KR100324872B1 - A process for preparing Acrolein - Google Patents
A process for preparing Acrolein Download PDFInfo
- Publication number
- KR100324872B1 KR100324872B1 KR1019990021586A KR19990021586A KR100324872B1 KR 100324872 B1 KR100324872 B1 KR 100324872B1 KR 1019990021586 A KR1019990021586 A KR 1019990021586A KR 19990021586 A KR19990021586 A KR 19990021586A KR 100324872 B1 KR100324872 B1 KR 100324872B1
- Authority
- KR
- South Korea
- Prior art keywords
- core
- catalyst
- acrolein
- oxidation reaction
- propylene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 title claims abstract description 70
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims abstract description 27
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims abstract description 27
- 229910004298 SiO 2 Inorganic materials 0.000 claims abstract description 15
- 239000011949 solid catalyst Substances 0.000 claims abstract description 14
- 239000011258 core-shell material Substances 0.000 claims abstract description 13
- 229910052742 iron Inorganic materials 0.000 claims abstract description 8
- 230000001590 oxidative effect Effects 0.000 claims abstract description 7
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 6
- 239000011733 molybdenum Substances 0.000 claims abstract description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052796 boron Inorganic materials 0.000 claims abstract description 5
- 239000011574 phosphorus Substances 0.000 claims abstract description 5
- 238000007254 oxidation reaction Methods 0.000 claims description 42
- 238000006243 chemical reaction Methods 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 20
- 239000000203 mixture Substances 0.000 claims description 13
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 239000000376 reactant Substances 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 239000003054 catalyst Substances 0.000 description 30
- 230000000052 comparative effect Effects 0.000 description 19
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 17
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 14
- 230000000694 effects Effects 0.000 description 10
- 229910015325 MoFe Inorganic materials 0.000 description 8
- 108010038629 Molybdoferredoxin Proteins 0.000 description 8
- 229910021529 ammonia Inorganic materials 0.000 description 7
- 230000003647 oxidation Effects 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 239000002994 raw material Substances 0.000 description 5
- 229910052797 bismuth Inorganic materials 0.000 description 4
- -1 nitrile compounds Chemical class 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 150000001336 alkenes Chemical class 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N glycerol group Chemical group OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910020647 Co-O Inorganic materials 0.000 description 1
- 229910020704 Co—O Inorganic materials 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 229910000608 Fe(NO3)3.9H2O Inorganic materials 0.000 description 1
- 229910017299 Mo—O Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000005882 aldol condensation reaction Methods 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000007613 slurry method Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/27—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C47/00—Compounds having —CHO groups
- C07C47/20—Unsaturated compounds having —CHO groups bound to acyclic carbon atoms
- C07C47/21—Unsaturated compounds having —CHO groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
- C07C47/22—Acryaldehyde; Methacryaldehyde
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
Abstract
본 발명은 아크롤레인의 제조방법에 관한 것으로서, 더욱 상세하게는 다음 화학식 1로 표시되는 코아-쉘 구조를 갖는 고체촉매하에서 프로필렌을 산화반응하여 높은 수율로 아크롤레인을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing acrolein, and more particularly, to a method for producing acrolein in a high yield by oxidizing propylene under a solid catalyst having a core-shell structure represented by the following formula (1).
상기 화학식 1에서:In Formula 1 above:
A는 붕소, 인 및 몰리브덴 중에서 선택된 1종 이상의 원소이고;A is at least one element selected from boron, phosphorus and molybdenum;
m이 1일 때, n은 0.001 ∼ 3이고, a는 0.001 ∼ 3이고, f는 0.01 ∼ 5이고, g는 0.1 ∼ 5이고, z는 0 ∼ 90이며,When m is 1, n is 0.001-3, a is 0.001-3, f is 0.01-5, g is 0.1-5, z is 0-90,
x 및 y는 코아(core) 부분과 쉘(shell)부분에서 다른 성분에 의해 원자가를 맞추기 위해 정해지는 값이다.x and y are values that are set to match valences by other components in the core and shell parts.
Description
본 발명은 아크롤레인의 제조방법에 관한 것으로서, 더욱 상세하게는 다음 화학식 1로 표시되는 코아-쉘 구조를 갖는 고체촉매하에서 프로필렌을 산화반응하여 높은 수율로 아크롤레인을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing acrolein, and more particularly, to a method for producing acrolein in a high yield by oxidizing propylene under a solid catalyst having a core-shell structure represented by the following formula (1).
화학식 1Formula 1
[BinAaOx][(100-z)%FefNigMomOy+z%SiO2][Bi n A a O x ] [(100-z)% Fe f Ni g Mo m O y + z% SiO 2 ]
상기 화학식 1에서:In Formula 1 above:
A는 붕소, 인 및 몰리브덴 중에서 선택된 1종 이상의 원소이고;A is at least one element selected from boron, phosphorus and molybdenum;
m이 1일 때, n은 0.001 ∼ 3이고, a는 0.001 ∼ 3이고, f는 0.01 ∼ 5이고, g는 0.1 ∼ 5이고, z는 0 ∼ 90이며,When m is 1, n is 0.001-3, a is 0.001-3, f is 0.01-5, g is 0.1-5, z is 0-90,
x 및 y는 코아(core) 부분과 쉘(shell)부분에서 다른 성분에 의해 원자가를 맞추기 위해 정해지는 값이다.x and y are values that are set to match valences by other components in the core and shell parts.
아크롤레인은 각종 아크릴레이트의 기초원료로 사용되고 있고, 또한 섬유가공, 종이류 가공, 도료, 접착제, 피혁가공 등에 광범위하게 이용되고 있는 정밀화학 제품의 원료이기도 하다. 이러한 아크롤레인은 중합기술의 발달과 함께 수요가 계속 증가하고 있으며 이에 대한 용도도 꾸준히 개발되고 있는 추세에 있다.Acrolein is used as a basic raw material for various acrylates, and is also a raw material for fine chemical products widely used in textile processing, paper processing, coating, adhesives, leather processing, and the like. The demand for such acrolein is continuously increasing with the development of polymerization technology, and its use is also steadily being developed.
아크롤레인은 1843년에 글리세린의 고온분해에 의해 최초로 합성되었고, 아크롤레인을 기상산화하여 처음으로 아크릴산을 합성하였다. 그 이후, 아크롤레인을 합성하는 방법으로 니켈을 촉매로 하는 아세틸렌법, 팔라듐을 촉매로 하는 에틸렌법, 아크릴로니트릴을 황산으로 가수분해하는 방법 등의 기술이 개발되었으나, 현재 상업적으로 가장 경제성이 있는 제조방법은 프로필렌을 출발물질로 하는 산화반응이다. 이외에도 C1 화학의 한 부분으로 포름알데히드와 초산의 축합반응에 의한 알돌 축합법에 대해서도 연구가 활발히 진행되고 있다.Acrolein was first synthesized by high temperature decomposition of glycerin in 1843, and the first synthesis of acrylic acid by vapor phase oxidation of acrolein. Since then, as a method for synthesizing acrolein, techniques such as acetylene method using nickel, ethylene method using palladium, and hydrolysis of acrylonitrile with sulfuric acid have been developed. The process is an oxidation reaction with propylene as the starting material. In addition, as part of the C1 chemistry, research is being actively conducted on the aldol condensation method by the condensation reaction of formaldehyde and acetic acid.
상기 방법들 중에서 프로필렌의 산화반응은 일반적으로 약 400℃ 부근에서 Bi-Mo-O계의 복합산화물 촉매를 사용하여 아크롤레인을 제조하는 것이다.Among the above methods, the oxidation of propylene is generally performed to produce acrolein using a Bi-Mo-O based composite oxide catalyst at about 400 ° C.
국내의 경우, LG에서 Nippon Shokubai 공정을 도입하여 아크롤레인을 생산하고 있는데, 이는 Bi-Mo-Fe-Co-O계 복합산화물 촉매를 사용하며 반응온도 325℃, 압력 2.5 ∼ 3.0 기압하에서 반응하여 아크롤레인을 생성시키는 것을 특징으로 한다.In Korea, LG has introduced Nippon Shokubai process to produce acrolein, which uses Bi-Mo-Fe-Co-O based composite oxide catalyst and reacts under a reaction temperature of 325 ℃ and under pressure of 2.5 ~ 3.0 atm. It is characterized by generating.
한편, 촉매를 이용한 올레핀 산화반응에서의 촉매 선택에 대한 중요성이 제기되면서 현재까지 촉매와 관련된 많은 연구 결과가 보고되어 있으며, 가장 뚜렷한 특징은 반응의 공정 뿐만 아니라, 촉매의 구성성분과 제조방법에서의 발전에서 나타나고 있다. 그 결과로 산화반응에서 아크릴산은 90% 이상의 수율을, 유사반응중의 하나인 가암모니아 산화반응에서 아크릴로니트릴의 경우에는 상업플랜트에서 약 80% 이상의 향상된 수율을 얻고 있다. 가암모니아 산화반응은 일반적인 산화반응(320∼380℃)에서 보다 고온(400∼480℃)을 필요로 하는데 그것은 암모니아가 낮은 온도에서 비가역적으로, 그리고 높은 온도에서는 가역적으로 촉매에 대한 프로필렌의 화학흡착점을 막기 때문으로 보고되고 있다.On the other hand, as the importance of catalyst selection in the olefin oxidation reaction using a catalyst has been raised, many research results related to the catalyst have been reported so far, and the most distinctive feature is not only in the reaction process but also in the composition and preparation of the catalyst. It is emerging from development. As a result, acrylic acid yields of 90% or more in the oxidation reaction and acrylonitrile in the ammonia oxidation reaction, which is one of the similar reactions, have been improved in yields of about 80% or more in commercial plants. Ammonia oxidation requires higher temperatures (400-480 ° C) than in normal oxidation reactions (320-380 ° C), which is the chemical adsorption of propylene to the catalyst irreversibly at low temperatures and reversibly at high temperatures. It is reported because it prevents the point.
이에, 본 발명자들은 대한민국특허출원 제98-4340호에 올레핀을 가암모니아 산화반응하여 니트릴 화합물을 제조하는데 유용한 코아-쉘 구조의 고체촉매를 개시한 바 있다. 이를 더욱 상세히 하면, 올레핀의 가암모니아 산화반응에 의한 니트릴 화합물 합성에서 Bi2O3-MoO3계열의 촉매가 높은 활성을 나타내는 것으로 알려져 있고, 다성분계 복합산화물 촉매가 유사성분이라도 제조방법에 따라 촉매활성에 큰 차이가 있음을 기본 기술사상으로 한다. 즉, 몰리브덴, 철, 니켈, 실리콘을 활성성분으로 하고, 슬러리 방법에 의해 코아부분(the core catalyst phase)을 형성하고, 여기에 함침방법을 도입하여 비스무스와 붕소, 인 및 몰리브덴 중에서 선택된 1 종 이상의 원소를 주성분으로 하는 쉘부분(the shell catalyst phase)을 형성하도록 하여 새로운 코아-쉘 구조의 고체촉매를 그 특징으로 하는 것이다. 그리고, 활성비교 시험을 통하여, 상기한 코아-쉘 구조의 고체촉매가 기존의 방법으로 만든 촉매보다 우수한 촉매활성을 갖음을 확인한 바도 있다.Accordingly, the present inventors have disclosed a core-shell structured solid catalyst useful for preparing nitrile compounds by ammonia oxidation of olefins in Korean Patent Application No. 98-4340. In more detail, the Bi 2 O 3 -MoO 3 series catalyst is known to exhibit high activity in the synthesis of nitrile compounds by ammonia oxidation of olefins. The basic technical idea is that there is a big difference in activity. That is, at least one selected from bismuth, boron, phosphorus and molybdenum using molybdenum, iron, nickel, and silicon as active ingredients, forming a core catalyst phase by a slurry method, and introducing an impregnation method therein. It is characterized by a new core-shell structured solid catalyst which allows the formation of the shell catalyst phase which is based on the element. In addition, it was confirmed through the activity comparison test that the solid catalyst of the core-shell structure has superior catalytic activity than the catalyst made by the conventional method.
여기서, 본 발명자들은 대한민국특허출원 제98-4340호에서 제시한 코아-쉘 구조의 고체촉매를 가암모니아 산화반응하여 니트릴 화합물을 제조하는데 적용하는데에만 그치지 않고, 상기 촉매를 다른 용도 즉, 프로필렌을 산화반응하여 높은 수율로 아크롤레인을 제조할 수 있다는 사실을 착안하게되었다. 따라서, 본 발명자들이 대한민국특허출원 제98-4340호에 개시한 특허가 니트릴 화합물을 제조하는 것에 반하여, 본 발명은 프로필렌을 산화반응하여 높은 수율로 아크롤레인을 제조하는 것으로 그 용도면에서 그 차이점이 있는 것이다. 추가적으로, 산화반응에서는 암모니아가 사용되지 않아 가암모니아 산화반응에 비해 낮은 온도에서도 반응이 쉽게 일어나고, 보다 간단한 반응메카니즘으로 수행할 수 있는 것으로 알려져 있는 등 진보성면에서도 탁월한 효과를 볼수 있는 것이다.Here, the present inventors do not only apply the core catalyst of the core-shell structure shown in Korean Patent Application No. 98-4340 to ammonia oxidation to prepare a nitrile compound, and the catalyst is used for other purposes, that is, oxidize propylene. It was conceived that the reaction could produce acrolein in high yield. Therefore, the inventors of the present invention disclosed in the Republic of Korea Patent Application No. 98-4340 to prepare a nitrile compound, the present invention is to produce acrolein in a high yield by oxidizing propylene, there is a difference in its use will be. In addition, since ammonia is not used in the oxidation reaction, the reaction occurs easily at a lower temperature than the ammonia oxidation reaction, and it is known that the reaction can be performed by a simpler reaction mechanism.
따라서, 본 발명은 대한민국특허출원 제98-4340호에서 제시한 코아-쉘 구조의 고체촉매하에서 프로필렌을 산화반응하여 높은 수율로 아크롤레인을 제조하는 방법을 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide a method for producing acrolein in a high yield by oxidizing propylene under a solid catalyst of a core-shell structure shown in Korean Patent Application No. 98-4340.
본 발명은 프로필렌을 산화반응하여 아크롤레인을 제조하는 방법에 있어서, 상기 산화반응은 코아부분이 [(100-z)%FefNigMomOy+z%SiO2] 조성을 갖고, 쉘부분이 [BinAaOx] 조성을 가지고 있는 다음 화학식 1로 표시되는 코아-쉘 구조의 고체촉매하에서 수행하는 아크롤레인의 제조방법을 그 특징으로 한다.The present invention is a method for producing acrolein by oxidizing propylene, the oxidation reaction has a core portion [(100-z)% Fe f Ni g Mo m O y + z% SiO 2 ] composition, the shell portion It is characterized by a method for producing acrolein which is carried out under a solid catalyst having a core-shell structure represented by the following Chemical Formula 1 having a [Bi n A a O x ] composition.
화학식 1Formula 1
[BinAaOx][(100-z)%FefNigMomOy+z%SiO2][Bi n A a O x ] [(100-z)% Fe f Ni g Mo m O y + z% SiO 2 ]
상기 화학식 1에서:In Formula 1 above:
A는 붕소, 인 및 몰리브덴 중에서 선택된 1종 이상의 원소이고;A is at least one element selected from boron, phosphorus and molybdenum;
m이 1일 때, n은 0.001 ∼ 3이고, a는 0.001 ∼ 3이고, f는 0.01 ∼ 5이고, g는 0.1 ∼ 5이고, z는 0 ∼ 90이며,When m is 1, n is 0.001-3, a is 0.001-3, f is 0.01-5, g is 0.1-5, z is 0-90,
x 및 y는 각각 코아(core) 부분과 쉘(shell)부분에서의 원자가를 맞추기 위해 정해지는 값이다.x and y are values determined to match valences in the core and shell portions, respectively.
이와 같은 본 발명을 더욱 상세히 설명하면 다음과 같다.Referring to the present invention in more detail as follows.
본 발명은 코아-쉘 구조를 갖는 고체촉매하에서 프로필렌의 산화반응에 의해 높은 수율로 아크롤레인을 제조하는 방법에 관한 것이다.The present invention relates to a process for producing acrolein in high yield by oxidation of propylene under a solid catalyst having a core-shell structure.
먼저, 본 발명에 있어 가장 중요한 메카니즘적 이해는 바로 상기한 코아-쉘 구조의 고체촉매하에서 프로필렌을 원료물질로 하여 산화반응을 수행하는 것인 바, 이러한 산화반응의 메커니즘을 더욱 상세히 설명하면 다음과 같다.First, the most important mechanism understanding in the present invention is to perform an oxidation reaction using propylene as a raw material under the solid catalyst of the core-shell structure, which will be described in more detail. same.
대한민국 특허출원 제 98-4340 호에서 본 발명자들이 연구한 결과에 따르면, 코아-쉘 구조의 고체촉매를 구성하는 성분들의 조성에 있어서도 전체적인 화학적 조성이 동일하다 할지라도 코아와 쉘부분을 구성하는 조성성분 및 조성비에 따라 그 활성에 커다란 차이를 나타내게 된다는 것을 알 수 있다. 즉, 코아부분이[(100-z)%FefNigMomOy+z%SiO2] 조성을 갖고, 쉘부분이 [BinAaOx] 조성을 가지게 될 경우, 각 성분들간의 상승효과(synergy effect)에 의해 고체촉매가 최대활성을 나타낼 수 있다. 즉, 코아부분의 격자산소가 반응에 참여하여 부분산화반응을 일으키며 이때 쉘부분에서 반응물인 분자산소를 격자산소의 반응참여로 비어지게 되는 자리를 채워주는 역할을 하는 것으로 여겨진다. 만일 이와 같은 격자산소가 반응에 참여하지 못할 경우, 완전산화반응에 의해 아크롤레인의 선택도는 크게 감소하게 될 것이다. 또한, 비스무스 같은 고가의 원료를 적게 사용해도 되기 때문에 원가절감에도 큰 효과가 있다.According to the results of the study by the present inventors in Korean Patent Application No. 98-4340, even though the overall chemical composition is the same in the composition of the components constituting the core-shell structured solid catalyst, the components constituting the core and the shell portion And it can be seen that a large difference in the activity according to the composition ratio. That is, when the core portion has the composition of [(100-z)% Fe f Ni g Mo m O y + z% SiO 2 ] and the shell portion has the composition [Bi n A a O x ], a rise between the components Due to the synergy effect, the solid catalyst may exhibit maximum activity. In other words, the lattice oxygen of the core part participates in the reaction to generate a partial oxidation reaction, and at this time, the molecular oxygen, which is a reactant in the shell part, is considered to play a role of filling the empty space by participating in the reaction of the lattice oxygen. If such lattice oxygen does not participate in the reaction, the selectivity of acrolein will be greatly reduced by the complete oxidation reaction. In addition, since it is possible to use less expensive raw materials such as bismuth, there is a great effect on cost reduction.
아울러, 본 발명은 상기한 코아-쉘 구조의 고체촉매를 사용하면서, 프로필렌의 산화반응에 의해 높은 수율로 아크롤레인을 제조하는 방법에도 큰 특징을 두는 바, 상기 산화반응에 대하여 그 조건을 들어 상세히 하고자 한다.In addition, the present invention has a great feature in the method for producing acrolein in a high yield by the oxidation reaction of propylene, using the above-described core-shell structured solid catalyst, the oxidation reaction to be described in detail for the conditions do.
먼저, 본 발명에 따른 프로필렌의 산화반응시의 산화 반응온도는 300 ∼ 500℃로 하며, 바람직하기로는 350 ∼ 400℃이다. 여기서, 반응온도를 상기 범위로 한정한 이유는 촉매의 활성을 최적화하기 위한 것으로서, 만일 반응온도가 상기 범위를 벗어나면 미반응물의 증가 내지는 부생성물의 증가로 인하여 프로필렌의 전환율과 아크롤레인의 선택도에 있어 큰 문제를 야기하기 때문이다. 또한, 산화 반응압력은 1 ∼ 5 기압으로 하는 바, 만일 그 범위를 벗어나면 아크롤레인의 선택도가 급격하게 감소하는 문제가 있어 바람직하지 않다. 그리고, 산화반응에 있어서 반응물의 부피비를 프로필렌/산소/질소= 1 / 1 ∼ 20 / 1 ∼ 20로 하는 바,그 범위를 한정한 이유는 반응진행 정도와 선택도에 큰 변화가 있기 때문이다. 마지막으로, 접촉시간을 0.5 ∼ 5 초로 하여 산화반응을 수행하는 바, 그 이유는 상술한 바와 같이 반응진행 정도와 선택도 변화에 큰 영향을 주기 때문이다.First, the oxidation reaction temperature at the time of the propylene oxidation reaction of this invention is 300-500 degreeC, Preferably it is 350-400 degreeC. Here, the reason for limiting the reaction temperature to the above range is for optimizing the activity of the catalyst. If the reaction temperature is outside the above range, the conversion of propylene and the selectivity of acrolein are increased due to the increase of unreacted or by-product. Because it causes a big problem. In addition, the oxidation reaction pressure is 1 to 5 atm, and if it is out of the range, there is a problem that the selectivity of acrolein rapidly decreases, which is not preferable. In the oxidation reaction, the volume ratio of the reactants is set to propylene / oxygen / nitrogen = 1/1 to 20/1 to 20. The reason for limiting the range is that the reaction progress and selectivity are largely changed. Finally, the oxidation reaction is carried out with a contact time of 0.5 to 5 seconds because the reaction progress and the selectivity change are greatly affected as described above.
이하 본 발명을 실시예에 의거 더욱 상세히 설명하겠는 바, 본 발명이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by Examples.
비교예 1Comparative Example 1
Fe(NO3)3·9H2O 18.66g과 Ni(NO3)3·6H2O 39.33g을 10% HNO3150㎖에 용해시켜 용액 A를 만들고, (NH4)6Mo7O24.4H2O 29.19g을 물 240 ㎖에 가열, 용해시켜 40% 실리카졸 93.83g을 첨가하여 용액 B를 만들었다. 상기 용액 A와 용액 B를 혼합하여 암모니아수로 pH를 3으로 조절하고 핫플레이트에서 증발시켜 140℃의 오븐에서 건조하고 다시 290℃와 450℃에서 소성한 후, 25 ∼ 70 메쉬로 분쇄하였다. 그리고, 다시 575℃에서 3시간을 처리하였다. 그결과, 얻은 촉매는 다음 표 1에 나타낸 바와 같이, [50%MoFe0.28Ni0.82Oy+50%SiO2]이었다. 그리고, 이렇게 얻어진 상기 촉매하에서, 다음 표 2에 나타낸 산화반응 조건으로 산화반응을 수행하였다. 그리고, 프로필렌의 전환율과 아크롤레인의 선택도를 측정하여 그 결과를 다음 표 2에 나타내었다.18.66 g of Fe (NO 3 ) 3 .9H 2 O and 39.33 g of Ni (NO 3 ) 3 .6H 2 O were dissolved in 150 mL of 10% HNO 3 to form Solution A, (NH 4 ) 6 Mo 7 O 24 . 29.19 g of 4H 2 O was heated and dissolved in 240 ml of water, and Solution B was prepared by adding 93.83 g of 40% silica sol. The solution A and solution B were mixed, adjusted to pH 3 with ammonia water, evaporated in a hot plate, dried in an oven at 140 ° C., calcined at 290 ° C. and 450 ° C., and then ground to 25 to 70 mesh. And again, it treated 3 hours at 575 degreeC. As a result, the catalyst obtained was [50% MoFe 0.28 Ni 0.82 O y + 50% SiO 2 ], as shown in Table 1 below. And, under the catalyst thus obtained, the oxidation reaction was carried out under the oxidation reaction conditions shown in Table 2 below. In addition, the conversion of propylene and the selectivity of acrolein were measured, and the results are shown in Table 2 below.
그리고, 프로필렌의 산화반응시 생성되는 생성물 중에서 이산화탄소, 일산화탄소, 메탄, 에탄, 에틸렌 등의 선택도를 불꽃이온화 검출기와 열전도도 검출기가장착된 기체크로마토그래프법으로 측정하였다. 이때, 프로필렌의 전환율은 다음 수학식 1과 같이 정의하였으며, 아크롤레인의 선택도는 다음 수학식 2와 같이 정의하였다.The selectivity of carbon dioxide, carbon monoxide, methane, ethane, ethylene, etc. among the products generated during the oxidation reaction of propylene was measured by a gas chromatograph method equipped with a flame ionization detector and a thermal conductivity detector. In this case, the conversion of propylene was defined as in Equation 1 below, and the selectivity of acrolein was defined as in Equation 2 below.
비교예 2Comparative Example 2
상기 비교예 1의 과정에서 용액 A를 만들 때, Bi(NO3)3·5H2O 용액(0.25g/㎖)을 0.3㎖ 취하여 10% HNO3과 함께 균일하게 혼합하는 것을 제외하고는 상기 비교예 1과 동일하게 실시하였다. 그 결과, 얻은 촉매는 다음 표 1에 나타낸 바와 같이, [Bi0.03MoFe0.28Ni0.82Oy+50%SiO2]이었다. 그리고, 이렇게 얻어진 상기 촉매하에서, 다음 표 2에 나타낸 산화반응 조건으로 산화반응을 수행하였고, 프로필렌의 전환율과 아크롤레인의 선택도를 상기 비교예 1과 동일한 방법으로 측정하여 그 결과를 다음 표 2에 나타내었다.When making solution A in the process of Comparative Example 1, except that 0.3 ml of Bi (NO 3 ) 3 · 5H 2 O solution (0.25 g / ㎖) and uniformly mixed with 10% HNO 3 compared with the above It carried out similarly to Example 1. As a result, the catalyst obtained was [Bi 0.03 MoFe 0.28 Ni 0.82 O y + 50% SiO 2 ], as shown in Table 1 below. Then, under the catalyst thus obtained, oxidation reaction was carried out under the oxidation reaction conditions shown in Table 2 below, and the conversion of propylene and acrolein selectivity were measured in the same manner as in Comparative Example 1, and the results are shown in Table 2 below. It was.
비교예 3Comparative Example 3
상기 비교예 1의 과정에서 용액 A를 만들 때, H3PO4용액(0.05g/㎖) 0.3㎖와 Bi(NO3)3·5H2O 용액(0.25g/㎖)을 0.3㎖ 취하여 10% HNO3과 함께 균일하게 혼합하는 것을 제외하고는 상기 비교예 1과 동일하게 실시하였다. 그 결과, 얻은 촉매는 다음 표 1에 나타낸 바와 같이, [Bi0.03P0.03MoFe0.28Ni0.82Oy+50%SiO2]이었다. 그리고, 이렇게 얻어진 상기 촉매하에서, 다음 표 2에 나타낸 산화반응 조건으로 산화반응을 수행하였고, 프로필렌의 전환율과 아크롤레인의 선택도를 상기 비교예 1과 동일한 방법으로 측정하여 그 결과를 다음 표 2에 나타내었다.When Solution A was prepared in the process of Comparative Example 1, 10 ml of 0.3 ml of H 3 PO 4 solution (0.05 g / ml) and 0.3 ml of Bi (NO 3 ) 3 · 5H 2 O solution (0.25 g / ml) were taken. The same process as in Comparative Example 1 was carried out except that the mixture was uniformly mixed with HNO 3 . As a result, the obtained catalyst was [Bi 0.03 P 0.03 MoFe 0.28 Ni 0.82 O y + 50% SiO 2 ], as shown in Table 1 below. Then, under the catalyst thus obtained, oxidation reaction was carried out under the oxidation reaction conditions shown in Table 2 below, and the conversion of propylene and acrolein selectivity were measured in the same manner as in Comparative Example 1, and the results are shown in Table 2 below. It was.
비교예 4Comparative Example 4
상기 비교예 1의 과정에서 용액 A를 만들 때, H3PO4용액(0.05g/㎖) 0.1㎖와 Bi(NO3)3·5H2O 용액(0.25g/㎖)을 0.1㎖ 취하고, 10% HNO3과 함께 균일하게 혼합하는 것을 제외하고는 상기 비교예 1과 동일하게 실시하였다. 그 결과, 얻은 촉매는 다음 표 1에 나타낸 바와 같이, [Bi0.01P0.01MoFe0.28Ni0.82Oy+50%SiO2]이었다. 그리고, 이렇게 얻어진 상기 촉매하에서, 다음 표 2에 나타낸 산화반응 조건으로 산화반응을 수행하였고, 프로필렌의 전환율과 아크롤레인의 선택도를 상기 비교예 1과 동일한 방법으로 측정하여 그 결과를 다음 표 2에 나타내었다.When Solution A was prepared in the course of Comparative Example 1, 0.1 mL of H 3 PO 4 solution (0.05 g / mL) and 0.1 mL of Bi (NO 3 ) 3 · 5H 2 O solution (0.25 g / mL) were taken, and 10 The same procedure as in Comparative Example 1 was carried out except that the mixture was uniformly mixed with% HNO 3 . As a result, the obtained catalyst was [Bi 0.01 P 0.01 MoFe 0.28 Ni 0.82 O y + 50% SiO 2 ], as shown in Table 1 below. Then, under the catalyst thus obtained, oxidation reaction was carried out under the oxidation reaction conditions shown in Table 2 below, and the conversion of propylene and acrolein selectivity were measured in the same manner as in Comparative Example 1, and the results are shown in Table 2 below. It was.
비교예 5 ∼ 8 및 실시예 1Comparative Examples 5 to 8 and Example 1
상기 비교예 1과 동일한 방법으로 [50%MoFe0.28Ni0.82Oy+50%SiO2]인 코아부분을 제조하였다. 이것을 2.35g 취하여 상기 비교예 3과 동일한 방법으로 P와 Bi를 함침시켰다. 그 결과, 얻은 촉매는 다음 표 1에 나타낸 바와 같이, [Bi0.03P0.03Ox][50%MoFe0.28Ni0.82Oy+50%SiO2]이었다. 그리고, 이렇게 얻어진 상기 촉매하에서, 다음 표 2에 나타낸 산화반응 조건으로 산화반응을 수행하였고, 프로필렌의 전환율과 아크롤레인의 선택도를 상기 비교예 1과 동일한 방법으로 측정하여 그 결과를 다음 표 2에 나타내었다.A core part having [50% MoFe 0.28 Ni 0.82 O y + 50% SiO 2 ] was prepared in the same manner as in Comparative Example 1. 2.35 g of this was impregnated with P and Bi in the same manner as in Comparative Example 3. As a result, the obtained catalyst was [Bi 0.03 P 0.03 O x ] [50% MoFe 0.28 Ni 0.82 O y + 50% SiO 2 ] as shown in Table 1 below. Then, under the catalyst thus obtained, oxidation reaction was carried out under the oxidation reaction conditions shown in Table 2 below, and the conversion of propylene and acrolein selectivity were measured in the same manner as in Comparative Example 1, and the results are shown in Table 2 below. It was.
실시예 2Example 2
상기 실시예 1과 같은 방법을 수행하여 다음 표 1에 나타낸 바와 같이, [Bi0.02Mo0.02Ox][50%MoFe0.28Ni0.82Oy+50%SiO2]인 촉매를 제조하였다. 그리고, 이렇게 얻어진 상기 촉매하에서, 다음 표 2에 나타낸 산화반응 조건으로 산화반응을 수행하였고, 프로필렌의 전환율과 아크롤레인의 선택도를 상기 비교예 1과 동일한 방법으로 측정하여 그 결과를 다음 표 2에 나타내었다.As described in Table 1, the same method as in Example 1 was performed to prepare a catalyst having [Bi 0.02 Mo 0.02 O x ] [50% MoFe 0.28 Ni 0.82 O y + 50% SiO 2 ]. Then, under the catalyst thus obtained, oxidation reaction was carried out under the oxidation reaction conditions shown in Table 2 below, and the conversion of propylene and acrolein selectivity were measured in the same manner as in Comparative Example 1, and the results are shown in Table 2 below. It was.
실시예 3Example 3
상기 실시예 1과 같은 방법을 수행하여 다음 표 1에 나타낸 바와 같이, [Bi0.03Mo0.03Ox][50%MoFe0.28Ni0.82Oy+50% SiO2]인 촉매를 제조하였다. 그리고, 이렇게 얻어진 상기 촉매하에서, 다음 표 2에 나타낸 산화반응 조건으로 산화반응을 수행하였고, 프로필렌의 전환율과 아크롤레인의 선택도를 상기 비교예 1과 동일한 방법으로 측정하여 그 결과를 다음 표 2에 나타내었다.The same method as in Example 1 was performed to prepare a catalyst having [Bi 0.03 Mo 0.03 O x ] [50% MoFe 0.28 Ni 0.82 O y + 50% SiO 2 ] as shown in Table 1 below. Then, under the catalyst thus obtained, oxidation reaction was carried out under the oxidation reaction conditions shown in Table 2 below, and the conversion of propylene and acrolein selectivity were measured in the same manner as in Comparative Example 1, and the results are shown in Table 2 below. It was.
상기에서 설명한 바와 같이, 특정 조성의 코아부분과 쉘부분으로 구성된 상기 화학식 1로 표시되는 고체촉매는 비교예의 코아부분과 쉘부분으로 구분되어 구성된 기존의 촉매를 사용하였을 경우에 비하여 높은 활성을 보였으며, 아울러 비스무스 같은 고가의 원료를 적게 사용해도 되기 때문에 원가절감에도 큰 효과가 있음을 알 수 있다. 따라서, 본 발명은 이러한 높은 확성을 갖는 촉매하에서 프로필렌을 산화반응하여 높은 수율로 아크롤레인을 제조할 수 있어 아크롤레인의 공업적 생산에 매우 유용한 효과가 있는 것이다.As described above, the solid catalyst represented by the formula (1) consisting of a core portion and a shell portion of a specific composition showed a higher activity as compared to the case of using a conventional catalyst composed of a core portion and a shell portion of the comparative example. In addition, since it is possible to use less expensive raw materials such as bismuth, it can be seen that it has a great effect on cost reduction. Therefore, the present invention can produce acrolein in a high yield by oxidizing propylene under such a high accuracy catalyst, which is very useful for industrial production of acrolein.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990021586A KR100324872B1 (en) | 1999-06-10 | 1999-06-10 | A process for preparing Acrolein |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990021586A KR100324872B1 (en) | 1999-06-10 | 1999-06-10 | A process for preparing Acrolein |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20010002017A KR20010002017A (en) | 2001-01-05 |
KR100324872B1 true KR100324872B1 (en) | 2002-02-28 |
Family
ID=19591414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019990021586A Expired - Fee Related KR100324872B1 (en) | 1999-06-10 | 1999-06-10 | A process for preparing Acrolein |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100324872B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100863327B1 (en) | 2007-08-31 | 2008-10-15 | 한국화학연구원 | Method for preparing 1,3-butadiene using solid catalyst having core-shell structure |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5144090A (en) * | 1990-06-06 | 1992-09-01 | Mitsui Toatsu Chemicals, Incorporated | Method for preparing acrolein or methacrolein |
KR940002982A (en) * | 1992-07-11 | 1994-02-19 | 문정환 | Semiconductor automated production method |
JPH0840969A (en) * | 1994-08-01 | 1996-02-13 | Daicel Chem Ind Ltd | Production of acrolein and catalyst |
JPH10237007A (en) * | 1997-02-27 | 1998-09-08 | Elf Atochem Sa | Method for producing acrolein from propylene by oxidation-reduction reaction and use of solid mixed oxide composition in the reaction as redox system |
-
1999
- 1999-06-10 KR KR1019990021586A patent/KR100324872B1/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5144090A (en) * | 1990-06-06 | 1992-09-01 | Mitsui Toatsu Chemicals, Incorporated | Method for preparing acrolein or methacrolein |
KR940002982A (en) * | 1992-07-11 | 1994-02-19 | 문정환 | Semiconductor automated production method |
JPH0840969A (en) * | 1994-08-01 | 1996-02-13 | Daicel Chem Ind Ltd | Production of acrolein and catalyst |
JPH10237007A (en) * | 1997-02-27 | 1998-09-08 | Elf Atochem Sa | Method for producing acrolein from propylene by oxidation-reduction reaction and use of solid mixed oxide composition in the reaction as redox system |
KR19980071833A (en) * | 1997-02-27 | 1998-10-26 | 리외 미쉘 | Process for preparing acrolein from propylene by redox reaction and use of solid composite oxide composition as redox system in this reaction |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100863327B1 (en) | 2007-08-31 | 2008-10-15 | 한국화학연구원 | Method for preparing 1,3-butadiene using solid catalyst having core-shell structure |
Also Published As
Publication number | Publication date |
---|---|
KR20010002017A (en) | 2001-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4568790A (en) | Process for oxydehydrogenation of ethane to ethylene | |
US3766092A (en) | Catalyst for preparation of unsaturated nitriles | |
US3226421A (en) | Catalytic process for the preparation of nitriles | |
KR100237976B1 (en) | Vanadium-phosphorus oxide and its manufacturing method, gas phase oxidation catalyst composed of the oxide and partial gas phase oxidation method of hydrocarbons | |
KR20100016115A (en) | Improved mixed metal oxide catalysts and process for (amm) oxidation of lower alkane hydrocarbons | |
JP5505986B2 (en) | Catalytic ammoxidation process for hydrogen cyanide production | |
KR101270679B1 (en) | Bismuth-molybdenum-iron-phosphorus multi-component metal oxide catalyst, Preparing method thereof and Preparing method of 1,3-butadiene using the same | |
KR100336969B1 (en) | A process for preparing acrolein with core-shell structure catalyst | |
KR100324872B1 (en) | A process for preparing Acrolein | |
KR100197160B1 (en) | Preparing method of pb-substituted hydroxyapatite catalyst for methane dimerization | |
KR100863327B1 (en) | Method for preparing 1,3-butadiene using solid catalyst having core-shell structure | |
KR100247552B1 (en) | Catalyst having core-shell structure | |
KR100247556B1 (en) | Core-shell structure catalysts | |
KR100280372B1 (en) | Multicomponent Composite Oxide Catalyst and Its Manufacturing Method | |
JPH031059B2 (en) | ||
US3536633A (en) | Preparation of heavy metal oxide-base catalyst | |
US3445501A (en) | Catalytic ammoxidation of olefins to nitriles | |
US4065487A (en) | Process for producing benzonitrile | |
KR100255032B1 (en) | Solid catalyst for preparing nitrile compounds | |
KR100280377B1 (en) | Oxidation reaction catalyst and preparation method thereof | |
KR100193382B1 (en) | Ammonia Oxidation Catalyst | |
JPS625420B2 (en) | ||
KR100747621B1 (en) | Catalytic Amoxylation of Hydrocarbons Using Carbon Dioxide Oxidizers | |
KR100501826B1 (en) | Multicomponent oxide catalyst for manufacturing nitrile compounds and its preparing method | |
KR800001379B1 (en) | Catalytic ammoxidation of olefins to nitriles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 19990610 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20010430 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20011231 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20020204 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20020205 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20041231 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20060102 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20061228 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20061228 Start annual number: 6 End annual number: 6 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |