[go: up one dir, main page]

KR100343017B1 - Method for driving robot of corrugated member welding machine - Google Patents

Method for driving robot of corrugated member welding machine Download PDF

Info

Publication number
KR100343017B1
KR100343017B1 KR1020000018821A KR20000018821A KR100343017B1 KR 100343017 B1 KR100343017 B1 KR 100343017B1 KR 1020000018821 A KR1020000018821 A KR 1020000018821A KR 20000018821 A KR20000018821 A KR 20000018821A KR 100343017 B1 KR100343017 B1 KR 100343017B1
Authority
KR
South Korea
Prior art keywords
welding
coordinates
robot
contact displacement
welding robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
KR1020000018821A
Other languages
Korean (ko)
Other versions
KR20010095572A (en
Inventor
정현태
우갑주
Original Assignee
김징완
삼성중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김징완, 삼성중공업 주식회사 filed Critical 김징완
Priority to KR1020000018821A priority Critical patent/KR100343017B1/en
Publication of KR20010095572A publication Critical patent/KR20010095572A/en
Application granted granted Critical
Publication of KR100343017B1 publication Critical patent/KR100343017B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted for a procedure covered by only one of the other main groups of this subclass
    • B23K37/02Carriages for supporting the welding or cutting element
    • B23K37/0258Electric supply or control circuits therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0956Monitoring or automatic control of welding parameters using sensing means, e.g. optical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/005Manipulators for mechanical processing tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Manipulator (AREA)

Abstract

본 발명은 파형부재 용접장치의 용접로봇 구동방법에 관한 것으로, 회전중심축으로부터의 거리 정보와 용접로봇의 현재 각축 좌표를 이용하여 제1,2 접촉식 변위센서의 지점 좌표를 계산하는 과정과, 제1,2 접촉식 변위센서 중 선행하는 변위센서의 지점 좌표에서 다음 동작을 위한 용접로봇의 좌표를 계산하는 과정과, 상기 계산된 제1,2 접촉식 변위센서의 지점 좌표로부터 용접로봇의 각도 명령값을 계산하는 과정과, 현재 좌표와 다음 좌표 및 각도 명령값에 따라 인버스 키네매틱(inverse kinematics)을 풀어 실제의 로봇 구동명령값을 구하여 명령하는 과정을 포함하며, 높은 용접품질의 확보 및 다양한 형상을 가지는 곡면부재의 형상추적시에 범용적으로 적용할 수 있는 이점이 있다.The present invention relates to a method for driving a welding robot of a corrugated member welding apparatus, comprising: calculating point coordinates of first and second contact displacement sensors using distance information from a rotational center axis and current angular coordinates of the welding robot; Calculating the coordinates of the welding robot for the next operation from the point coordinates of the preceding displacement sensor among the first and second contact displacement sensors, and the angle of the welding robot from the calculated coordinates of the first and second contact displacement sensors It includes the process of calculating the command value, the process of solving the inverse kinematics according to the current coordinates, the next coordinates, and the angle command value to obtain the actual robot drive command value. There is an advantage that can be applied universally when tracking the shape of the curved member having a shape.

Description

파형부재 용접장치의 용접로봇 구동방법{Method for driving robot of corrugated member welding machine}Method for driving welding robot of corrugated member welding device {Method for driving robot of corrugated member welding machine}

본 발명은 파형부재 용접장치에 관한 것으로, 더욱 상세하게는 복수의 접촉식 변위센서를 이용해 파형부재의 곡면형상을 인식 및 용접토치의 각도를 계산하여 용접로봇을 구동하도록 한 파형부재 용접장치의 용접로봇 구동방법에 관한 것이다.The present invention relates to a corrugated member welding device, and more particularly, to recognize a curved shape of a corrugated member using a plurality of contact displacement sensors and to calculate the angle of the welding torch to weld the corrugated member welding device to drive the welding robot. It relates to a robot driving method.

일반적인 파형부재 용접장치는 파형부재의 형상을 인식하기 위한 파형 인식부와, 용접토치의 위치 조절을 위한 용접로봇과, 파형 인식부의 형상 인식에 따라 용접로봇을 제어 및 용접조건을 설정·변경하기 위한 제어부로 이루어진다.A typical corrugated member welding apparatus includes a waveform recognition unit for recognizing the shape of a corrugated member, a welding robot for adjusting the position of the welding torch, and a control robot for controlling the welding robot according to the shape recognition of the waveform recognition unit and setting and changing welding conditions It consists of a control unit.

용접 작업 중 파형곡면의 형상은 파형 인식부를 통해 감지되며, 이 감지신호에 의거하여 파형곡면의 형상을 인식하는 제어부에 의해 용접로봇이 제어되어 용접토치에 의해 용접이 수행된다.The shape of the waveform surface during the welding operation is detected by the waveform recognition unit, the welding robot is controlled by a control unit that recognizes the shape of the waveform surface based on the detection signal, the welding is performed by the welding torch.

도 1은 종래 기술에 따른 파형부재 용접장치의 파형 인식부 일예로서, 참조부호 1은 파형부재, 2는 용접토치, 3은 회전 안내구, 4는 리미트센서, 5는 접촉식 변위센서, 6은 회전각도 센서이다.1 is an example of a waveform recognition unit of the welding device according to the prior art, reference numeral 1 is a wave member, 2 is a welding torch, 3 is a rotation guide, 4 is a limit sensor, 5 is a contact displacement sensor, 6 is Rotation angle sensor.

접촉식 변위센서(5)를 통해 파형부재(1)의 곡면형상을 인식하며, 용접로봇에 취부된 용접토치(2)가 회전 안내구(3)를 따라 회전되면 회전각도 센서(6)와 리미트센서(4)를 통해 곡면진입을 인식하여 용접조건을 바꾸어 준다.The contact displacement sensor 5 recognizes the curved shape of the corrugated member 1, and when the welding torch 2 mounted on the welding robot rotates along the rotation guide 3, the rotation angle sensor 6 and the limit The sensor 4 recognizes curved ingress and changes the welding conditions.

전술한 바와 같은 종래의 파형부재 용접장치는, 파형부재의 형상이 바뀌면 용접토치의 기구적인 설치상태를 변경하여야 하며, 이에 따라 회전 안내구를 교체할 필요성이 발생하고 리미트센서의 위치 및 개수 또한 바꾸어야 하는 문제점이 있었다.In the conventional corrugated member welding apparatus as described above, when the shape of the corrugated member is changed, the mechanical installation state of the welding torch should be changed. Accordingly, the necessity of replacing the rotation guide is required and the position and number of limit sensors must be changed. There was a problem.

따라서, 본 발명은 상기와 같은 종래 기술의 문제점을 해결하고자 제안한 것으로서, 복수의 접촉식 변위센서를 이용해 파형부재의 곡면형상을 인식 및 용접토치의 각도를 계산하여 용접로봇을 구동함으로써, 높은 용접품질을 확보할 수 있으며 다양한 형상을 가지는 곡면부재의 형상추적시에도 범용적으로 적용할 수 있는 파형부재 용접장치의 용접로봇 구동방법을 제공하는 데 그 목적이 있다.Therefore, the present invention has been proposed to solve the above problems of the prior art, by using a plurality of contact displacement sensors to recognize the curved shape of the corrugated member and calculate the angle of the welding torch to drive the welding robot, high welding quality The purpose of the present invention is to provide a method for driving a welding robot of a corrugated member welding apparatus that can be universally applied to shape tracking of curved members having various shapes.

도 1은 종래 기술에 따른 파형부재 용접장치의 파형 인식부 일예도.1 is an example of a waveform recognition unit of the waveform member welding apparatus according to the prior art.

도 2는 본 발명에 따른 파형부재 용접장치의 파형 인식부 구성도.Figure 2 is a configuration of the waveform recognition unit of the waveform member welding apparatus according to the present invention.

도 3은 도 2에 도시된 접촉식 변위센서의 작용 상태도.3 is a state diagram of the operation of the contact displacement sensor shown in FIG.

도 4는 본 발명에 따른 파형부재 용접장치의 용접로봇 구동방법을 설명하기 위한 플로우차트.Figure 4 is a flow chart for explaining a welding robot driving method of the corrugated member welding apparatus according to the present invention.

도 5는 본 발명에서의 파형부재 용접구간 구분도.Figure 5 is a corrugated member welding section of the present invention.

도 6은 본 발명에 따른 파형부재 용접장치의 용접정보 변경과정을 설명하기 위한 플로우차트.6 is a flowchart for explaining a process of changing the welding information of the corrugated member welding apparatus according to the present invention.

*도면의 주요 부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

1 : 파형부재 2 : 용접토치1: corrugated member 2: welding torch

101,102 : 접촉식 변위센서 103 : 회전축 모터101,102: contact displacement sensor 103: rotary shaft motor

104 : 회전축 엔코더 105 : Z축 모터104: rotary shaft encoder 105: Z-axis motor

106 : Z축 엔코더 107 : 제어부106: Z-axis encoder 107: control unit

이러한 목적을 달성하기 위한 본 발명에 따른 파형부재 용접장치의 용접로봇 구동방법은, 용접토치와 함께 회전축에 고정되어 연동되며 파형부재의 곡면형상을 인식하는 제1,2 접촉식 변위센서를 구비한 파형부재 용접장치에 있어서:The welding robot driving method of the corrugated member welding apparatus according to the present invention for achieving this object is provided with a first and second contact displacement sensors fixed to the rotating shaft and interlocked with the welding torch to recognize the curved shape of the corrugated member. In corrugated welding device:

회전중심축으로부터의 거리 정보와 용접로봇의 현재 각축 좌표를 이용하여 상기 제1,2 접촉식 변위센서의 지점 좌표를 계산하는 과정과, 상기 제1,2 접촉식 변위센서 중 선행하는 변위센서의 지점 좌표에서 다음 동작을 위한 용접로봇의 좌표를 계산하는 과정과, 상기 계산된 제1,2 접촉식 변위센서의 지점 좌표로부터 용접로봇의 각도 명령값을 계산하는 과정과, 상기 현재 좌표와 다음 좌표 및 각도 명령값에 따라 인버스 키네매틱(inverse kinematics)을 풀어 실제의 로봇 구동명령값을 구하여 명령하는 과정을 포함한다.Calculating point coordinates of the first and second contact displacement sensors using distance information from the center of rotation and current angular coordinates of the welding robot; Calculating coordinates of the welding robot for the next operation from the point coordinates, calculating angle command values of the welding robot from the calculated coordinates of the first and second contact displacement sensors, and the current coordinates and the next coordinates. And obtaining and commanding an actual robot driving command value by solving inverse kinematics according to the angle command value.

바람직하기로는, 상기 용접로봇의 각축 모터에 연결된 엔코더로부터 측정한 높이 및 각도와 부재의 명령좌표를 이용하여 용접구간을 인식한 후 구동에 관련된 용접정보를 바꾸어 주는 과정을 더 포함한다.Preferably, the method further includes a process of changing welding information related to driving after recognizing a welding section by using the height and angle measured from an encoder connected to the angular motor of the welding robot and the command coordinates of the member.

본 발명의 실시예로는 다수개가 존재할 수 있으며, 이하에서는 첨부한 도면을 참조하여 바람직한 실시예에 대하여 상세히 설명하기로 한다. 이 실시예를 통해 본 발명의 목적, 특징 및 이점들을 보다 잘 이해할 수 있게 된다.There may be a plurality of embodiments of the present invention. Hereinafter, preferred embodiments will be described in detail with reference to the accompanying drawings. This embodiment allows for a better understanding of the objects, features and advantages of the present invention.

도 2는 본 발명에 따른 파형부재 용접장치의 파형 인식부 구성도이며, 도 3은 도 2에 도시된 접촉식 변위센서의 작용 상태도이다.Figure 2 is a configuration of the waveform recognition unit of the wave member welding apparatus according to the present invention, Figure 3 is a state diagram of the operation of the contact displacement sensor shown in FIG.

도면의 참조부호 1은 파형부재, 2는 용접토치, 101은 제1 접촉식 변위센서, 102는 제2 접촉식 변위센서, 103은 회전축 모터, 104는 회전축 엔코더, 105는 Z축 모터, 106은 Z축 엔코더, 107은 제어부이며, 용접토치(2)는 제1,2 접촉식 변위센서(101,102)와 함께 회전축에 고정되어 연동된다.In the drawings, reference numeral 1 denotes a corrugated member, 2 a welding torch, 101 a first contact displacement sensor, 102 a second contact displacement sensor, 103 a rotary shaft motor, 104 a rotary shaft encoder, 105 a Z-axis motor, and 106 The Z-axis encoder 107 is a control unit, and the welding torch 2 is fixed to the rotating shaft together with the first and second contact displacement sensors 101 and 102 to be interlocked.

용접로봇의 높이 및 각도는 각축 모터에 직접 연결된 엔코더(104,106)로부터 측정하며, 제어부(107)는 접촉식 변위센서(101,102)로부터 검출한 정보와 용접로봇의 현재 좌표를 이용하여 부재의 형상을 인식하고 다음의 구동좌표를 계산하여 용접로봇을 구동 제어한다.The height and angle of the welding robot are measured from encoders 104 and 106 connected directly to the angular axis motor, and the controller 107 recognizes the shape of the member by using the information detected from the contact displacement sensors 101 and 102 and the current coordinates of the welding robot. And drive robot is controlled by calculating the following drive coordinates.

아울러, 진행방향의 접촉식 변위센서와 용접로봇의 현재 좌표(Xr,Zr,θr)를이용하여 현재 선행하는 접촉식 변위센서가 위치한 지점의 좌표(x2,z2)를 알아낸다. 위와 동일한 방법으로 구한 후행 접촉식 변위센서의 지점 좌표(x1,z1)와 (x2,z2)를 이용하여 현재 용접토치의 기울어진 각도를 계산하여 그 법선이 되도록 각도를 설정한다.In addition, the coordinates (x2, z2) of the current position of the previous contact displacement sensor is found by using the contact displacement sensor in the traveling direction and the current coordinates (Xr, Zr, θr) of the welding robot. Using the point coordinates (x1, z1) and (x2, z2) of the post-contact displacement sensor obtained in the same way as above, calculate the inclination angle of the current welding torch and set the angle to be the normal line.

도 4는 본 발명에 따른 파형부재 용접장치의 용접로봇 구동방법을 설명하기 위한 플로우차트이다.Figure 4 is a flow chart for explaining a welding robot driving method of the corrugated member welding apparatus according to the present invention.

인터럽트가 발생되면 용접로봇의 현재 각축 좌표(Xr,Zr,θr)를 저장하고, 회전중심축으로부터의 거리(pd1,pd2)를 접촉식 변위센서로부터 검출하여 저장한다(ST111∼ST112).When the interrupt is generated, the current angular coordinates (Xr, Zr, θr) of the welding robot are stored, and the distances (pd1, pd2) from the center of rotation are detected by the contact displacement sensor and stored (ST111 to ST112).

이후, 전술한 바와 같이 용접로봇의 각축 좌표(Xr,Zr,θr)와 접촉식 변위센서의 거리(pd1,pd2)를 이용하여 제1,2 접촉식 변위센서의 지점 좌표(x1,z1), (x2,z2)를 계산하고 선행하는 좌표를 리스트에 저장한다(ST113).Then, as described above, using the angular coordinates (Xr, Zr, θr) of the welding robot and the distances (pd1, pd2) of the contact displacement sensor, the point coordinates (x1, z1) of the first and second contact displacement sensors, Compute (x2, z2) and store the preceding coordinates in the list (ST113).

만일, 제2 접촉식 변위센서가 선행하면 (x2,z2)의 리스트를 저장한 후 다음 동작을 위한 용접로봇의 좌표(Xc,Zc)를 이로부터 계산한다(ST114).If the second contact displacement sensor is preceded, the list of (x2, z2) is stored and the coordinates Xc and Zc of the welding robot for the next operation are calculated therefrom (ST114).

용접로봇의 각도 명령값(θc)은 현재 측정된 접촉식 변위센서에서의 좌표값 (x1,z1),(x2,z2)으로부터 계산한다(ST115).The angle command value θc of the welding robot is calculated from the coordinate values (x1, z1) and (x2, z2) of the currently measured contact displacement sensor (ST115).

실제 용접로봇의 구동명령을 주기 위해서는 (Xr,Zr,θr), (Xc,Zc), (θc)에 따라 인버스 키네매틱(inverse kinematics)을 풀어 로봇 구동명령값(Xcr,Zcr,θcr)을 구하고, 이 값을 구동명령으로 준다(ST116∼ST117).To give the actual driving command of the welding robot, obtain the robot driving command value (Xcr, Zcr, θcr) by solving the inverse kinematics according to (Xr, Zr, θr), (Xc, Zc), (θc). This value is given as a drive command (ST116 to ST117).

한편, 파형곡면에서는 용접토치의 자세 및 용접특성이 크게 달라지므로 용접정보를 알맞게 변경하여야만 한다. 이에 도 5에 나타낸 바와 같이 용접구간은 평지부(Ⅰ), 곡면상승 회전부(Ⅱ), 곡면상승 경사부(Ⅲ), 상측 회전부(Ⅳ), 곡면하강 경사부(Ⅴ), 곡면하강 회전부(Ⅵ)로 크게 나누며, 각 구간마다 용접정보를 적절히 변경한다.On the other hand, since the posture and welding characteristics of the welding torch are greatly changed on the curved surface, the welding information must be changed accordingly. As shown in FIG. 5, the welding section includes a flat section (I), a curved upward rotating section (II), a curved upward tilting section (III), an upper rotating section (IV), a curved downward tilting section (V), and a curved lowering rotating section (VI). The welding information is changed appropriately for each section.

도 6은 본 발명에 따른 파형부재 용접장치의 용접정보 변경과정을 설명하기 위한 플로우차트이다.6 is a flowchart illustrating a process of changing welding information of a corrugated member welding apparatus according to the present invention.

이에 나타낸 바와 같이 용접로봇의 명령좌표(Zcr,θcr)를 확인한 후 기준높이(Z1,Z2), 기준각도(θ1,θ2,θ3,θ4,θ5)를 이용하여 용접구간을 인식하며(ST121), 이때 인식된 용접구간에 따라 구동에 관련된 용접속도, 용접피크전류, 용접베이스전류, AVC 전압, 와이어 속도 등의 용접정보를 바꾸어 준다(ST122∼ST123).As shown in the figure, after confirming the command coordinates (Zcr, θcr) of the welding robot, the welding height is recognized using the reference heights (Z1, Z2) and reference angles (θ1, θ2, θ3, θ4, θ5) (ST121). At this time, welding information such as welding speed, welding peak current, welding base current, AVC voltage, and wire speed related to driving is changed according to the recognized welding section (ST122 to ST123).

상술한 바와 같이 본 발명은, 두 개의 접촉식 변위센서를 이용하여 파형부재의 형상을 인식하므로 부재를 따라 유연한 로봇의 운동을 유도할 수 있어 높은 용접품질을 확보할 수 있으며, 형상이 일정치 않은 곡면부재의 형상추적시에서 적용이 가능하다.As described above, the present invention recognizes the shape of the corrugated member using two contact displacement sensors, thereby inducing the movement of a flexible robot along the member, thereby ensuring high welding quality, and having a non-uniform shape. Applicable in shape tracking of curved member.

아울러, 용접로봇의 높이 및 각도를 접촉식 변위센서와 각 축의 모터 엔코더로부터 값을 읽어 제어하므로 부재 형상이 바뀌어도 별도의 기구 및 센서 없이 제어가 가능하다. 따라서, 시스템의 유지보수가 용이하며, 부재의 변경 등에 의한 용접구간의 변경이 필요할 때에도 하드웨어의 변경 없이 소프트웨어 알고리즘의 일부분을 변경하여 간단히 적용할 수 있는 범용성을 갖는다.In addition, since the height and angle of the welding robot are read and controlled from the contact displacement sensor and the motor encoder of each axis, the welding robot can be controlled without a separate mechanism and sensor even when the member shape is changed. Therefore, it is easy to maintain the system, and even when it is necessary to change the welding section due to the change of the member, it has a generality that can be simply applied by changing a part of the software algorithm without changing the hardware.

Claims (2)

용접토치와 함께 회전축에 고정되어 연동되며 파형부재의 곡면형상을 인식하는 제1,2 접촉식 변위센서를 구비한 파형부재 용접장치에 있어서:In a corrugated member welding device having a first and second contact displacement sensor fixedly linked to a rotating shaft together with a welding torch and recognizing a curved shape of the corrugated member: 회전중심축으로부터의 거리 정보와 용접로봇의 현재 각축 좌표를 이용하여 상기 제1,2 접촉식 변위센서의 지점 좌표를 계산하는 과정과,Calculating point coordinates of the first and second contact displacement sensors using distance information from the center of rotation and current angular coordinates of the welding robot; 상기 제1,2 접촉식 변위센서 중 선행하는 변위센서의 지점 좌표에서 다음 동작을 위한 용접로봇의 좌표를 계산하는 과정과,Calculating coordinates of a welding robot for a next operation from point coordinates of a preceding displacement sensor among the first and second contact displacement sensors; 상기 계산된 제1,2 접촉식 변위센서의 지점 좌표로부터 용접로봇의 각도 명령값을 계산하는 과정과,Calculating an angle command value of the welding robot from the calculated point coordinates of the first and second contact displacement sensors; 상기 현재 좌표와 다음 좌표 및 각도 명령값에 따라 인버스 키네매틱(inverse kinematics)을 풀어 실제의 로봇 구동명령값을 구하여 명령하는 과정을 포함하여 된 파형부재 용접장치의 용접로봇 구동방법.And a method of obtaining and commanding an actual robot driving command value by solving an inverse kinematics according to the current coordinates, the next coordinates, and an angle command value. 제 1 항에 있어서,The method of claim 1, 상기 용접로봇의 각축 모터에 연결된 엔코더로부터 측정한 높이 및 각도와 상기 구동 명령좌표를 이용하여 용접구간을 인식한 후 구동에 관련된 용접정보를 바꾸어 주는 과정을 더 포함하여 된 파형부재 용접장치의 용접로봇 구동방법.The welding robot of the corrugated member welding device further includes a process of changing a welding information related to driving after recognizing a welding section by using the height and angle measured from an encoder connected to each axis motor of the welding robot and the driving command coordinates. Driving method.
KR1020000018821A 2000-04-11 2000-04-11 Method for driving robot of corrugated member welding machine Expired - Lifetime KR100343017B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000018821A KR100343017B1 (en) 2000-04-11 2000-04-11 Method for driving robot of corrugated member welding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000018821A KR100343017B1 (en) 2000-04-11 2000-04-11 Method for driving robot of corrugated member welding machine

Publications (2)

Publication Number Publication Date
KR20010095572A KR20010095572A (en) 2001-11-07
KR100343017B1 true KR100343017B1 (en) 2002-07-02

Family

ID=19663308

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000018821A Expired - Lifetime KR100343017B1 (en) 2000-04-11 2000-04-11 Method for driving robot of corrugated member welding machine

Country Status (1)

Country Link
KR (1) KR100343017B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100584967B1 (en) * 2002-05-16 2006-05-29 현대중공업 주식회사 Pulse Plasma Automatic Welding Method for Laminating Joints of Membrane Sheets and Its Apparatus
KR100664768B1 (en) * 2002-03-28 2007-01-04 현대중공업 주식회사 Plasma welding method for tracking curved areas and obtaining sound welds in a susor corrugation panel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100900856B1 (en) * 2007-07-13 2009-06-04 현대중공업 주식회사 Control System and Control Method of Automatic Welding Device for Vertical and Horizontal Fillet Welding
KR101047737B1 (en) * 2008-11-19 2011-07-07 에스티엑스조선해양 주식회사 Fillet welding carriage device and its operation method which can automatically track the welding part considering the inclination of the welding member

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645275A (en) * 1979-09-18 1981-04-24 Nippon Sharyo Seizo Kaisha Ltd Automatic tracing welding method of corrugation or the like
JPH0839251A (en) * 1994-07-29 1996-02-13 Hitachi Zosen Corp Welding method for corrugated parts in welding robot for joining corrugated laminated plates
KR19990000001A (en) * 1995-05-18 1999-01-01
KR20010081275A (en) * 2000-02-11 2001-08-29 윤종용 method and system for teaching welding robot

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645275A (en) * 1979-09-18 1981-04-24 Nippon Sharyo Seizo Kaisha Ltd Automatic tracing welding method of corrugation or the like
JPH0839251A (en) * 1994-07-29 1996-02-13 Hitachi Zosen Corp Welding method for corrugated parts in welding robot for joining corrugated laminated plates
KR19990000001A (en) * 1995-05-18 1999-01-01
KR20010081275A (en) * 2000-02-11 2001-08-29 윤종용 method and system for teaching welding robot

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100664768B1 (en) * 2002-03-28 2007-01-04 현대중공업 주식회사 Plasma welding method for tracking curved areas and obtaining sound welds in a susor corrugation panel
KR100584967B1 (en) * 2002-05-16 2006-05-29 현대중공업 주식회사 Pulse Plasma Automatic Welding Method for Laminating Joints of Membrane Sheets and Its Apparatus

Also Published As

Publication number Publication date
KR20010095572A (en) 2001-11-07

Similar Documents

Publication Publication Date Title
EP0208406B1 (en) Method of detecting and controlling work start point of robot
KR960000294B1 (en) Welding robot
US4575304A (en) Robot system for recognizing three dimensional shapes
US4541062A (en) Method of interlockingly controlling a robot and positioner
CN1094163C (en) Sewing machine for buttonhole
WO2007042895A2 (en) Laser processing robot control system, control method and control program medium
KR100343017B1 (en) Method for driving robot of corrugated member welding machine
US5405075A (en) Welding apparatus and an operation method thereof
CN1057806C (en) Jacquard bar for warp knitting machines
CN1198973A (en) Detection method of robot's initial welding position
JP3337448B2 (en) Positioning method of spot welding gun
JP7620082B2 (en) TEACHING POINT GENERATION DEVICE FOR GENERATING TEACHING POINTS BASED ON SENSOR OUTPUT, ROBOT CONTROL DEVICE, AND TEACHING POINT GENERATION METHOD
JP5112599B2 (en) Arc welding robot, its weaving method and its weaving program
US5875665A (en) Apparatus and method for bending a workpiece
JP2889622B2 (en) Polishing robot controller
JP5961077B2 (en) Robot control apparatus and robot control method
JP2552743B2 (en) Robot controller
JP3105663B2 (en) Method of controlling height of processing head and cutting apparatus using the control method
JP3596095B2 (en) Robot controller
JPH0523855A (en) 2-wire rotary arc welding method
JPH08161024A (en) Welding robot
JPH11194813A (en) Operation command generating method for industrial machine
KR0141847B1 (en) Feeding stage for positioning of precision machinery
JP3562535B2 (en) Numerical control unit
JPH0811297B2 (en) Welding torch position control method

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20000411

PA0201 Request for examination
PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20020322

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20020621

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20020622

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20050610

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20060613

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20070620

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20081203

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20090622

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20100609

Start annual number: 9

End annual number: 9

PR1001 Payment of annual fee

Payment date: 20110602

Start annual number: 10

End annual number: 10

PR1001 Payment of annual fee

Payment date: 20120531

Start annual number: 11

End annual number: 11

FPAY Annual fee payment

Payment date: 20130603

Year of fee payment: 12

PR1001 Payment of annual fee

Payment date: 20130603

Start annual number: 12

End annual number: 12

FPAY Annual fee payment

Payment date: 20140602

Year of fee payment: 13

PR1001 Payment of annual fee

Payment date: 20140602

Start annual number: 13

End annual number: 13

FPAY Annual fee payment

Payment date: 20150601

Year of fee payment: 14

PR1001 Payment of annual fee

Payment date: 20150601

Start annual number: 14

End annual number: 14

FPAY Annual fee payment

Payment date: 20180601

Year of fee payment: 17

PR1001 Payment of annual fee

Payment date: 20180601

Start annual number: 17

End annual number: 17

PC1801 Expiration of term

Termination date: 20201011

Termination category: Expiration of duration