[go: up one dir, main page]

KR100322450B1 - A electrolyte containing a monomer of conductive polymer and a lithium secondary battery made thereof - Google Patents

A electrolyte containing a monomer of conductive polymer and a lithium secondary battery made thereof Download PDF

Info

Publication number
KR100322450B1
KR100322450B1 KR1019990015926A KR19990015926A KR100322450B1 KR 100322450 B1 KR100322450 B1 KR 100322450B1 KR 1019990015926 A KR1019990015926 A KR 1019990015926A KR 19990015926 A KR19990015926 A KR 19990015926A KR 100322450 B1 KR100322450 B1 KR 100322450B1
Authority
KR
South Korea
Prior art keywords
lithium
secondary battery
lithium secondary
conductive polymer
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
KR1019990015926A
Other languages
Korean (ko)
Other versions
KR20000072955A (en
Inventor
송의환
정원일
황덕철
Original Assignee
김순택
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김순택, 삼성에스디아이 주식회사 filed Critical 김순택
Priority to KR1019990015926A priority Critical patent/KR100322450B1/en
Priority to JP2000133216A priority patent/JP2000331711A/en
Publication of KR20000072955A publication Critical patent/KR20000072955A/en
Application granted granted Critical
Publication of KR100322450B1 publication Critical patent/KR100322450B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명에 따른 리튬 이차 전지용 전해액은 피롤(pyrrole), 아닐린(aniline), 티오펜(thiophene) 및 이들의 유도체로 이루어진 군으로부터 선택된 전도성 고분자의 단량체를 2.0 중량미만의 양으로 비수용성 유기용매에 첨가하여 제조된다. 상기 비수용성 용매로는 환형(cyclic) 또는 사슬형(chain) 카보네이트와 같은 유기용매가 사용될 수 있으며, 둘 이상을 혼합하여 사용할 수도 있다. 상기 전해액을 함유하는 리튬 이차 전지는 음극 극판으로 수지 바인더(resin binder), 음극 활물질로서 리튬 이온을 흡장/방출할 수 있는 흑연 탄소 물질(graphitic carbonaceous material)을 사용하고 양극 극판으로 리튬 이온을 흡장/방출할 수 있는 리튬 복합 산화물을 사용한다. 본 발명의 전도성 고분자의 단량체를 함유하는 비수용성 전해액은 충전중에 양극 활물질의 표면에 전도성 고분자막을 형성시켜 큰 전류의 흐름을 차단함으로써 전지의 안전성을 향상시킨다. 또한 양극 표면에 형성된 전도성 고분자막은 리튬 이온의 출입을 보다 가역적으로 이루어지게 하여 전지의 수명을 연장시킬 수도 있다.In the electrolyte solution for a lithium secondary battery according to the present invention, a monomer of a conductive polymer selected from the group consisting of pyrrole, aniline, thiophene, and derivatives thereof is added to the water-insoluble organic solvent in an amount of less than 2.0 wt%. It is manufactured by. As the non-aqueous solvent, an organic solvent such as cyclic or chain carbonate may be used, or two or more may be mixed. The lithium secondary battery containing the electrolyte solution uses a resin binder as a negative electrode plate and a graphitic carbonaceous material capable of occluding / discharging lithium ions as a negative electrode active material and occludes lithium ions as a positive electrode plate. Use a lithium composite oxide that can be released. The non-aqueous electrolyte containing the monomer of the conductive polymer of the present invention forms a conductive polymer film on the surface of the positive electrode active material during charging to block the flow of a large current to improve the safety of the battery. In addition, the conductive polymer film formed on the surface of the anode may allow lithium ions to enter and exit more reversibly, thereby extending the life of the battery.

Description

전도성 고분자의 단량체를 함유하는 전해액 및 이를 포함하는 리튬 이차 전지{A ELECTROLYTE CONTAINING A MONOMER OF CONDUCTIVE POLYMER AND A LITHIUM SECONDARY BATTERY MADE THEREOF}Electrolytic solution containing a monomer of a conductive polymer and a lithium secondary battery comprising the same {A ELECTROLYTE CONTAINING A MONOMER OF CONDUCTIVE POLYMER AND A LITHIUM SECONDARY BATTERY MADE THEREOF}

발명의 분야Field of invention

본 발명은 전도성 고분자의 단량체를 함유하는 전해액 및 이를 포함하는 리튬 이차 전지에 관한 것으로서, 더욱 상세하게는 양극 표면에 전도성 고분자막을 형성시킴으로써 과전류의 흐름을 차단할 수 있는 전도성 고분자의 단량체를 함유하는 전해액 및 이를 포함하는 리튬 이차 전지에 관한 것이다.The present invention relates to an electrolyte solution containing a monomer of a conductive polymer and a lithium secondary battery comprising the same, and more particularly, an electrolyte solution containing a monomer of a conductive polymer capable of blocking the flow of overcurrent by forming a conductive polymer film on a surface of a cathode. It relates to a lithium secondary battery comprising the same.

종래 기술Prior art

최근 첨단 전자산업의 발달로 전자장비의 소량화 및 경량화가 가능케됨에 따라 휴대용 전자 기기의 사용이 증대되고 있다. 이러한 휴대용 전자 기기의 전원으로 높은 에너지 밀도를 가진 전지의 필요성이 증대되어 리튬 이차 전지의 연구가 활발하게 진행되고 있다. 리튬 이차 전지의 음극재료로 Li-금속이나 탄소재료가 사용되고 있으며 양극재료로는 Li-금속산화물이 사용되고 있다. Li-금속을 음극재료로 사용할 경우 수지상결정(dentrite)의 형성으로 인하여 전지단락에 의한 폭팔위험성이 있기 때문에 음극 재료로서 Li-금속 대신 탄소 재료로 대체되어 가고 있다. 양극재료로는 LiMn2O4, LiMnO2, LiCoO2, LiNiO2, LiNi1-xCoxO2(0<x<1) 등의 복합 금속 산화물들이 사용되고 있다. LiMn2O4, LiMnO2등의 Mn-계 전극 물질은 합성하기도 쉽고 값이 비교적 저렴하며 환경에 대한 오염도 적다는 장점이 있으나 용량이 작다는 단점이 있다. 특히 LiMn2O4는 LiCoO2, LiNiO2등의 다른 활물질에 비해 방전 용량이 작고, 고율 충·방전시 방전 용량이 급격히 감소하며, 고온에서의 연속적인 충·방전시 망간의 용출로 인해 전지 수명이 급격히 열화되는 문제점이 있다. LiCoO2는 양호한 전기 전도도와 높은 전지전압 그리고 우수한 전극특성을 보이며 현재 SONY사 등에서 상업화되어 시판되고 있는 대표적인 양극 전극물질이나 가격이 비싸다는 단점이 있다. LiNiO2는 상기 언급된 양극 전극물질 중 비교적 값이 싸며 가장 높은 방전용량의 전지특성을 나타내고 있으나 합성하기 어렵고 높은 방전 용량등으로 전지의 안전성 확보 문제가 대두되고 있다.Recently, with the development of the high-tech electronic industry, it is possible to reduce the weight and weight of electronic equipment, and thus the use of portable electronic devices is increasing. As a power source for such portable electronic devices, the necessity of a battery having a high energy density has been increased, and research on lithium secondary batteries has been actively conducted. Li-metal or carbon material is used as a negative electrode material of a lithium secondary battery, and Li-metal oxide is used as a positive electrode material. When Li-metal is used as a negative electrode material, there is a risk of explosion due to short-circuit due to the formation of dendrite (dentrite), which is being replaced by carbon material instead of Li-metal as negative electrode material. Composite metal oxides such as LiMn 2 O 4 , LiMnO 2 , LiCoO 2 , LiNiO 2 , LiNi 1-x Co x O 2 (0 <x <1) are used as the anode material. Mn-based electrode materials, such as LiMn 2 O 4 , LiMnO 2 , are easy to synthesize, relatively inexpensive, and have low environmental pollution but have a small capacity. In particular, LiMn 2 O 4 has a lower discharge capacity than other active materials such as LiCoO 2 and LiNiO 2 , a rapid decrease in discharge capacity at high rates of charge and discharge, and battery life due to elution of manganese during continuous charge and discharge at high temperatures. There is a problem of this deterioration rapidly. LiCoO 2 has good electrical conductivity, high battery voltage, and excellent electrode characteristics, and is a representative anode electrode material commercialized and sold by SONY, and has a disadvantage of being expensive. LiNiO 2 is relatively inexpensive among the above-mentioned positive electrode materials and exhibits the highest discharge capacity. However, LiNiO 2 is difficult to synthesize and has high discharge capacity.

또한 전지는 양극/전해액, 음극/전해액 등의 복합적인 반응에 의하여 특성이 나타나기 때문에 적절한 전해액의 사용이 또한 전지의 성능을 향상시키는 중요한 변수중의 하나이다. 종래의 전해액의 체계는 단순히 리튬이온을 이동시키는 매개체 정도의 역할만을 기대하였고 또한 그렇게 작용하여 왔다. 기존의 전해액을 사용하는 경우 관통과 과충전과 같은 큰 전류가 흐를 때 그것을 차단할 수 있는 방법이 없어 열폭주 현상이 초래하게 되고 위험한 상황으로 변할 수 있다. 따라서 최근에는 이러한 문제점을 해결하기 위하여 기존의 전해액에 음극과의 초기 반응에 의하여 음극 표면에 얇은 부동화막을 형성하게 하는 첨가제를 사용하는 방법이 알려져 있다.In addition, since a battery is characterized by a complex reaction such as an anode / electrolyte and a cathode / electrolyte, the use of an appropriate electrolyte is also one of the important variables for improving the performance of the battery. Conventional electrolyte systems have expected and only acted as the mediators to move lithium ions. When using a conventional electrolyte, there is no way to block it when a large current flows, such as penetration and overcharging, which causes thermal runaway and can turn into a dangerous situation. Therefore, recently, in order to solve such a problem, a method of using an additive to form a thin passivation film on the surface of an anode by an initial reaction with a cathode in an existing electrolyte solution is known.

그러나 양극 표면에 전도성 고분자 막을 형성하여 과충전이나 관통과 같은 큰 전류가 흐를 때 이를 차단할 수 있는 전해액에 대해서는 알려진 바가 없다.However, there is no known electrolyte solution that forms a conductive polymer film on the surface of the anode to block a large current such as overcharge or penetration.

본 발명의 목적은 양극 표면에 전도성 고분자막을 형성함으로써 과전류가 흐를 경우 이를 차단하여 전지의 안전성을 향상시킬 수 있는 전도성 고분자의 단량체가 함유된 비수용성 전해액을 제공하기 위한 것이다.An object of the present invention is to provide a non-aqueous electrolyte solution containing a monomer of the conductive polymer that can improve the safety of the battery by blocking the overcurrent flow by forming a conductive polymer film on the positive electrode surface.

본 발명의 다른 목적은 안전성과 전지의 수명이 향상된 리튬 이차 전지를 제공하기 위한 것이다.Another object of the present invention is to provide a lithium secondary battery with improved safety and battery life.

상기 목적 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.The above and other objects can be achieved by the present invention described below.

도 1은 리튬 이차 전지의 피롤의 함량에 따른 사이클 수명 및 용량을 나타낸 그래프.1 is a graph showing the cycle life and capacity according to the pyrrole content of the lithium secondary battery.

상기 본 발명의 목적을 달성하기 위하여, 본 발명은 비수용성 유기용매에 전도성 고분자의 단량체를 첨가시킴으로써 비수용성 전해액을 제조하여 리튬 이차 전지에 적용한다.In order to achieve the above object of the present invention, the present invention is applied to a lithium secondary battery by preparing a non-aqueous electrolyte by adding a monomer of the conductive polymer to the water-insoluble organic solvent.

이하, 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에 따른 리튬 이차 전지용 전해액은 비수용성 용매에 전도성 고분자의 단량체를 첨가하여 제조된다. 본 발명에 사용될 수 있는 전도성 고분자의 단량체로는 리튬 전위에 대해 4.0V 전후에서 전기화학적으로 중합될 수 있는 피롤(pyrrole), 아닐린(aniline), 티오펜(thiophene) 또는 이들의 유도체가 있다. 이들 화합물은 2.0 중량미만의 양으로 사용하는 것이 바람직하다. 2.0 중량이상 첨가되는 경우 방전용량과 비가역 용량이 증가되어 전지의 성능을 저하시키는 문제점이 발생한다. 상기 비수용성 용매로는 환형(cyclic) 또는 사슬형(chain) 카보네이트와 같은 유기용매가 사용될 수 있으며, 둘 이상을 혼합하여 사용할 수도 있다. 이들의 구체적인 예로는 에틸렌 카보네이트(EC), 디에틸 카보네이트(DEC), 에틸메틸 카보네이트(EMC) 등이 있다.The electrolyte solution for a lithium secondary battery according to the present invention is prepared by adding a monomer of a conductive polymer to a water-insoluble solvent. Monomers of the conductive polymer that can be used in the present invention include pyrrole, aniline, thiophene or derivatives thereof that can be electrochemically polymerized at about 4.0V with respect to lithium potential. It is preferable to use these compounds in amounts less than 2.0 weight. When more than 2.0 weight is added, the discharge capacity and the irreversible capacity increase, which causes a problem of degrading the performance of the battery. As the non-aqueous solvent, an organic solvent such as cyclic or chain carbonate may be used, or two or more may be mixed. Specific examples thereof include ethylene carbonate (EC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC), and the like.

본 발명에서 리튬 이차 전지는 음극 극판, 전해액 및 양극 극판으로 구성된다. 상기 음극 극판은 수지 바인더(resin binder), 음극 활물질로서 리튬 이온을 흡장/방출할 수 있는 흑연 탄소 물질(graphitic carbonaceous material)로 제조된다. 상시 음극 활물질은 dOO2 층간거리(interplanar distance)가 3.35∼3.38이고 X-선 회절(X-ray diffraction)에 의한 Lc(crystallite size)가 적어도 20㎚ 이상이고 700℃ 이상에서 발열 피크를 가진다. 본 발명에 사용되는 음극 활물질은 메조페이스(mesophase) 구형 입자를 사용하여, 이를 탄화단계(carbonizing step) 및 흑연화 단계(graphitizing step) 공정에 의하여 제조된 카본 물질이다. 또한 섬유형 메조페이스 핏치(mesophase pitch fiber)를 사용하여 이를 탄화 단계 및 흑연화 단계에 의하여 제조된 섬유형 흑연(graphite fiber)도 음극 활물질로 사용될 수 있으며 인조흑연 또는 천연흑연 모두 사용될 수 있다.In the present invention, the lithium secondary battery is composed of a negative electrode plate, an electrolyte, and a positive electrode plate. The negative electrode plate is made of a graphite binder and a graphite carbonaceous material capable of occluding / discharging lithium ions as a negative electrode active material. The anode active material has a dOO2 interplanar distance of 3.35 to 3.38, an Lc (crystallite size) by X-ray diffraction at least 20 nm, and an exothermic peak at 700 ° C or higher. The negative electrode active material used in the present invention is a carbon material prepared by using a mesophase spherical particle, by a carbonizing step and a graphitizing step process. In addition, fibrous graphite prepared by a carbonization step and a graphitization step using a fibrous mesophase pitch (mesophase pitch fiber) can also be used as a negative electrode active material, both artificial graphite or natural graphite can be used.

상기 양극 극판에는 리튬 이온을 흡장/방출할 수 있는 리튬 복합 산화물이 사용된다. 이들의 구체적인 예로는 LiCoO2, LiNi1-x-yCoxMyO2(0<x<1, 0<y<1, 0<x+y<1, M은 Al, Sr, Mg, La 등의 금속), LiMnO2, LiMn2O4등이 있다. 본 발명의 리튬 이차 전지의 전해액에 사용될 수 있는 지지(supporting) 전해염으로는 리튬 헥사플루오로포스페이트, 리튬 테트라플루오로보레이트, 리튬 퍼클로레이트, 리튬 트리플루오로메탄설포네이트 및 이들중 둘 이상의 혼합물이 사용될 수 있다.As the positive electrode plate, a lithium composite oxide capable of occluding / discharging lithium ions is used. Specific examples thereof include LiCoO 2 , LiNi 1-xy Co x M y O 2 (0 <x <1, 0 <y <1, 0 <x + y <1, M is Al, Sr, Mg, La, etc.). Metal), LiMnO 2 , LiMn 2 O 4, and the like. As supporting electrolyte salts that can be used in the electrolyte of the lithium secondary battery of the present invention, lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, lithium trifluoromethanesulfonate and mixtures of two or more thereof may be used. Can be.

상기 양극과 음극 극판 사이에 전도성 고분자의 단량체를 포함하는 비수용성 전해액을 적용하게 되면 충전중에 양극 활물질의 표면에 전도성 고분자막을 형성시킨다. 이렇게 형성된 전도성 고분자막은 정상적인 충·방전에서 리튬 이온의 이동에는 관여하지 않으나 과충전이나 관통시에 발생하는 4.3V 이상의 고전위에서 전도성을 잃어버림으로써 부도체막의 특성을 갖게 된다. 이로써 큰 전류의 흐름을 차단할 수 있어 과충전이나 관통으로 인한 열폭주 현상을 방지할 수 있다. 또한 전도성 고분자막이 양극 표면에 형성됨으로써 리튬 이온의 출입이 보다 가역적으로 이루어지는 데 도움을 주어 전지의 수명이 연장되게 된다.When the non-aqueous electrolyte solution containing the monomer of the conductive polymer is applied between the positive electrode and the negative electrode plate, a conductive polymer film is formed on the surface of the positive electrode active material during charging. The conductive polymer film thus formed is not involved in the movement of lithium ions in normal charging and discharging, but loses its conductivity at high potentials of 4.3V or higher generated during overcharging or penetration, thereby having the characteristics of the non-conducting membrane. This can block the flow of large currents to prevent thermal runaway due to overcharge or penetration. In addition, the conductive polymer film is formed on the surface of the positive electrode to help the lithium ions in and out more reversible to extend the life of the battery.

다음은 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예들은 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 본 발명이 하기의 실시예에 한정되는 것은 아니다.The following presents a preferred embodiment to aid the understanding of the present invention. However, the following examples are merely provided to more easily understand the present invention, and the present invention is not limited to the following examples.

실시예 및 비교예Examples and Comparative Examples

에틸렌 카보네이트/에틸메틸 카보네이트/디에틸 카보네이트(EC/EMC/DEC)가 3/3/1로 혼합된 비수용성 유기용매에 피롤의 함량을 변화시키면서 전해액을 제조하였다. LiNi1-x-yCoxSryO2(0<x<1, 0<y<1, 0<x+y<1) 활물질로 양극을 구성하고 흑연(KMFC: Kawasaki Steel사 제품)으로 음극을 구성하고 하기 표 1에 나타낸 조성비를 가지는 전해액을 적용시켜 18650 리튬 이차 전지를 제조하였다. 상기 제조된 리튬 이차 전지를 이용하여 전지의 사이클 수명, 용량(초기 방전용량과 비가역 용량) 및 안전성을 측정 및 평가하여 하기 표 1에 함께 나타내었다.An electrolyte was prepared while changing the content of pyrrole in a non-aqueous organic solvent in which ethylene carbonate / ethylmethyl carbonate / diethyl carbonate (EC / EMC / DEC) was mixed at 3/3/1. LiNi 1-xy Co x Sr y O 2 (0 <x <1, 0 <y <1, 0 <x + y <1) The anode is composed of an active material and the cathode is composed of graphite (KMFC: manufactured by Kawasaki Steel). And 18650 lithium secondary battery was prepared by applying an electrolyte having a composition ratio shown in Table 1. The cycle life, capacity (initial discharge capacity and irreversible capacity), and safety of the battery were measured and evaluated using the lithium secondary battery prepared above, and are shown in Table 1 below.

피롤의 함량(중량)Pyrrole content (weight) 수명, 1C(100회)Lifespan, 1C (100 Times) 용량Volume 안전성 평가Safety evaluation 초기방전용량(mAh)Initial discharge capacity (mAh) 비가역 용량()Irreversible capacity () 과충전, 1COvercharge, 1C 관통Penetrate 실시예Example 1One 0.10.1 9292 17801780 9191 L0L0 L1L1 22 0.50.5 9090 15851585 8989 L0L0 L1L1 비교예Comparative example 1One 00 9090 18001800 9292 L3L3 L5L5 22 2.02.0 8585 13471347 8585 L0L0 L1L1 33 5.05.0 6565 10371037 7777 L0L0 L1L1

상기 표 1에서 안전성 평가기준은 다음과 같다:In Table 1, the safety criteria are as follows:

L0: 양호, L1: 누액, L2: 섬광, L2: 불꽃, L3: 연기, L4: 발화, L5: 파열.L0: good, L1: leakage, L2: flash, L2: flame, L3: smoke, L4: ignition, L5: burst.

상기 표 1에 나타난 바와 같이 전도성 고분자의 단량체인 피롤이 첨가된 경우 과충전이나 관통에서 모두 양호한 결과를 나타내었다. 그러나 피롤의 함량이 2.0 중량이상인 비교예 2와 3의 경우 초기 방전용량 및 비가역 용량이 증가되어 전지로서의 성능이 떨어짐을 알 수 있다. 반면에 2.0 중량미만의 양으로 첨가된 본발명에 따른 실시예 1과 2의 경우 안전성뿐만 아니라 초기 방전용량 및 비가역 용량의 증가도 모두 개선되고 사이클 수명도 우수한 것으로 나타났다. 상기 표 1의 결과중 피롤의 함량에 따른 사이클 수명과 용량은 도 1에 도시되어 있다. 피롤의 함량이 0.5 중량인 실시예 2의 전해액을 포함하는 리튬 이차 전지를 이용하여 다양한 시험조건하에서 안전성을 평가하여 그 결과를 하기 표 2에 나타내었다.As shown in Table 1, when pyrrole, which is a monomer of the conductive polymer, was added, both of the overcharging and the penetration showed good results. However, in Comparative Examples 2 and 3 having a pyrrole content of 2.0 or more, the initial discharge capacity and the irreversible capacity were increased, indicating that the battery performance decreased. On the other hand, in the case of Examples 1 and 2 according to the present invention added in an amount of less than 2.0 wt%, both the initial discharge capacity and the irreversible capacity increase as well as safety were improved and cycle life was also excellent. Cycle life and capacity according to the content of the pyrrole in the results of Table 1 are shown in FIG. Using a lithium secondary battery containing an electrolyte solution of Example 2 having a pyrrole content of 0.5 wt%, the safety was evaluated under various test conditions, and the results are shown in Table 2 below.

시험항목Test Items 시험전OCV(V)* Before test OVC (V) * 누액(L1)Leakage (L1) 섬광(L2)Flash (L2) 불꽃(L2)Flame (L2) 연기(L3)Smoke (L3) 발화(L4)Ignition (L4) 파열(L5)Rupture (L5) 최고온도(℃)Temperature (℃) 평가수준** Evaluation level ** 과충전1COvercharge 1C 4.1574.157 ×× ×× ×× ×× ×× ×× 107107 L0L0 4.1574.157 ×× ×× ×× ×× ×× ×× 104104 L0L0 4.1564.156 ×× ×× ×× ×× ×× ×× 106106 L0L0 4.1574.157 ×× ×× ×× ×× ×× ×× 9898 L0L0 4.1564.156 ×× ×× ×× ×× ×× ×× 109109 L0L0 과충전3COvercharge 3C 4.1574.157 ×× ×× ×× ×× ×× ×× 158158 L0L0 4.1574.157 ×× ×× ×× ×× ×× ×× 134134 L0L0 4.1574.157 ×× ×× ×× ×× ×× 158158 L1L1 4.1574.157 ×× ×× ×× ×× ×× 148148 L1L1 4.1574.157 ×× ×× ×× ×× ×× ×× 150150 L0L0 관통Penetrate 4.1584.158 ×× ×× ×× ×× ×× 8585 L1L1 4.1494.149 ×× ×× ×× ×× ×× 106106 L1L1 4.1524.152 ×× ×× ×× ×× ×× 9292 L1L1 4.1594.159 ×× ×× ×× ×× ×× 104104 L1L1 4.1564.156 ×× ×× ×× ×× ×× 9797 L1L1 과충전관통Overcharge Penetration 4.2114.211 ×× ×× ×× ×× ×× 9696 L1L1 4.2104.210 ×× ×× ×× ×× ×× 9191 L1L1 4.2124.212 ×× ×× ×× ×× ×× 8484 L1L1 4.1984.198 ×× ×× ×× ×× ×× 8888 L1L1 4.1934.193 ×× ×× ×× ×× ×× 105105 L1L1 압축종(從)Compressed species 4.1544.154 ×× ×× ×× ×× ×× 2424 L1L1 4.1544.154 ×× ×× ×× ×× ×× 2424 L1L1 4.1544.154 ×× ×× ×× ×× ×× 2626 L1L1 4.1564.156 ×× ×× ×× ×× ×× 2626 L1L1 4.1544.154 ×× ×× ×× ×× ×× 3131 L1L1 압축횡(橫)Compression side 4.1564.156 ×× ×× ×× ×× ×× 2727 L1L1 4.1544.154 ×× ×× ×× ×× ×× 2727 L1L1 4.1534.153 ×× ×× ×× ×× ×× 2828 L1L1 1.1531.153 ×× ×× ×× ×× ×× 2929 L1L1 1.1541.154 ×× ×× ×× ×× ×× 2828 L1L1

주) * OCV: 충전전의 Open Cell VoltageNote) * OCV: Open Cell Voltage before charging

** 평가수준: L0(양호), L1(누액)** Evaluation level: L0 (good), L1 (leakage)

○: 발생 ×:미발생○: Occurrence X: No occurrence

상기 표 2에 나타난 바와 같이 관통이나 과충전과 같은 열악한 조건하에서도 모두 양호한 결과를 보였다. 따라서 본 발명에 따라 제조된 리튬 이차 전지는 안전성이 매우 우수함을 알 수 있다.As shown in Table 2, all showed good results even under poor conditions such as penetration and overcharge. Therefore, it can be seen that the lithium secondary battery manufactured according to the present invention has excellent safety.

본 발명에 따라 제조된 전도성 고분자의 단량체를 함유하는 전해액은 충전중에 양극 표면에 전도성 고분자막을 형성하여 과충전이나 관통과 같은 과전류가 흐를 경우 이를 차단하여 전지의 안전성을 향상시키는 발명의 효과를 가진다. 본 발명에 따른 전해액을 포함하는 리튬 이차 전지는 과충전이나 관통시에 발생하는 고전위에서 전도성을 잃어버림으로써 부도체막의 특성을 갖게 되어 과충전이나 관통으로 인한 열폭주 현상을 방지할 수 있는 발명의 효과도 가진다. 또한 양극 표면에 형성된 전도성 고분자막은 리튬 이온의 출입이 보다 가역적으로 이루어지게 하여 전지의 수명을 향상시킬 수 있다.Electrolyte solution containing the monomer of the conductive polymer prepared according to the present invention has the effect of forming a conductive polymer film on the surface of the anode during charging to block the over-current, such as overcharge or penetration, thereby improving the safety of the battery. The lithium secondary battery including the electrolyte according to the present invention has the characteristics of the non-conductor membrane by losing the conductivity at the high potential generated during overcharging or penetrating, and also has the effect of preventing the thermal runaway phenomenon due to overcharging or penetrating. . In addition, the conductive polymer film formed on the surface of the positive electrode may allow lithium ions to enter and exit more reversibly, thereby improving battery life.

본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications or changes of the present invention can be easily carried out by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.

Claims (7)

(정정) 비수용성 유기용매; 및(Corrected) water-insoluble organic solvent; And 피롤(pyrrole), 아닐린(aniline), 티오펜(thiophene) 및 이들의 유도체로 이루어진 군으로부터 선택되는 전도성 고분자의 단량체Monomers of conductive polymers selected from the group consisting of pyrrole, aniline, thiophene and derivatives thereof (상기 단량체는 리튬 전위에 대해 4.0V 전후에서 전기화학적으로 중합될 수 있음)(The monomers can be electrochemically polymerized around 4.0V for lithium potential.) 를 포함하는 것을 특징으로 하는 리튬 이차 전지용 전해액.Electrolyte for lithium secondary battery comprising a. 제 1항에 있어서, 상기 전도성 고분자의 단량체는 2.0 중량미만의 양으로 첨가되는 것을 특징으로 하는 리튬 이차 전지용 전해액.The electrolyte for a lithium secondary battery according to claim 1, wherein the monomer of the conductive polymer is added in an amount of less than 2.0 wt%. 제 1항에 있어서, 상기 전해액이 리튬 헥사플루오로포스페이트, 리튬 테트라플루오로보레이트, 리튬 퍼클로레이트, 리튬 트리플루오로메탄설포네이트 및 이들중 둘 이상의 혼합물로 이루어진 군으로부터 선택된 지지(supporting) 전해염을 더 포함하는 것을 특징으로 하는 리튬 이차 전지용 전해액.The method according to claim 1, wherein the electrolyte further comprises a supporting electrolytic salt selected from the group consisting of lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, lithium trifluoromethanesulfonate and mixtures of two or more thereof. An electrolytic solution for a lithium secondary battery, comprising: (정정) 제1항에 따른 전해액;(Correction) The electrolyte according to claim 1; 수지 바인더(resin binder), 음극 활물질로서 리튬 이온을 흡장/방출할 수 있는 흑연 탄소 물질(graphitic carbonaceous material)을 포함하는 음극 극판; 및A negative electrode plate comprising a resin binder, a graphite carbonaceous material capable of occluding / discharging lithium ions as a negative electrode active material; And 리튬 이온을 흡장/방출할 수 있는 리튬 복합 산화물을 포함하는 양극 극판Anode plate containing lithium composite oxide that can occlude / discharge lithium ions 으로 이루어진 것을 특징으로 하는 리튬 이차 전지.Lithium secondary battery, characterized in that consisting of. 제 4항에 있어서, 상기 음극 활물질은 dOO2 층간거리(interplanar distance)가 3.35∼3.38이고 X-선 회절에 의한 Lc(crystallite size)가 적어도 20㎚ 이상이고 700℃ 이상에서 발열 피크를 가지는 것을 특징으로 하는 리튬 이차 전지.The negative active material has a dOO2 interplanar distance of 3.35 to 3.38, an Lc (crystallite size) by X-ray diffraction of at least 20 nm and an exothermic peak at 700 ° C. or more. Lithium secondary battery. 제 4항에 있어서, 상기 음극 활물질은 메조페이스(mesophase) 구형 입자로부터 탄화단계(carbonizing step) 및 흑연화 단계(graphitizing step)를 거쳐 제조된 카본 물질인 것을 특징으로 하는 리튬 이차 전지.The lithium secondary battery of claim 4, wherein the anode active material is a carbon material manufactured from a mesophase spherical particle through a carbonizing step and a graphitizing step. 제 4항에 있어서, 상기 음극 활물질은 섬유형 메조페이스 핏치(mesophase pitch fiber)로부터 탄화 단계 및 흑연화 단계를 거쳐 제조된 섬유형 흑연(graphite fiber)인 것을 특징으로 하는 리튬 이차 전지.The lithium secondary battery according to claim 4, wherein the negative active material is fibrous graphite prepared through a carbonization step and a graphitization step from a fibrous mesophase pitch fiber. 6.
KR1019990015926A 1999-05-03 1999-05-03 A electrolyte containing a monomer of conductive polymer and a lithium secondary battery made thereof Expired - Lifetime KR100322450B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1019990015926A KR100322450B1 (en) 1999-05-03 1999-05-03 A electrolyte containing a monomer of conductive polymer and a lithium secondary battery made thereof
JP2000133216A JP2000331711A (en) 1999-05-03 2000-05-02 Electrolyte for lithium secondary battery and lithium secondary battery comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990015926A KR100322450B1 (en) 1999-05-03 1999-05-03 A electrolyte containing a monomer of conductive polymer and a lithium secondary battery made thereof

Publications (2)

Publication Number Publication Date
KR20000072955A KR20000072955A (en) 2000-12-05
KR100322450B1 true KR100322450B1 (en) 2002-03-18

Family

ID=19583626

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990015926A Expired - Lifetime KR100322450B1 (en) 1999-05-03 1999-05-03 A electrolyte containing a monomer of conductive polymer and a lithium secondary battery made thereof

Country Status (2)

Country Link
JP (1) JP2000331711A (en)
KR (1) KR100322450B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100424256B1 (en) * 2001-10-20 2004-03-22 삼성에스디아이 주식회사 Process for preparing an polymer electolyte by electrochemical polymerization and lithium battery employing such process

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8142936B2 (en) 2004-02-10 2012-03-27 Lg Chem, Ltd. Non-aqueous electrolyte and lithium secondary battery using the same
KR100578877B1 (en) * 2004-03-12 2006-05-11 삼성에스디아이 주식회사 Lithium secondary battery
US7381496B2 (en) 2004-05-21 2008-06-03 Tiax Llc Lithium metal oxide materials and methods of synthesis and use
JP5126570B2 (en) * 2007-03-12 2013-01-23 株式会社デンソー Method for manufacturing lithium secondary battery
KR102108278B1 (en) 2014-02-10 2020-05-07 삼성에스디아이 주식회사 Additive for electrolyte and electrolyte and lithium secondary battery
KR102586098B1 (en) 2016-06-02 2023-10-05 삼성에스디아이 주식회사 Electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100424256B1 (en) * 2001-10-20 2004-03-22 삼성에스디아이 주식회사 Process for preparing an polymer electolyte by electrochemical polymerization and lithium battery employing such process

Also Published As

Publication number Publication date
KR20000072955A (en) 2000-12-05
JP2000331711A (en) 2000-11-30

Similar Documents

Publication Publication Date Title
KR100670448B1 (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising same
JP4543085B2 (en) Additive for lithium secondary battery
US7824809B2 (en) Electrolyte for non-aqueous cell and non-aqueous secondary cell
CA2522107C (en) Cathode active material comprising additive for improving overdischarge-performance and lithium secondary battery using the same
JP6860782B2 (en) Additives for non-aqueous electrolytes, non-aqueous electrolytes using these additives, and non-aqueous electrolyte secondary batteries
JP3938045B2 (en) Lithium secondary battery
EP1215745A1 (en) Non-aqueous electrolyte secondary cell and device using the same
KR100573109B1 (en) Organic electrolyte and lithium battery employing the same
US8927152B2 (en) Binder for electrode of lithium rechargeable battery and electrode for rechargeable battery comprising the same
JP4138208B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
KR20060001742A (en) Lithium secondary battery
KR20090063441A (en) Lithium secondary battery
JP2002025615A (en) Lithium secondary battery
KR100635704B1 (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising same
KR100838986B1 (en) Non-aqueous electrolyte and secondary battery comprising the same
KR100515331B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR100303543B1 (en) A non-flammable electrolyte and a lithium secondary battery made thereof
KR100322450B1 (en) A electrolyte containing a monomer of conductive polymer and a lithium secondary battery made thereof
KR100508925B1 (en) Polymer electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same
KR100309774B1 (en) A electrolyte for a lithium secondary battery with enhanced life characteristics
KR100859628B1 (en) Rectangular lithium secondary battery comprising a polymer nonaqueous electrolyte and a method of manufacturing the secondary battery
KR100826084B1 (en) Additive for Lithium Secondary Battery
US7150944B2 (en) Non-aqueous electrolyte compositions and lithium secondary batteries made thereof
KR101225893B1 (en) Electrochemical device with high safety
KR100309777B1 (en) A non-aqueous electrolyte and a lithium secondary battery made thereof

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 19990503

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20010130

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20011210

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20020116

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20020117

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20041227

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20051228

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20061227

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20080104

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20090105

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20091229

Start annual number: 9

End annual number: 9

PR1001 Payment of annual fee

Payment date: 20101229

Start annual number: 10

End annual number: 10

PR1001 Payment of annual fee

Payment date: 20111216

Start annual number: 11

End annual number: 11

FPAY Annual fee payment

Payment date: 20121221

Year of fee payment: 12

PR1001 Payment of annual fee

Payment date: 20121221

Start annual number: 12

End annual number: 12

FPAY Annual fee payment

Payment date: 20131220

Year of fee payment: 13

PR1001 Payment of annual fee

Payment date: 20131220

Start annual number: 13

End annual number: 13

FPAY Annual fee payment

Payment date: 20141211

Year of fee payment: 14

PR1001 Payment of annual fee

Payment date: 20141211

Start annual number: 14

End annual number: 14

FPAY Annual fee payment

Payment date: 20151218

Year of fee payment: 15

PR1001 Payment of annual fee

Payment date: 20151218

Start annual number: 15

End annual number: 15

FPAY Annual fee payment

Payment date: 20161223

Year of fee payment: 16

PR1001 Payment of annual fee

Payment date: 20161223

Start annual number: 16

End annual number: 16

FPAY Annual fee payment

Payment date: 20171219

Year of fee payment: 17

PR1001 Payment of annual fee

Payment date: 20171219

Start annual number: 17

End annual number: 17

FPAY Annual fee payment

Payment date: 20181220

Year of fee payment: 18

PR1001 Payment of annual fee

Payment date: 20181220

Start annual number: 18

End annual number: 18

EXPY Expiration of term
PC1801 Expiration of term

Termination date: 20191103

Termination category: Expiration of duration