second step; And a fourth step of activating the conveyed sludge under the aerobic condition, conveying it to the first step and simultaneously discharging excess sludge to the outside.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명은 혐기조, 무산소조, 호기조, 내부반송 등을 이용하여 미생물에 의해 질소, 인을 제거하는 방식에 있어서는 유사하나, 본 발명은 크게 주반응조와 반송반응조를 구비하고, 주반응조는 혐기조, 무산소조, 호기조를 포함하는 종래의 고도처리시스템으로 이루어지고, 반송반응조는 호기조 혹은 호기조와 무산소조로 이루어져, 종래 고도처리시스템의 최종침전지에서 침전된 슬러지를 모두 반송반응조로 유입시켜, 슬러지를 활성화시킨 다음에 주반응조로 반송함과 동시에, 종래의 최종침전지가 담당하였던 잉여슬러지 인발을 반송반응조에서 담당하도록 한 것이다.The present invention is similar in the way of removing nitrogen and phosphorus by microorganisms using anaerobic tank, anaerobic tank, aerobic tank, internal transport, etc., but the present invention is largely equipped with a main reaction tank and a return reaction tank, and the main reaction tank is anaerobic tank, anoxic tank, It consists of a conventional advanced treatment system including an aerobic tank, and the return reaction tank consists of an aerobic tank or an aerobic tank and an anaerobic tank. All the sludge precipitated in the final settler of the conventional advanced treatment system is introduced into the transfer reaction tank to activate the sludge. At the same time as returning to the reaction vessel, the surplus sludge withdrawal which the conventional final settler was in charge was responsible for the return reaction vessel.
따라서, 본 발명에서 주반응조에는 반송반응조를 통해 활성 슬러지가 다량 유입되어, 주반응조내의 MLSS가 증가되고, 슬러지 체류시간(SRT)이 증가됨에 따라 질소제거 효율이 상승되고, 작은 반응조 용량으로도 운용이 가능하게 된다. 즉, 일반적인 하수고도처리 공법에서 적용되는 것과 같이 미생물의 체류시간을 늘리기 위해서 주반응조를 크게 설계할 필요가 없으며 이에 따른 공사비가 절감된다. 또한, 유입수질이 계획수질 이하로 유입되거나, 수온저하로 인하여 질소제거 효율이 저하될 때에도, 반송반응조내에서는 반송슬러지를 처리함에 따라, 주반응조내에서도 질소, 인의 제거 효율이 향상될 수 있어, 질소와 인의 제거를 위한 추가적인 시설없이도 안정적인 방류수질을 보증할 수 있다.Therefore, in the present invention, a large amount of activated sludge is introduced into the main reaction tank through the return reaction tank, the MLSS in the main reaction tank is increased, the nitrogen removal efficiency is increased as the sludge residence time (SRT) is increased, and it is operated even with a small reactor capacity. This becomes possible. That is, in order to increase the residence time of microorganisms, as in the general sewage treatment method, it is not necessary to design a main reactor largely, thereby reducing the construction cost. In addition, even when the inflow water quality is lower than the planned water quality or the nitrogen removal efficiency is lowered due to the water temperature drop, by treating the conveying sludge in the conveying reaction tank, the removal efficiency of nitrogen and phosphorus in the main reaction tank can be improved. Stable discharge water quality can be assured without additional facilities for the removal of wine.
또한, 반송반응조로 유입된 슬러지는 반송반응조가 호기조 조건시에는 질산화되어 주반응조로 유입되며, 반송반응조가 호기조와 무산소조로 구성시에는 슬러지가 호기조에서 질산화되고, 무산소조에서 내생탈질반응이 이루어진다. 따라서, 주반응조에서의 질소제거 효율의 조절은 반송반응조의 운전조건 변화를 통하여 이룰 수 있다. 예를 들어, 여름철 우기시 우수의 다량 유입으로 인해 미생물이 워싱아웃(Washing Out) 되거나, 오수의 농도가 낮아질 경우 처리효율이 저하 될 수 있으나, 본 발명은 반송반응조의 운전을 통하여, 처리 효율이 항상 일정하게 유지될 수가 있다.In addition, the sludge introduced into the return reaction tank is nitrified during the aerobic tank condition and flows into the main reaction tank. When the return reaction tank is composed of the aerobic tank and the anoxic tank, the sludge is nitrified in the aerobic tank, and endogenous denitrification is performed in the anoxic tank. Therefore, the adjustment of the nitrogen removal efficiency in the main reaction tank can be achieved through the change in operating conditions of the return reaction tank. For example, if the microorganism is washed out due to the inflow of rainwater during summer rainy season or the concentration of the sewage is low, the treatment efficiency may be lowered. It can be kept constant all the time.
반송반응조는 질소제거시에 필요한 조건인 암모니아성 질소를 질산화시키는데 필요한 긴 슬러지 체류시간을 충족시키기 위해 설치되는 것으로, 이 반응조의 호기부분은 주처리공정(Main Process)의 폭기조에서 질산화되지 못한 암모니아성 질소를 질산성 질소로 전환시키는 곳이다. 또한 반송반응조의 호기부분 후단에 설치되는 무산소 부분은 호기조건에서 질산화된 질소를 미생물의 내생호흡 기작을 이용하여 탈질시키는 곳이며, 주처리 공정에서는 혐기조에 슬러지가 반송됨에 따라 반송슬러지에 존재하는 질산성 질소로 발생되는 문제를 줄이는 역할을 담당하게 된다.The returning reaction tank is installed to satisfy the long sludge residence time required for nitrifying the ammonia nitrogen, which is a necessary condition for removing nitrogen, and the aerobic portion of the reaction tank is ammonia that was not nitrified in the aeration tank of the main process. This is where nitrogen is converted to nitrate nitrogen. In addition, the anoxic part, which is installed at the end of the aerobic part of the conveying reaction tank, is a place to denitrate nitrogen nitrate under aerobic conditions using the endogenous breathing mechanism of microorganisms, and in the main treatment process, the quality of the sludge is returned to the anaerobic tank as the sludge is returned It will play a role in reducing the problems caused by acidic nitrogen.
이러한 반송반응조의 호기조건은 pH 농도가 6.5±0.5의 범위내에서 운전되며, 용존산소의 농도는 2mg/L 이상 유지시에 좋은 효율을 가질 수 있다. 반송반응조의 호기조건은 주공정의 유입수량을 기준으로 2시간 내외 정도로 유지하고, MLSS농도는 최종침전지에서 유입되는 반송슬러지를 기준으로 운전함에 따라 8,000mg/L 내외로 운전하게 된다.The aerobic conditions of the return reaction tank is operated in a pH concentration range of 6.5 ± 0.5, the dissolved oxygen concentration can have a good efficiency when maintained at 2 mg / L or more. The aerobic conditions of the return reactor are maintained at about 2 hours based on the inflow of the main process, and the MLSS concentration is operated at about 8,000 mg / L based on the return sludge flowing from the final settler.
반송반응조의 무산소조건은 반송반응조의 호기조건 이후에 질산성 질소가 주반응에 미치는 부정적인 영향을 줄이기 위하여 적용한 것으로서, 반송반응조의 호기조건과 연계되어 설치된다. 이러한 무산소조건은 pH 농도가 7.5±0.5로서 호기조건보다 다소 알칼리성으로 운전되며, 슬러지의 침전을 방지하기 위하여 반응조 체적을 기준으로 1㎥당 7 Watts 정도의 교반마력을 가지는 믹서를 사용하여 운전한다. 무산소조에서의 체류시간은 주공정의 유입수량을 기준으로 1시간 내외로 한다. 반송반응조의 무산소조건은 호기조건과 연계되어 운전됨에 따라서 호기조건과 동일하게 MLSS농도는 8,000 mg/L 내외를 유지하게 된다.The anaerobic condition of the return reactor is applied to reduce the negative effect of nitrate nitrogen on the main reaction after the aerobic condition of the return reactor, and is installed in conjunction with the aerobic condition of the return reactor. These oxygen-free conditions operate at a slightly alkaline pH with a pH of 7.5 ± 0.5 and are operated using a mixer with agitation power of about 7 Watts per m3 based on the volume of the reaction tank to prevent sludge settling. The residence time in the anaerobic tank is about 1 hour based on the inflow of the main process. As the anaerobic conditions of the return reactor are operated in conjunction with the aerobic conditions, the MLSS concentration is maintained at around 8,000 mg / L as the aerobic conditions.
본 발명에 따른 하수고도처리시스템은 주반응조와 반송반응조로 구성하고, 상기 주반응조는 혐기조, 무산소조, 호기조를 포함하는 종래의 고도처리시스템으로 구성되고, 반송반응조는 호기조 혹은 호기조와 무산소조로 구성된다. 미생물을 이용한 하수고도처리공법은 혐기조건에 이은 호기조건에서의 인제거와 호기조건에 연계된 무산소조건을 주어 질산화와 탈질을 통해 질소를 제거하며, 인, 질소의 제거효율은 각각의 반응조 체류시간에 의해 결정된다.The sewage advanced treatment system according to the present invention is composed of a main reaction tank and a return reaction tank, and the main reaction tank is composed of a conventional advanced treatment system including an anaerobic tank, an anaerobic tank, and an aerobic tank, and the return reaction tank is composed of an aerobic tank or an aerobic tank and an anaerobic tank. . Sewage treatment method using microorganisms removes nitrogen through nitrification and denitrification given phosphorus removal under anaerobic conditions followed by anaerobic conditions and anoxic conditions linked to aerobic conditions. Determined by
도1은 종래의 A2O 고도처리시스템에 본 발명을 적용한 예를 나타내는 하수처리 공정도이다.1 is a sewage treatment process diagram showing an example in which the present invention is applied to a conventional A2O advanced treatment system.
종래의 A2O 고도처리시스템은 혐기조(11), 무산소조(12), 호기조(13)가 순차적으로 구성되며, 호기조(13)와 무산소조(12) 간에는 내부반송라인(14)이 설치되어 있다. 유입수는 도면에 도시된 바와 같이 주반응조의 혐기조(11)와 무산소조(12)로 각각 분리 유입되어, 고농도 유입시 오염 부하량을 줄여, 혐기조(11)에서의 인제거 효율을 증가시키고, 무산소조(12)에서의 탈질에 필요한 유기물을 유입수를 통해 직접 투입함으로써, 질소제거율을 증가시킨다. 그리고, 최종침전지(15)에는 처리된 하수의 슬러지들이 침전되고, 정화된 처리수는 유출된다. 본 발명에서는 최종침전지(15)에 침전된 슬러지를 모두 반송반응조(17)로 반송라인(16)을 통해 반송한다. 그리고, 반송반응조(17)에서는 반송된 슬러지를 활성화시켜, 활성 슬러지를 무산소조조(12)로 유입시킨다. 여기서, 반송반응조(17)는 호기조만으로 구성될 수 있거나, 호기조와 무산소조로 구성될 수 있다. 반송반응조(17)가 호기조만으로 구성된 경우에는 호기조에서 반송슬러지를 활성화시켜, 혐기조(11)로 유입시키고, 잉여 슬러지는 외부로 배출한다. 그리고, 반송반응조(17)가 호기조와 무산소조로 구성된 경우에는 호기조에서 반송슬러지를 활성화시키고, 활성 슬러지는 무산소조에서 처리된 다음에 일부는 혐기조(11)로 반송되고 일부는 호기조(13)로 유입된다. 그리고, 호기조에서는 잉여 슬러지를 외부로 배출한다. 이와 같은 본 발명의 구성에 의해 혐기조(11)에서의 인제거 효율이 향상되고, 주반응조내에서의 질소제거 효율이 향상된다.In the conventional A2O advanced treatment system, an anaerobic tank 11, an anaerobic tank 12, and an aerobic tank 13 are sequentially formed, and an internal transfer line 14 is provided between the aerobic tank 13 and the anoxic tank 12. The influent is separately introduced into the anaerobic tank 11 and the anaerobic tank 12 of the main reaction tank, as shown in the drawing, to reduce the pollutant load during the high concentration inflow, to increase the phosphorus removal efficiency in the anaerobic tank 11, anoxic tank 12 The nitrogen removal rate is increased by directly injecting the organic matter necessary for denitrification in the through the influent. Then, the treated sewage sludge precipitates in the final settler 15, and the purified treated water flows out. In the present invention, all the sludge precipitated in the final settler 15 is conveyed to the conveying reaction tank 17 through the conveying line 16. And the conveying reaction tank 17 activates the conveyed sludge, and introduce | transduces activated sludge into the oxygen-free tank 12. Here, the return reaction tank 17 may be composed of only an aerobic tank, or may be composed of an aerobic tank and an anaerobic tank. When the return reaction tank 17 consists only of an aerobic tank, a return sludge is activated in an aerobic tank, it flows into the anaerobic tank 11, and the excess sludge is discharged to the exterior. In addition, when the return reaction tank 17 is composed of an aerobic tank and an anaerobic tank, the return sludge is activated in the aerobic tank, and the activated sludge is treated in the anaerobic tank, and then some are returned to the anaerobic tank 11 and some are introduced into the aerobic tank 13. . In the aerobic tank, excess sludge is discharged to the outside. By such a configuration of the present invention, the phosphorus removal efficiency in the anaerobic tank 11 is improved, and the nitrogen removal efficiency in the main reaction tank is improved.
도2는 종래의 5단계 Bardenpho 고도처리시스템에 본 발명이 적용된 예를 나타낸 공정도이다.Figure 2 is a process diagram showing an example in which the present invention is applied to a conventional five-step Bardenpho advanced processing system.
종래의 5단계 Bardenpho 고도처리시스템은 혐기조(21), 무산소조(22), 호기조(23), 무산소조(24), 호기조(25)가 순차적으로 설치되며, A2O 고도처리시스템과 마찬가지로 호기조(23)와 무산소조(22) 간에는 내부반송라인이 설치된다. 그리고, 최종침전지(27)에서는 슬러지가 침전되고, 정화된 하수는 유출된다. 마찬가지로, 최종침전지(27)에 침전된 슬러지는 모두 반송반응조(29)로 반송라인(28)을 통해 반송되며, 반송반응조(29)는 도1을 참조하여 전술한 바와 같이, 동일하게 슬러지를 활성화시켜, 혐기조(21)로 반송한다.In the conventional five-step Bardenpho advanced processing system, anaerobic tank 21, anoxic tank 22, aerobic tank 23, anoxic tank 24, and aerobic tank 25 are sequentially installed, and like the A2O advanced processing system, aerobic tank 23 and An internal transport line is installed between the oxygen-free tanks 22. In the final settler 27, sludge precipitates, and the purified sewage flows out. Similarly, all the sludge settled in the final settler 27 is returned to the transfer reaction tank 29 through the transfer line 28, and the transfer reaction tank 29 is activated in the same way as described above with reference to FIG. It is made to return to the anaerobic tank 21.
도3은 종래의 VIP 고도처리시스템에 본 발명이 적용된 예를 나타낸 공정도이다.3 is a process diagram showing an example in which the present invention is applied to a conventional VIP advanced processing system.
종래의 VIP 고도처리시스템은 혐기조(31)-무산소조(32)-호기조(33)가 순차적으로 설치되며, 혐기조(31)와 무산소조(32), 그리고 호기조(23)와 무산소조(22) 간에는 각각 내부반송라인(34,35)이 설치된다. 그리고, 최종침전지(36)에서는 슬러지가 침전되고, 정화된 하수는 유출된다. 마찬가지로, 최종침전지(36)에 침전된 슬러지는 모두 반송반응조(38)로 반송라인(37)을 통해 반송되며, 반송반응조(38)는 도1을 참조하여 전술한 바와 같이, 동일하게 슬러지를 활성화시켜, 무산소조(32)로 반송한다.In the conventional VIP advanced processing system, anaerobic tank 31, anoxic tank 32, and aerobic tank 33 are sequentially installed, and between the anaerobic tank 31 and the anaerobic tank 32, and the aerobic tank 31 and the anaerobic tank 22, respectively. The conveying lines 34 and 35 are installed. In the final settler 36, sludge precipitates, and the purified sewage flows out. Similarly, all the sludge precipitated in the final settler 36 is returned to the transfer reaction tank 38 through the transfer line 37, and the transfer reaction tank 38 is activated in the same manner as described above with reference to FIG. It carries out to the oxygen-free tank 32 to make it.
도4는 종래의 MLE 고도처리시스템에 본 발명이 적용된 예를 나타낸 공정도이다.4 is a process chart showing an example in which the present invention is applied to a conventional MLE advanced processing system.
종래의 MLE 고도처리시스템은 무산소조(41)-호기조(42)가 순차적으로 설치되어 질소제거를 실시하며, 인제거에는 호기조(42) 또는 최종침전지(43)에 약품첨가를 실시한다. 최종침전지(43)에서는 슬러지가 침전되고, 정화된 하수는 유출된다. 마찬가지로, 최종침전지(43)에 침전된 슬러지는 모두 반송반응조(45)로 반송라인(44)을 통해 반송되며, 반송반응조(45)는 도1을 참조하여 전술한 바와 같이, 동일하게 슬러지를 활성화시켜, 무산소조(41)로 반송한다.In the conventional MLE advanced treatment system, an anoxic tank (41)-an aerobic tank (42) is sequentially installed to remove nitrogen, and to remove phosphorus, chemicals are added to the aerobic tank (42) or the final settler (43). In the final settling chamber 43, sludge precipitates, and the purified sewage flows out. Similarly, all the sludge precipitated in the final settling 43 is returned to the transfer reaction tank 45 through the transfer line 44, the transfer reaction tank 45, as described above with reference to Figure 1, activated the sludge in the same way It carries out to the oxygen-free tank 41.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.The present invention described above is not limited to the above-described embodiments and the accompanying drawings, and various substitutions, modifications, and changes are possible in the art without departing from the technical spirit of the present invention. It will be apparent to those of ordinary knowledge.
상기와 같이 이루어지는 본 발명에 의하면, 유입수질이 계획수질 이하로 유입되거나, 수온저하로 인하여 인, 질소제거 효율이 저하될 때에도, 반송반응조내에서는 반송슬러지를 처리함에 따라, 주반응조내에서도 질소, 인의 제거 효율이 향상될 수 있어, 질소와 인의 제거를 위한 추가적인 시설없이도 안정적인 방류수질을 보증할 수 있다.According to the present invention made as described above, even when the inflow water quality is less than the planned water quality, or the phosphorus and nitrogen removal efficiency is lowered due to the water temperature decrease, by treating the conveying sludge in the conveying reaction tank, the nitrogen and phosphorus in the main reaction tank Removal efficiency can be improved, ensuring stable discharge water quality without additional facilities for nitrogen and phosphorus removal.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990051249A KR100346028B1 (en) | 1999-11-18 | 1999-11-18 | Wastewater treatment process using return sludge reaction tank |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990051249A KR100346028B1 (en) | 1999-11-18 | 1999-11-18 | Wastewater treatment process using return sludge reaction tank |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20010047158A KR20010047158A (en) | 2001-06-15 |
KR100346028B1 true KR100346028B1 (en) | 2002-07-24 |
Family
ID=19620635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019990051249A Expired - Fee Related KR100346028B1 (en) | 1999-11-18 | 1999-11-18 | Wastewater treatment process using return sludge reaction tank |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100346028B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101019070B1 (en) * | 2010-06-17 | 2011-03-07 | 부산환경공단 | Advanced Sewage Treatment System Improved Existing Activated Sludge Treatment Facility and Advanced Treatment Method Using the Equipment |
KR101291230B1 (en) | 2011-12-29 | 2013-07-31 | 장정화 | Advanced sewage treatment system using divided inflow of return sludge and management method of the system |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100346924B1 (en) * | 2000-04-04 | 2002-07-31 | 이병희 | Advanced wastewater treatment system |
KR100402251B1 (en) * | 2000-12-06 | 2003-10-17 | 주식회사 제오텍 | Sewage purifier using established disposal plant |
KR100451939B1 (en) * | 2001-09-21 | 2004-10-08 | 바이오밴 코리아(주) | Biological process for treating wastewater by using organic sludge |
KR100425335B1 (en) * | 2002-01-08 | 2004-03-31 | 주식회사 환경비젼이십일 | Wastewater treatment system using SBBR(Sequencing batch biofilm reactor) and equalization tank |
KR100433791B1 (en) * | 2002-03-22 | 2004-06-04 | 삼성에버랜드 주식회사 | Biological dephosphorization method |
KR100864335B1 (en) * | 2002-07-08 | 2008-10-17 | 지아이 주식회사 | Sewage and Wastewater Treatment System and Method |
KR102110508B1 (en) * | 2017-10-16 | 2020-05-13 | 두산중공업 주식회사 | Dissolved air flotation device capable of increasing organic matter recovery and water treatment method using the same |
KR101992302B1 (en) * | 2017-10-16 | 2019-06-25 | 두산중공업 주식회사 | Dissolved air flotation device capable of controlling treatment level of wastewater |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56150500A (en) * | 1980-04-25 | 1981-11-20 | Ebara Infilco Co Ltd | Disposal of sludge |
JPS59123597A (en) * | 1982-12-29 | 1984-07-17 | Kurita Water Ind Ltd | Dephosphorization method |
JPH10296288A (en) * | 1997-04-22 | 1998-11-10 | Toyo Bio Reactor Kk | Sludge reforming method in batch type and oxidation ditch type waste water treatment method |
KR20000019567A (en) * | 1998-09-09 | 2000-04-15 | 김윤규, 정주영, 심옥진, 정몽헌 | Tertiary process using biological method. |
-
1999
- 1999-11-18 KR KR1019990051249A patent/KR100346028B1/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56150500A (en) * | 1980-04-25 | 1981-11-20 | Ebara Infilco Co Ltd | Disposal of sludge |
JPS59123597A (en) * | 1982-12-29 | 1984-07-17 | Kurita Water Ind Ltd | Dephosphorization method |
JPH10296288A (en) * | 1997-04-22 | 1998-11-10 | Toyo Bio Reactor Kk | Sludge reforming method in batch type and oxidation ditch type waste water treatment method |
KR20000019567A (en) * | 1998-09-09 | 2000-04-15 | 김윤규, 정주영, 심옥진, 정몽헌 | Tertiary process using biological method. |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101019070B1 (en) * | 2010-06-17 | 2011-03-07 | 부산환경공단 | Advanced Sewage Treatment System Improved Existing Activated Sludge Treatment Facility and Advanced Treatment Method Using the Equipment |
KR101291230B1 (en) | 2011-12-29 | 2013-07-31 | 장정화 | Advanced sewage treatment system using divided inflow of return sludge and management method of the system |
Also Published As
Publication number | Publication date |
---|---|
KR20010047158A (en) | 2001-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0603316B1 (en) | Method and system for biologically removing nitrogen from wastewater | |
US5811009A (en) | Method and system for improved biological nitrification of wastewater at low temperature | |
JP3575312B2 (en) | Organic wastewater treatment method | |
KR100346028B1 (en) | Wastewater treatment process using return sludge reaction tank | |
KR100394997B1 (en) | Apparatus for purifying wastewater | |
KR100430382B1 (en) | Treatment method for livestock waste water including highly concentrated organoc, nitrogen and phosphate and treatment system used therein | |
KR100304544B1 (en) | Method for removing nitrogen and phosphorus using anaerobic digestion | |
KR100315874B1 (en) | Method and Apparatus of Biological Nitrogen Removal from the High Concentration Industrial Wastewater | |
KR100346924B1 (en) | Advanced wastewater treatment system | |
KR100705541B1 (en) | Sewage and Wastewater Treatment Method and Apparatus for Removing Nutrients from Sewage and Wastewater | |
KR20010094836A (en) | High-Rate Live Stock Wastewater Treatment Method using Advanced Treatment Process Hybrid SBAR | |
KR100392747B1 (en) | System for Removal of Nitrogen and Phosphorus from Sewage | |
KR100415437B1 (en) | Advanced sludge reaeration process improving denitrification rate for nutrient removal | |
KR100501307B1 (en) | Improved method of wastewater treatment | |
KR100325005B1 (en) | Method of denitrification and denitrification for the purification of wastewater | |
KR100460851B1 (en) | Sewage and wastewater treatment apparatus which is no need internal recycle | |
KR100420647B1 (en) | Waste water disposal method by continuos inflow Sequencing Bath Reactor | |
KR20010076873A (en) | Organic and nitrogen compound removal methods from landfill leachate using an anaerobic-aerobic-anoxic system | |
KR100632487B1 (en) | Continuous Batch Wastewater Treatment System and Its Method | |
KR100419030B1 (en) | Advanced sludge reaeration process without first clarifier and internal recycling for nutrient removal | |
KR100285896B1 (en) | Simultaneous Removal of High Concentration Organics and Nitrogen Using Bacterial Separation | |
KR100463480B1 (en) | Method of Removing Nitrogen and Phosphorus in Industrial and Domestic Wastewater | |
KR100318367B1 (en) | Waste water treatment apparatus | |
KR100319375B1 (en) | Method and Apparatus of Nitrogen Removal from the Recycle Water in the Sewage Treatment Plant | |
KR0183334B1 (en) | Biological Nitrogen Treatment of Wastewater with Improved Precipitation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 19991118 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20020131 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20020626 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20020708 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20020709 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20050621 Start annual number: 4 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20080708 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20090708 Start annual number: 8 End annual number: 8 |
|
FPAY | Annual fee payment |
Payment date: 20100705 Year of fee payment: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20100705 Start annual number: 9 End annual number: 9 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |