KR100320287B1 - Piezoelectric/electrostrictive micro actuator using a mixture of ceramic powder and polyvinylidene fluoride and manufacturing method thereof - Google Patents
Piezoelectric/electrostrictive micro actuator using a mixture of ceramic powder and polyvinylidene fluoride and manufacturing method thereof Download PDFInfo
- Publication number
- KR100320287B1 KR100320287B1 KR1019990050997A KR19990050997A KR100320287B1 KR 100320287 B1 KR100320287 B1 KR 100320287B1 KR 1019990050997 A KR1019990050997 A KR 1019990050997A KR 19990050997 A KR19990050997 A KR 19990050997A KR 100320287 B1 KR100320287 B1 KR 100320287B1
- Authority
- KR
- South Korea
- Prior art keywords
- ceramic powder
- polyvinylidene fluoride
- piezoelectric
- mixture
- electric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 212
- 239000000843 powder Substances 0.000 title claims abstract description 164
- 239000002033 PVDF binder Substances 0.000 title claims abstract description 136
- 229920002981 polyvinylidene fluoride Polymers 0.000 title claims abstract description 136
- 239000000203 mixture Substances 0.000 title claims abstract description 119
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 47
- 238000000034 method Methods 0.000 claims abstract description 32
- 239000010936 titanium Substances 0.000 claims abstract description 32
- 239000002245 particle Substances 0.000 claims abstract description 25
- 238000002485 combustion reaction Methods 0.000 claims abstract description 22
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 16
- 239000002360 explosive Substances 0.000 claims abstract description 15
- 230000033116 oxidation-reduction process Effects 0.000 claims abstract description 15
- 238000002156 mixing Methods 0.000 claims description 24
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 22
- 239000003960 organic solvent Substances 0.000 claims description 20
- 238000010438 heat treatment Methods 0.000 claims description 18
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 claims description 18
- 239000011230 binding agent Substances 0.000 claims description 17
- 229910052751 metal Inorganic materials 0.000 claims description 17
- 239000002184 metal Substances 0.000 claims description 17
- 238000001035 drying Methods 0.000 claims description 9
- 229910002651 NO3 Inorganic materials 0.000 claims description 8
- NHNBFGGVMKEFGY-UHFFFAOYSA-N nitrate group Chemical group [N+](=O)([O-])[O-] NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 8
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 7
- 229910019142 PO4 Inorganic materials 0.000 claims description 7
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 7
- 239000010452 phosphate Substances 0.000 claims description 7
- 150000002894 organic compounds Chemical class 0.000 claims description 5
- 239000011347 resin Substances 0.000 claims description 4
- 229920005989 resin Polymers 0.000 claims description 4
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 claims 6
- 125000003944 tolyl group Chemical group 0.000 claims 2
- 238000000465 moulding Methods 0.000 abstract description 4
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 27
- 239000000243 solution Substances 0.000 description 11
- 239000000463 material Substances 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- 238000007650 screen-printing Methods 0.000 description 4
- 238000010532 solid phase synthesis reaction Methods 0.000 description 4
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 150000002334 glycols Chemical class 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000009841 combustion method Methods 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/20—Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
- H10N30/204—Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
- H10N30/2047—Membrane type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/135—Nozzles
- B41J2/16—Production of nozzles
- B41J2/1607—Production of print heads with piezoelectric elements
- B41J2/161—Production of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/135—Nozzles
- B41J2/16—Production of nozzles
- B41J2/1621—Manufacturing processes
- B41J2/1623—Manufacturing processes bonding and adhesion
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/003—Titanates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G25/00—Compounds of zirconium
- C01G25/006—Compounds containing zirconium, with or without oxygen or hydrogen, and containing two or more other elements
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
- C04B35/49—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
- C04B35/491—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
본 발명은 100-500℃의 저온에서 비폭발성 산화-환원 연소반응에 의하여 제조되며 입자크기가 5㎛ 이하이고, 납(Pb), 티타늄(Ti)을 기본 구성원소로 하는 압전성이 우수한 세라믹분말과 성형성이 우수한 폴리비닐리덴 플루오라이드의 혼합체를 사용해 압전/전왜막을 형성하여 제조한 압전/전왜 마이크로 액츄에이터 및 그러한 압전/전왜 마이크로 액츄에이터를 제조하는 방법에 관한 것으로, 개선된 콜로이드 공정을 통해 입자간 연결성 및 기계적 강도가 조율된 압전/전왜 마이크로 액츄에이터를 얻을 수 있으며 저온소성 세라믹분말을 사용함으로써 공정이 저온화, 단순화됨으로써 공정의 저에너지화 및 저비용화를 이룰 수 있는 효과가 있다.The present invention is prepared by non-explosive oxidation-reduction combustion reaction at a low temperature of 100-500 ℃, the particle size is 5㎛ or less, and the piezoelectric ceramic powder and molding excellent in lead (Pb), titanium (Ti) as a basic element The present invention relates to a piezoelectric / electric distortion microactuator manufactured by forming a piezoelectric / electric distortion film using a mixture of polyvinylidene fluoride having excellent properties, and to a method of manufacturing such piezoelectric / electric distortion microactuator. It is possible to obtain a piezoelectric / electric distortion micro-actuator in which the mechanical strength is tuned, and by using a low-temperature fired ceramic powder, the process can be reduced in temperature and simplified, resulting in lower energy and lower cost.
Description
본 발명은 압전/전왜 마이크로 액츄에이터 및 그 제조방법에 관한 것으로, 보다 상세하게는 세라믹분말과 폴리비닐리덴 플루오라이드의 혼합체를 이용한 압전/전왜 마이크로 액츄에이터 및 그 압전/전왜 마이크로 액츄에이터를 제조하는 방법에 관한 것이다.The present invention relates to a piezoelectric / electric distortion micro actuator and a method for manufacturing the same, and more particularly, to a piezoelectric / electric distortion micro actuator using a mixture of ceramic powder and polyvinylidene fluoride, and a method of manufacturing the piezoelectric / electric distortion micro actuator. will be.
압전체를 이용한 잉크젯 프린터 헤드의 액츄에이터는 일반적으로 진동판과 챔버로 이루어진 하부구조와, 진동판의 상부에 결합되어 전원이 인가되면 기계적 변형을 일으키는 압전체와, 압전체에 전원을 전달하는 전극(들)으로 구성된다.An actuator of an inkjet printer head using a piezoelectric body generally includes a lower structure consisting of a diaphragm and a chamber, a piezoelectric body coupled to an upper portion of the diaphragm to cause mechanical deformation when power is applied, and an electrode (s) for transmitting power to the piezoelectric body. .
액츄에이터의 압전체는 전기장이 가해지면 폴링(poling :전기장을 가하면 압전체에 방향성이 형성됨)되는 성질이 있다. 폴링된 압전체의 상단과 하단에 형성된 상부전극과 하부전극에 전원이 인가되면 전극사이에 위치한 압전체가 변형과 복원을 반복하면서 진동을 하거나 기계적 변형을 하게 된다.The piezoelectric body of the actuator has a property of being polled when an electric field is applied (directivity is formed in the piezoelectric body when an electric field is applied). When power is applied to the upper and lower electrodes formed on the top and bottom of the polled piezoelectric material, the piezoelectric elements located between the electrodes vibrate or deform while repeating deformation and restoration.
잉크젯 프린터 헤드에서는 이러한 액츄에이터의 압전체가 진동을 하면 진동판이 두께방향으로 기계적 변형을 일으키게 되어 잉크가 기록매체에 분사되게 된다.In the inkjet printer head, when the piezoelectric body of the actuator vibrates, the diaphragm causes mechanical deformation in the thickness direction, and ink is injected onto the recording medium.
종래에는 압전/전왜 액츄에이터에서 압전체로 사용되는 압전/전왜막을 제조하는데 고상법에 의하여 제조된 세라믹분말을 사용하여 왔다.Background Art Conventionally, ceramic powders prepared by the solid-phase method have been used to produce piezoelectric / electrical distortion films used as piezoelectric elements in piezoelectric / electrical distortion actuators.
산화물법이라고도 하는 고상법은 분말형태의 원료물질인 산화물 또는 용융염을 혼합하여 1000-1200℃로 열처리한 후 분쇄하고 소결하여 세라믹분말을 제조하는 방법이다.The solid phase method, also called an oxide method, is a method of preparing a ceramic powder by mixing an oxide or a molten salt which is a raw material in powder form, followed by heat treatment at 1000-1200 ° C, followed by grinding and sintering.
이와 같은 고상법에 의하여 제조되는 세라믹분말의 입자크기는 원료분말의 크기에 따라 달라지고 생성되는 분말의 입자크기가 0.2-2㎛로 크고, 공정의 특성상 1000℃ 이상의 고온에서의 열처리가 필요한 단점이 있다.The particle size of the ceramic powder produced by the solid phase method varies depending on the size of the raw material powder, and the particle size of the powder to be produced is 0.2-2 μm, which is a disadvantage of requiring heat treatment at a high temperature of 1000 ° C. or higher due to the characteristics of the process. have.
세라믹을 이용하는 각종 막형 디바이스를 제작하는데 있어서 종래에는 세라믹분말을 이용하여 세라믹 페이스트를 제조하고 이를 진동판에 인쇄하거나 몰드에충진한 후 열처리하는 방법을 주로 사용하여 왔다.In manufacturing various film-type devices using ceramics, a method of manufacturing a ceramic paste using ceramic powder, printing it on a diaphragm or filling it into a mold, and then performing heat treatment has been mainly used.
세라믹 페이스트를 제조하기 위하여 종래에는 바인더, 비이클, 가소제, 분산제 등을 용매에 용해시킨 용액에 고상법으로 제조된 평균입경 1㎛ 이상의 세라믹입자를 첨가한 후 혼합하고 교반하는 방법을 사용하여 왔다.In order to manufacture a ceramic paste, conventionally, a method in which a binder, a vehicle, a plasticizer, a dispersant, or the like is added to a solution in which a ceramic particle having an average particle diameter of 1 µm or more prepared by a solid phase method is added, followed by mixing and stirring.
상기 방법에 의하여 제조된 세라믹 페이스트를 이용하여 압전/전왜막을 제조하기 위해서는 세라믹 페이스트를 진동판에 인쇄한 후 130℃에서 건조하고 1000℃ 이상에서 열처리하는데, 건조후 열처리를 하기 전 첨가된 유기물성분을 완전히 제거하기 위한 탈바인더작업을 위하여 500℃ 이상에서 별도의 추가열처리를 하여야 하는 문제점이 있다.In order to manufacture the piezoelectric / electric warp film using the ceramic paste prepared by the above method, the ceramic paste is printed on a diaphragm, dried at 130 ° C. and heat treated at 1000 ° C. or higher. There is a problem that a separate additional heat treatment must be performed at 500 ° C. or higher for the removal binder work for removal.
또한 이러한 방법에 의하여 제조된 세라믹 페이스트는 저온에서의 성형이 불가능하여 1000℃ 이상에서의 열처리를 하여야 하므로 선택가능한 진동판의 범위가 1000℃ 이상에서의 열처리에 견딜 수 있는 소재로 제한되는 문제점이 있다.In addition, since the ceramic paste prepared by this method cannot be molded at a low temperature and needs to be heat treated at 1000 ° C. or more, the range of the selectable diaphragm is limited to a material that can withstand heat treatment at 1000 ° C. or more.
또한 재료의 가소성(plasticity)이 전혀 없어 다양한 응용이 제한되는 문제점이 있다.In addition, there is no plasticity of the material (plasticity) at all there is a problem that various applications are limited.
압전/전왜 세라믹 디바이스의 다양한 응용을 위해서는 압전특성에 영향을 주지 않으면서 세라믹 디바이스에 유연성을 부여하는 기술이 필요하다.For various applications of piezoelectric / electrical distortion ceramic devices, there is a need for a technology that provides flexibility to ceramic devices without affecting piezoelectric properties.
폴리비닐리덴 플루오라이드(polyvinylidene fluoride, PVDF)는 이차전지의 전극성형 등에 널리 적용되고 있는 대표적인 복합체 제조의 원료물질로서 압전특성을 가진 고분자 폴리머이며, 폴리비닐리덴 플루오라이드 자체의 압전특성을 이용한 제품도 출시되어 있다.Polyvinylidene fluoride (PVDF) is a polymer material with piezoelectric properties as a raw material for the production of composites, which is widely applied to electrode forming of secondary batteries, and also a product using the piezoelectric properties of polyvinylidene fluoride itself. It is released.
그러나 폴리비닐리덴 플루오라이드는 성형성은 매우 우수하지만 압전특성은 세라믹분말에 비하여 낮은 문제점이 있다.However, polyvinylidene fluoride is very excellent in formability, but the piezoelectric properties are lower than those of ceramic powder.
따라서 압전특성이 우수한 세라믹분말과 성형성이 우수한 폴리비닐리덴 플루오라이드를 혼합하여 세라믹 디바이스를 제조하는 방법이 개발되었다.Therefore, a method of manufacturing a ceramic device by mixing a ceramic powder having excellent piezoelectric properties and a polyvinylidene fluoride having excellent moldability has been developed.
이 방법에서는 톨루엔, 헥사놀 등의 유기용매에 세라믹분말, 폴리비닐리덴 플루오라이드 및 소량의 결합제를 넣고 리플럭스나 교반시켜 균일하게 혼합한 후 용매를 증발시키고 건조하여 혼합체를 얻는다.In this method, ceramic powder, polyvinylidene fluoride and a small amount of binder are added to an organic solvent such as toluene and hexanol, and the mixture is mixed by reflux or stirring, and then the solvent is evaporated and dried to obtain a mixture.
얻어진 혼합체를 압연공정에 의하여 후막의 형태로 가공하며, 이때 혼합체의 가공성과 압연조건에 따라 후막의 두께가 결정된다.The obtained mixture is processed into a thick film by a rolling process, wherein the thickness of the thick film is determined according to the processability and rolling conditions of the mixture.
이때 세라믹분말과 폴리비닐리덴 플루오라이드의 함량비에 따라 가공성에서 차이가 나게 된다. 폴리비닐리덴 플루오라이드의 함량을 증가시키면 가공성은 향상되지만 세라믹분말의 함량이 감소하는데 따른 압전성의 손실이 수반되며, 반면 폴리비닐리덴 플루오라이드의 함량을 감소시키면 압전성은 향상되지만 가공성이 감소하게 된다.At this time, the workability is different depending on the content ratio of the ceramic powder and polyvinylidene fluoride. Increasing the content of polyvinylidene fluoride improves the workability but is accompanied by a loss of piezoelectricity due to the decrease in the content of the ceramic powder, while reducing the content of polyvinylidene fluoride improves the piezoelectricity but decreases the workability.
성형된 후막은 응용목적에 따라 전극처리된 후 폴링 등의 과정을 거쳐 디바이스화된다.The formed thick film is electrodelized according to the application purpose and then deviced through a process such as polling.
세라믹분말과 폴리비닐리덴 플루오라이드를 혼합함에 있어서 공극이 최소화되는 것이 균일한 혼합에 유리하며, 혼합이 균일하여야 성형된 막의 기계적 특성이 향상된다.Minimizing voids in mixing ceramic powder and polyvinylidene fluoride is advantageous for uniform mixing, and uniform mixing improves the mechanical properties of the formed film.
일정한 함량비의 세라믹분말과 폴리비닐리덴 플루오라이드의 혼합체에서 공극이 최소화되기 위해서는 보다 미세한 세라믹분말을 사용하는 것이 바람직하다.In order to minimize voids in the mixture of ceramic powder and polyvinylidene fluoride in a certain content ratio, it is preferable to use a finer ceramic powder.
그러나 종래의 세라믹분말은 상기에서 설명한 바와 같이 입자의 크기가 커서 효과적인 혼합이 이루어지기 어려운 문제점이 있다.However, the conventional ceramic powder has a problem that it is difficult to achieve effective mixing due to the large particle size as described above.
또한 세라믹분말의 특성상 1000℃ 이상의 고온에서의 열처리가 필요하므로 사용가능한 진동판의 범위가 제한되는 문제점이 있다.In addition, due to the nature of the ceramic powder requires a heat treatment at a high temperature of 1000 ℃ or more there is a problem that the range of the diaphragm can be used.
상기의 문제점들을 해결하기 위한 본 발명은 미세한 저온소성 세라믹분말에 성형성이 우수한 압전물질인 폴리비닐리덴 플루오라이드를 혼합하여 압전/전왜막을 형성함으로써 연결성 및 기계적 강도가 향상된 압전/전왜 마이크로 액츄에이터 및 그러한 압전/전왜 마이크로 액츄에이터를 제조하는 방법을 제공하는 것을 목적으로 한다.In order to solve the above problems, the present invention provides a piezoelectric / electric distortion micro-actuator with improved connectivity and mechanical strength by forming a piezoelectric / electric distortion film by mixing polyvinylidene fluoride, a piezoelectric material having excellent moldability, with fine low-temperature plastic ceramic powder. It is an object to provide a method of manufacturing piezoelectric / electric distortion micro actuators.
도 1은 본 발명의 액츄에이터의 일실시예를 나타낸 단면도,1 is a cross-sectional view showing an embodiment of the actuator of the present invention,
도 2는 본 발명의 액츄에이터의 다른 실시예를 나타낸 단면도.2 is a cross-sectional view showing another embodiment of the actuator of the present invention.
<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>
10, 20 : 챔버판 12, 22 : 진동판10, 20: chamber plate 12, 22: vibration plate
24 : 하부전극 16, 26 : 압전/전왜막24: lower electrode 16, 26: piezoelectric / distortion film
18, 28 : 상부전극18, 28: upper electrode
상기의 목적을 달성하기 위한 본 발명은 금속진동판을 제공하는 단계와; 100-500℃의 저온에서 비폭발성 산화-환원 연소반응에 의하여 제조되며 입자크기가 5㎛ 이하이고, 납(Pb), 티타늄(Ti)을 기본 구성원소로 하는 세라믹분말과 폴리비닐리덴 플루오라이드의 혼합체를 제조하는 단계와; 상기 금속진동판의 상부에 세라믹분말과 폴리비닐리덴 플루오라이드의 혼합체를 사용하여 압전/전왜막을 성형하는 단계와; 상기 압전/전왜막을 100-300℃에서 열처리하는 단계와; 상기 압전/전왜막의 상부에 상부전극을 형성하는 단계를 포함하는 세라믹분말과 폴리비닐리덴 플루오라이드의 혼합체를 이용한 압전/전왜 마이크로 액츄에이터의 제조방법에 그 특징이 있다.The present invention for achieving the above object comprises the steps of providing a metal vibrating plate; A mixture of ceramic powder and polyvinylidene fluoride, manufactured by non-explosive oxidation-reduction combustion reaction at a low temperature of 100-500 ° C. and having a particle size of 5 μm or less and having lead (Pb) and titanium (Ti) as basic elements Preparing a; Forming a piezoelectric / electric distortion film by using a mixture of ceramic powder and polyvinylidene fluoride on top of the metal vibrating plate; Heat-treating the piezoelectric / distortion film at 100-300 ° C .; The piezoelectric / electric distortion micro-actuator using a mixture of ceramic powder and polyvinylidene fluoride, which includes forming an upper electrode on the piezoelectric / electric distortion film, has a characteristic thereof.
또한 본 발명은 금속진동판을 제공하는 단계와; 100-500℃의 저온에서 비폭발성 산화-환원 연소반응에 의하여 제조되며 입자크기가 5㎛ 이하이고, 납(Pb), 티타늄(Ti)을 기본 구성원소로 하는 세라믹분말과 폴리비닐리덴 플루오라이드의 혼합체를 제조하는 단계와; 상기 세라믹분말과 폴리비닐리덴 플루오라이드의 혼합체를 사용하여 압전/전왜막을 별도로 형성하는 단계와; 상기 압전/전왜막과 상기 금속진동판을 접합시키는 단계와; 상기 압전/전왜막의 상부에 상부전극을 형성하는 단계를 포함하는 세라믹분말과 폴리비닐리덴 플루오라이드의 혼합체를 이용한 압전/전왜 마이크로 액츄에이터의 제조방법에 그 특징이 있다.The present invention also provides a metal vibration plate; A mixture of ceramic powder and polyvinylidene fluoride, manufactured by non-explosive oxidation-reduction combustion reaction at a low temperature of 100-500 ° C. and having a particle size of 5 μm or less and having lead (Pb) and titanium (Ti) as basic elements Preparing a; Separately forming a piezoelectric / electric distortion film using a mixture of the ceramic powder and polyvinylidene fluoride; Bonding the piezoelectric / electric distortion film and the metal vibrating plate to each other; The piezoelectric / electric distortion micro-actuator using a mixture of ceramic powder and polyvinylidene fluoride, which includes forming an upper electrode on the piezoelectric / electric distortion film, has a characteristic thereof.
또한 본 발명은 진동판을 제공하는 단계와; 상기 진동판의 상부에 하부전극을 형성하는 단계와; 100-500℃의 저온에서 비폭발성 산화-환원 연소반응에 의하여 제조되며 입자크기가 5㎛ 이하이고, 납(Pb), 티타늄(Ti)을 기본 구성원소로 하는 세라믹분말과 폴리비닐리덴 플루오라이드의 혼합체를 제조하는 단계와; 상기 하부전극의 상부에 상기 세라믹분말과 폴리비닐리덴 플루오라이드의 혼합체를 사용하여 압전/전왜막을 성형하는 단계와; 상기 압전/전왜막을 100-300℃에서 열처리하는 단계와; 상기 압전/전왜막의 상부에 상부전극을 형성하는 단계를 포함하는 세라믹분말과 폴리비닐리덴 플루오라이드의 혼합체를 이용한 압전/전왜 마이크로 액츄에이터의 제조방법에 그 특징이 있다.The present invention also provides a diaphragm; Forming a lower electrode on the diaphragm; A mixture of ceramic powder and polyvinylidene fluoride, manufactured by non-explosive oxidation-reduction combustion reaction at a low temperature of 100-500 ° C. and having a particle size of 5 μm or less and having lead (Pb) and titanium (Ti) as basic elements Preparing a; Forming a piezoelectric / electric distortion film on the lower electrode by using a mixture of the ceramic powder and polyvinylidene fluoride; Heat-treating the piezoelectric / distortion film at 100-300 ° C .; The piezoelectric / electric distortion micro-actuator using a mixture of ceramic powder and polyvinylidene fluoride, which includes forming an upper electrode on the piezoelectric / electric distortion film, has a characteristic thereof.
또한 본 발명은 진동판을 제공하는 단계와; 상기 진동판의 상부에 하부전극을 형성하는 단계와; 100-500℃의 저온에서 비폭발성 산화-환원 연소반응에 의하여제조되며 입자크기가 5㎛ 이하이고, 납(Pb), 티타늄(Ti)을 기본 구성원소로 하는 세라믹분말과 폴리비닐리덴 플루오라이드의 혼합체를 제조하는 단계와; 상기 세라믹분말과 폴리비닐리덴 플루오라이드의 혼합체를 사용하여 압전/전왜막을 별도로 형성하는 단계와; 상기 압전/전왜막과 상기 상부전극을 접합시키는 단계와; 상기 압전/전왜막의 상부에 상부전극을 형성하는 단계를 포함하는 세라믹분말과 폴리비닐리덴 플루오라이드의 혼합체를 이용한 압전/전왜 마이크로 액츄에이터의 제조방법에 그 특징이 있다.The present invention also provides a diaphragm; Forming a lower electrode on the diaphragm; A mixture of ceramic powder and polyvinylidene fluoride, manufactured by non-explosive oxidation-reduction combustion reaction at a low temperature of 100-500 ° C. and having a particle size of 5 μm or less and containing lead (Pb) and titanium (Ti) as basic elements. Preparing a; Separately forming a piezoelectric / electric distortion film using a mixture of the ceramic powder and polyvinylidene fluoride; Bonding the piezoelectric / electric distortion film and the upper electrode to each other; The piezoelectric / electric distortion micro-actuator using a mixture of ceramic powder and polyvinylidene fluoride, which includes forming an upper electrode on the piezoelectric / electric distortion film, has a characteristic thereof.
또한 본 발명은 금속진동판과; 100-500℃의 저온에서 비폭발성 산화-환원 연소반응에 의하여 제조되며 입자크기가 5㎛ 이하이고, 납(Pb), 티타늄(Ti)을 기본 구성원소로 하는 세라믹분말과 폴리비닐리덴 플루오라이드의 혼합체로 이루어져, 상기 금속진동판의 상부에 형성된 압전/전왜막과; 상기 압전/전왜막의 상부에 형성된 상부전극을 포함하는 세라믹분말과 폴리비닐리덴 플루오라이드의 혼합체를 이용한 압전/전왜 마이크로 액츄에이터에 그 특징이 있다.In addition, the present invention is a metal vibration plate; A mixture of ceramic powder and polyvinylidene fluoride, manufactured by non-explosive oxidation-reduction combustion reaction at a low temperature of 100-500 ° C. and having a particle size of 5 μm or less and having lead (Pb) and titanium (Ti) as basic elements A piezoelectric / electric distortion film formed on the upper portion of the metal vibrating plate; The piezoelectric / electric distortion micro-actuator using a mixture of a ceramic powder and a polyvinylidene fluoride including an upper electrode formed on the piezoelectric / distortion film has a feature.
또한 본 발명은 진동판과; 상기 진동판의 상부에 형성된 하부전극과; 100-500℃의 저온에서 비폭발성 산화-환원 연소반응에 의하여 제조되며 입자크기가 5㎛ 이하이고, 납(Pb), 티타늄(Ti)을 기본 구성원소로 하는 세라믹분말과 폴리비닐리덴 플루오라이드의 혼합체로 이루어져, 상기 하부전극의 상부에 형성되 압전/전왜막과; 상기 압전/전왜막의 상부에 형성된 상부전극을 포함하는 세라믹분말과 폴리비닐리덴 플루오라이드의 혼합체를 이용한 압전/전왜 마이크로 액츄에이터에 그 특징이 있다.In addition, the present invention and the diaphragm; A lower electrode formed on the diaphragm; A mixture of ceramic powder and polyvinylidene fluoride, manufactured by non-explosive oxidation-reduction combustion reaction at a low temperature of 100-500 ° C. and having a particle size of 5 μm or less and having lead (Pb) and titanium (Ti) as basic elements A piezoelectric / distortion layer formed on the lower electrode; The piezoelectric / electric distortion micro-actuator using a mixture of a ceramic powder and a polyvinylidene fluoride including an upper electrode formed on the piezoelectric / distortion film has a feature.
이하 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.
진동판으로는 금속, 세라믹 및 수지류의 고분자성 유기화합물 등 일반적인 진동판의 재료를 모두 사용할 수 있다.As the diaphragm, all materials of a general diaphragm such as a high molecular organic compound of metals, ceramics and resins can be used.
금속을 진동판으로 사용하는 경우에는 별도의 하부전극을 형성할 필요가 없으나, 세라믹이나 수지류의 고분자성 유기화합물 등의 비전도성물질을 진동판으로 사용하는 경우에는 진동판의 상부에 별도의 하부전극을 형성하여야 한다.When using metal as a diaphragm, there is no need to form a separate lower electrode. However, when using a non-conductive material such as a polymer or organic polymer of ceramics as a diaphragm, a separate lower electrode is formed on the upper part of the diaphragm. shall.
하부전극은 금(Au), 은(Ag), 알루미늄(Al), 니켈(Ni), 백금(Pt) 등을 재료로 사용하여 이베포레이션, 스퍼터링 또는 스크린 프린팅 등의 방법으로 형성한다.The lower electrode is formed by evaporation, sputtering or screen printing using gold (Au), silver (Ag), aluminum (Al), nickel (Ni), platinum (Pt), or the like as a material.
압전/전왜막의 재료로는 세라믹분말과 폴리비닐리덴 플루오라이드의 혼합체를 사용한다.As a piezoelectric / distortion film, a mixture of ceramic powder and polyvinylidene fluoride is used.
세라믹분말은 세라믹분말 자체의 반응성을 고려하고 저온성형이 가능한 시스템을 확보하기 위해서 미세한 분말을 사용하는 것이 효과적이므로 다음의 방법에 의하여 제조된 세라믹분말을 사용한다.In order to consider the reactivity of the ceramic powder itself and to secure a system capable of low temperature molding, the ceramic powder is effective to use fine powder. Therefore, the ceramic powder manufactured by the following method is used.
세라믹구성성분을 포함하는 원료로는 세라믹구성원소의 산화물, 탄산화물 또는 질산화물 등의 세라믹구성원소와 유기물 또는 무기물과의 염, 또는 세라믹구성원소의 착체중 선택하여 사용한다.The raw material containing the ceramic component is selected from a ceramic component such as an oxide, carbonate or nitrate of the ceramic component, a salt of an organic or inorganic substance, or a complex of ceramic components.
상기 세라믹구성원소로는 납(Pb), 티타늄(Ti)을 기본구성원소로 하는 압전/전왜 세라믹원소를 사용하는 것이 바람직하며, 특히 상기 세라믹구성원소는 납(Pb), 지르코늄(Zr), 티타늄(Ti) 또는 납(Pb), 마그네슘(Mg), 니오브(Nb)를 포함하는 성분으로 된 것을 사용하는 것이 바람직하다.As the ceramic component, it is preferable to use a piezoelectric / electrically distorted ceramic element having lead (Pb) and titanium (Ti) as a basic component, and in particular, the ceramic component may include lead (Pb), zirconium (Zr), or titanium (Ti). ) Or a component composed of lead (Pb), magnesium (Mg) and niobium (Nb).
세라믹구성성분원료를 용해 또는 분산시키기 위한 용매 또는 분산매로는 물 또는 유기용매중 세라믹구성성분을 포함하는 원료를 녹이거나 분산할 수 있는 것중 하나 또는 그 이상을 선택하여 사용한다. 유기용매중에서는 디메틸포름아미드(dimethyl formamide), 메톡시에탄올(methoxyethanol), 아세트산, 알콜류, 글리콜류 등을 주로 사용한다.As a solvent or dispersion medium for dissolving or dispersing the ceramic component raw material, one or more selected from among those capable of dissolving or dispersing the raw material containing the ceramic component in water or an organic solvent is used. Among the organic solvents, dimethyl formamide, methoxyethanol, acetic acid, alcohols and glycols are mainly used.
연소조제로는 연소반응을 일으킬 수 있는 유기화합물인 구연산(Citric acid)을 사용한다. 종래의 방법에서 구연산은 연소조제가 아닌 착물형성제(complexing agent)로 반응의 균질성을 부여하기 위하여 사용되어 왔고 페치니방법(Pechini process)과 같은 공정에서 응용되어 왔으며, 구연산의 가연성과 착물형성효과를 이용함으로써 속도가 조절된 연소반응을 유발할 수 있다.As a combustion aid, citric acid, an organic compound that can cause a combustion reaction, is used. In the conventional method, citric acid has been used to impart homogeneity of the reaction as a complexing agent, not as a combustion aid, and has been applied in processes such as the Pechini process. By using can cause a controlled combustion reaction rate.
세라믹구성성분이 용해 또는 분산된 용액 또는 분산혼합물에 구연산을 가하여 혼합하여 혼합액을 제조한다. 첨가하는 구연산의 양은 상기 세라믹구성원소의 음이온과 산화-환원 연소반응을 일으키는데 필요한 양 또는 그 이상을 첨가한다. 첨가하는 구연산의 양에 따라 반응의 진행속도를 조절할 수 있다.Citric acid is added to a solution or dispersion mixture in which ceramic components are dissolved or dispersed to prepare a mixed solution. The amount of citric acid to be added is added to the amount or more necessary to cause an oxidation-reduction combustion reaction with the anion of the ceramic element. The rate of progress of the reaction can be controlled depending on the amount of citric acid added.
구연산을 가하여 혼합한 혼합액을 100-500℃에서 열처리한다. 열처리의 온도가 높아질수록 세라믹상의 결정성은 증가되지만, 열처리온도가 100℃이상만 되면 구연산의 연소반응은 충분히 개시될 수 있고, 500℃이상에서 열처리하여도 반응이 일어날 수 있지만, 그 이상의 온도에서 열처리하는 것은 종래의 방법과 비교할 때 의미가 없다.The mixed solution mixed with citric acid is heat-treated at 100-500 ° C. As the temperature of the heat treatment increases, the crystallinity of the ceramic phase increases, but when the heat treatment temperature is 100 ° C. or higher, the combustion reaction of citric acid can be sufficiently initiated. The reaction may occur even when the heat treatment is performed above 500 ° C., but the heat treatment is performed at a higher temperature. Is meaningless compared to conventional methods.
보다 바람직하게는 150-300℃에서 열처리하는데, 이 온도범위는 상당히 저온에서의 열처리이면서도 세라믹상의 결정성을 적절하게 확보할 수 있다.More preferably, the heat treatment is carried out at 150-300 ° C., and the temperature range can adequately secure the crystallinity of the ceramic phase even at a very low temperature.
상기 연소반응과정에서 구연산은 제거되고, 이때 발생되는 구연산의 반응열에 의해 세라믹산화물이 비산없이 형성된다.Citric acid is removed during the combustion reaction, and ceramic oxide is formed without scattering by the heat of reaction of citric acid generated at this time.
이러한 반응에서 세라믹구성원소외의 성분들은 충분한 시간동안의 연소반응에 의하여 제거되므로 불순물이 잔류하지 않는 순수한 형태의 세라믹분말이 만들어진다.In this reaction, components other than the ceramic component are removed by a combustion reaction for a sufficient time, thereby forming a pure ceramic powder in which impurities do not remain.
상기의 방법으로 제조된 세라믹분말은 입자의 크기가 5㎛ 이하, 특히 0.5㎛ 이하인 극히 미세하며 입경분포가 균일한 분말로서 기본입자(primary particle)가 독립체 또는 약한 응집체(soft aggregate)의 형태로 존재하며, 완전히 연소된 세라믹상이어서 추가열처리에 의해서도 중량이 감소하지 않는다.Ceramic powder prepared by the above method is an extremely fine and uniform particle size distribution having a particle size of 5 μm or less, especially 0.5 μm or less, and the primary particles are in the form of an individual or a soft aggregate. Present, it is a fully burned ceramic phase and does not lose weight by further heat treatment.
또한 표면의 반응성이 우수하여 저온에서의 열처리만으로 성형이 가능하므로 진동판의 자유도가 높고 진동판에 인쇄하거나 코팅하는 방법들을 다양하게 적용할 수 있다.In addition, since the surface is excellent in reactivity and can be formed only by heat treatment at low temperature, the degree of freedom of the diaphragm is high, and various methods of printing or coating the diaphragm can be applied.
제조된 세라믹분말의 결정성을 증가시키기 위해서는 제조된 세라믹분말을 700-900℃에서 추가로 열처리하는 단계를 포함할 수도 있다.In order to increase the crystallinity of the ceramic powder produced, the ceramic powder may be further heat-treated at 700-900 ° C.
상기의 방법에 의하여 제조된 세라믹분말에 폴리비닐리덴 플루오라이드를 혼합한다.The polyvinylidene fluoride is mixed with the ceramic powder prepared by the above method.
세라믹분말과 폴리비닐리덴 플루오라이드의 혼합은 유기용매에 세라믹분말과 폴리비닐리덴 플루오라이드를 넣고 리플럭스 또는 교반하여 균일하게 혼합되도록 한다. 유기용매로는 톨루엔 또는 헥사놀을 사용하는 것이 바람직하다.The mixing of the ceramic powder and polyvinylidene fluoride is carried out by adding the ceramic powder and polyvinylidene fluoride to an organic solvent and refluxing or stirring the mixture. It is preferable to use toluene or hexanol as the organic solvent.
세라믹분말과 폴리비닐리덴 플루오라이드의 혼합비는 적용하고자 하는 세라믹 디바이스의 압전특성과 가공성을 고려하여 적절히 결정한다. 가공성을 향상시키기 위해서는 폴리비닐리덴 플루오라이드의 함량을 증가시키며, 압전성을 향상시키기 위해서는 세라믹분말의 함량을 증가시킨다.The mixing ratio of ceramic powder and polyvinylidene fluoride is appropriately determined in consideration of the piezoelectric properties and workability of the ceramic device to be applied. In order to improve processability, the content of polyvinylidene fluoride is increased, and in order to improve piezoelectricity, the content of ceramic powder is increased.
세라믹분말과 폴리비닐리덴 플루오라이드의 혼합시 폴리비닐리덴 플루오라이드와 세라믹분말의 계면을 강하게 결합시켜 혼합이 잘 되도록 하기 위하여 소량의 결합제(coupling agent)를 추가할 수 있다. 이때 결합제로는 질산염(nitrate), 황산염(sulfate), 인산염(phosphate), 수산염(oxalate) 등의 무기물을 사용한다.When the ceramic powder and the polyvinylidene fluoride are mixed, a small amount of a coupling agent may be added to strongly bond the interface between the polyvinylidene fluoride and the ceramic powder so that the mixture is well mixed. In this case, as the binder, inorganic substances such as nitrate, sulfate, phosphate, and oxalate are used.
세라믹분말과 폴리비닐리덴 플루오라이드의 혼합시 유기용매 및 결합제 대신 세라믹분말과 동일 내지 유사한 조성을 가진 세라믹졸용액을 사용할 수 있다.When mixing the ceramic powder and the polyvinylidene fluoride, a ceramic sol solution having the same or similar composition as that of the ceramic powder may be used instead of the organic solvent and the binder.
세라믹졸용액은 물 또는 유기용매를 베이스로 하고 세라믹구성원소를 용해시켜 제조한다. 베이스가 되는 유기용매는 여러 가지를 사용할 수 있으나, 주로 아세트산, 디메틸포름아미드, 메톡시에탄올, 알콜류, 글리콜류 중 선택하여 사용하는 것이 바람직하다.Ceramic sol solutions are prepared by dissolving ceramic components based on water or organic solvents. Various organic solvents can be used as the base, but it is preferable to use mainly selected from acetic acid, dimethylformamide, methoxyethanol, alcohols, and glycols.
세라믹졸용액의 제조시 사용하는 세라믹구성원소는 납(Pb), 지르코늄(Zr), 티타늄(Ti)을 포함하는 성분을 사용하는 것이 바람직하며, 사용하는 세라믹졸용액의 농도는 0.1-5M로 하는 것이 바람직하다.The ceramic component used in the manufacture of the ceramic sol solution is preferably a component containing lead (Pb), zirconium (Zr), titanium (Ti), the concentration of the ceramic sol solution to be used is 0.1-5M It is preferable.
세라믹분말과 폴리비닐리덴 플루오라이드에 세라믹졸용액을 혼합할 때 세라믹졸용액의 함량은 세라믹분말 및 폴리비닐리덴 플루오라이드에 대해 1-200중량부로 하는 것이 바람직하다. 세라믹졸용액의 함량이 200중량부 이상인 경우에는 혼합체의 점도가 낮고, 1중량부 미만인 경우에는 혼합체의 점도가 지나치게 높아지기 때문이다.When the ceramic sol solution is mixed with the ceramic powder and the polyvinylidene fluoride, the content of the ceramic sol solution is preferably 1-200 parts by weight based on the ceramic powder and the polyvinylidene fluoride. This is because the viscosity of the mixture is low when the content of the ceramic sol solution is 200 parts by weight or more, and the viscosity of the mixture is too high when it is less than 1 part by weight.
세라믹졸용액을 사용하면 세라믹입자의 표면특성이 개질되고 시스템의 분산성이 향상되어 입자간 결합력이 더욱 증대되며 균일한 막의 품질을 얻을 수 있다.The use of the ceramic sol solution modifies the surface properties of the ceramic particles and improves the dispersibility of the system, thereby further increasing the bonding strength between the particles and obtaining a uniform film quality.
혼합이 완료된 세라믹분말과 폴리비닐리덴 플루오라이드의 혼합체를 적용하여 압전/전왜막을 형성한다.A mixture of ceramic powder and polyvinylidene fluoride that has been mixed is applied to form a piezoelectric / electric strain film.
세라믹분말과 폴리비닐리덴 플루오라이드의 혼합체는 필요로 하는 점도에 따라 그대로 사용하거나 일부건조하여 사용하며, 필요한 경우 점도조절제를 소량 첨가할 수도 있다. 이때 일부건조는 70-120℃에서 행하는 것이 바람직하다.The mixture of ceramic powder and polyvinylidene fluoride may be used as it is or partially dried depending on the viscosity required, and a small amount of viscosity modifier may be added if necessary. At this time, some drying is preferably performed at 70-120 ℃.
세라믹분말과 폴리비닐리덴 플루오라이드의 혼합체를 사용하여 스크린 프린팅법, 몰딩법, 코팅법 등에 의하여 금속진동판 또는 하부전극이 형성된 세라믹 또는 수지류의 고분자성 유기화합물진동판에 직접 압전/전왜막을 성형하고 100-300℃, 보다 바람직하게는 150-250℃에서 열처리한다.Using a mixture of ceramic powder and polyvinylidene fluoride, a piezoelectric / electric distortion film is formed directly on a metal vibrating plate or a polymer organic compound vibrating plate formed of a metal vibrating plate or a lower electrode by a screen printing method, a molding method, or a coating method. Heat treatment at -300 ° C, more preferably 150-250 ° C.
또한 원하는 두께의 압전/전왜막을 별도로 형성한 후 금속진동판 또는 하부전극이 형성된 세라믹 또는 수지류의 고분자성 유기화합물진동판과 접합시킬 수도 있다. 접합을 위해서는 100-300℃, 보다 바람직하게는 150-250℃에서 열처리하거나 접착층을 이용하여 접착한다.In addition, a piezoelectric / electric distortion film of a desired thickness may be separately formed and then bonded to a ceramic vibrating plate of ceramic or resin having a metal vibrating plate or a lower electrode formed thereon. For bonding, heat treatment at 100-300 ° C., more preferably 150-250 ° C., or bonding using an adhesive layer.
형성된 압전/전왜막의 상부에 상부전극을 형성한다. 상부전극도 금, 은, 알루미늄, 니켈, 백금 등을 재료로 사용하여 이베포레이션, 스퍼터링 또는 스크린 프린팅 등의 방법으로 형성한다.An upper electrode is formed on the formed piezoelectric / distortion film. The upper electrode is also formed using gold, silver, aluminum, nickel, platinum, or the like as a material by evaporation, sputtering, or screen printing.
폴링된 폴리비닐리덴 플루오라이드를 사용하는 경우에는 별도로 폴링시킬 필요가 없으나 폴링되지 않은 상태의 폴리비닐리덴 플루오라이드를 사용하는 경우에는 상부전극을 형성한 후 폴링시켜 사용한다.When using polled polyvinylidene fluoride, it is not necessary to poll separately, but when using polyvinylidene fluoride in an unpolled state, it is used after polling after forming the upper electrode.
이하 실시예를 통하여 본 발명을 보다 상세하게 설명한다. 그러나 다음의 실시예는 본 발명을 예시하는 것으로 본 발명의 범위를 한정하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. The following examples, however, illustrate the invention and do not limit the scope of the invention.
(실시예 1)(Example 1)
비폭발성 산화-환원 연소법으로 제조한 입경 0.5㎛ 이하의 미세한 압전/전왜 세라믹분말과 폴리비닐리덴 플루오라이드를 60:40의 부피비로 헥사놀하에서 리플럭스하여 혼합하였다.Fine piezoelectric / electrically warped ceramic powder and polyvinylidene fluoride having a particle size of 0.5 μm or less prepared by non-explosive redox combustion were refluxed and mixed under hexanol at a volume ratio of 60:40.
100℃에서 용매를 일부건조하고, 얻어진 슬러리형태의 혼합체를 몰드에 충진시켰다.The solvent was partially dried at 100 deg. C, and the resulting slurry mixture was filled in a mold.
세라믹분말과 폴리비닐리덴 플루오라이드의 혼합체가 충진된 몰드를 200℃에서 열처리하고, 상부전극을 성형한 후 폴링시켜 압전/전왜 액츄에이터를 완성하였다.The mold filled with the mixture of ceramic powder and polyvinylidene fluoride was heat-treated at 200 ° C., and the upper electrode was molded and then polled to complete a piezoelectric / electric distortion actuator.
(실시예2)Example 2
비폭발성 산화-환원 연소법으로 제조한 입경 0.5㎛ 이하의 미세한 압전/전왜 세라믹분말, 세라믹분말과 동일/유사성분의 메톡시에탄올계 세라믹졸용액 및 폴리비닐리덴 플루오라이드를 40:40:20의 부피비로 자동유발에서 교반하여 혼합하였다.A volumetric ratio of 40:40:20 containing a fine piezoelectric / electric distortion ceramic powder having a particle diameter of 0.5 µm or less, a methoxyethanol-based ceramic sol solution and a polyvinylidene fluoride of the same / similar component as the ceramic powder prepared by the non-explosive oxidation-reduction combustion method The mixture was stirred and stirred in an autoclave.
얻어진 혼합체를 기판 위에 스크린프린팅으로 전사시켰다. 150℃에서 열처리하고 상부전극을 성형한 후 폴링시켜 압전/전왜 액츄에이터를 완성하였다.The resulting mixture was transferred by screen printing onto a substrate. Heat treatment at 150 ℃ and the upper electrode was formed and then polled to complete the piezoelectric / electrostrictive actuator.
상기와 같은 본 발명의 방법은 성형성이 우수한 폴리비닐리덴 플루오라이드와 입자의 크기가 미세하면서 압전특성이 우수한 저온소성 세라믹분말을 혼합한 혼합체를 사용함으로써 개선된 콜로이드 공정을 통해 입자간 연결성 및 기계적 강도가 조율된 압전/전왜 마이크로 액츄에이터를 얻을 수 있다.As described above, the method of the present invention uses an admixture of polyvinylidene fluoride having excellent moldability and a low-temperature fired ceramic powder having excellent piezoelectric properties with fine particle sizes, thereby improving inter-particle connectivity and mechanical properties. It is possible to obtain a piezoelectric / electric distortion micro-actuator whose intensity is tuned.
또한 저온소성 세라믹분말을 사용함으로써 공정이 저온화, 단순화됨으로써 공정의 저에너지화 및 저비용화를 이룰 수 있다.In addition, by using a low-temperature fired ceramic powder, the process can be lowered and simplified, resulting in lower energy and lower cost.
또한 본 발명의 혼합체는 성형의 자유도가 개선되어 취급이 용이하며, 혼합비의 조율에 따라 가공성을 조절하여 압전/전왜 마이크로 액츄에이터외의 다양한 세라믹디바이스에 적용할 수 있다.In addition, the mixture of the present invention can be easily handled by improving the degree of freedom of molding, and can be applied to various ceramic devices other than piezoelectric / electric distortion micro actuators by adjusting the workability according to the tuning of the mixing ratio.
Claims (54)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990050997A KR100320287B1 (en) | 1999-07-07 | 1999-11-17 | Piezoelectric/electrostrictive micro actuator using a mixture of ceramic powder and polyvinylidene fluoride and manufacturing method thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990027323 | 1999-07-07 | ||
KR19990027323 | 1999-07-07 | ||
KR1019990050997A KR100320287B1 (en) | 1999-07-07 | 1999-11-17 | Piezoelectric/electrostrictive micro actuator using a mixture of ceramic powder and polyvinylidene fluoride and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20010012037A KR20010012037A (en) | 2001-02-15 |
KR100320287B1 true KR100320287B1 (en) | 2002-01-10 |
Family
ID=26635746
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019990050997A Expired - Fee Related KR100320287B1 (en) | 1999-07-07 | 1999-11-17 | Piezoelectric/electrostrictive micro actuator using a mixture of ceramic powder and polyvinylidene fluoride and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100320287B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100863697B1 (en) * | 2007-12-31 | 2008-11-28 | 주식회사 코미코 | Spray coating powder, preparation method thereof and preparation method of spray coating film |
-
1999
- 1999-11-17 KR KR1019990050997A patent/KR100320287B1/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
KR20010012037A (en) | 2001-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6504287B2 (en) | Multilayered piezoelectric/electrostrictive ceramic actuator | |
KR102308852B1 (en) | BiScO3-PbTiO3 PIEZOELECTRIC MATERIAL COMPRISING BaTiO3 SEED LAYERS, AND METHOD OF FABRICATING THE SAME | |
KR101738983B1 (en) | Piezoelectric ceramic sintered body, method for manufacturing piezoelectric ceramic sintered body and electronic device | |
JP2777976B2 (en) | Piezoelectric ceramic-polymer composite material and manufacturing method thereof | |
US6327760B1 (en) | Method of manufacturing a piezoelectric/electrostrictive microactuator | |
US6265139B1 (en) | Method for fabricating piezoelectric/electrostrictive ceramic micro actuator using photolithography | |
CN110342935A (en) | Modified lead magnesium niobate-lead titanate base piezoelectricity ferro thick-film material of a kind of Sm and preparation method thereof | |
CN105732022A (en) | Preparation method of piezoelectric ceramic with high Curie temperature and film thereof | |
CN1083336C (en) | Piezoelectric device and method for fabricating the same | |
KR100320287B1 (en) | Piezoelectric/electrostrictive micro actuator using a mixture of ceramic powder and polyvinylidene fluoride and manufacturing method thereof | |
JP3213295B2 (en) | Method for forming piezoelectric / electrostrictive film element at low temperature using electrophoretic film forming method and piezoelectric / electrostrictive film element | |
US9115031B2 (en) | Ceramic, and piezoelectric/electrostriction element | |
JP2016192486A (en) | Piezoelectric / electrostrictive material, piezoelectric / electrostrictive body, and resonance driving device | |
CN1050229C (en) | Piezoelectric/electrostrictive film element having convex diaphragm portions and method of producing the same | |
CN100436529C (en) | Interface modifier of organic polymer and iron inorganic composite materials and its preparation | |
KR100359104B1 (en) | Method for fabricating piezoelectric/electrostrictive actuator using adhesion process | |
KR20190073883A (en) | Method of manufacturing a platelet perovskite structure, and piezoelectric ceramic sintered body manufactured by the same and electronic device | |
US6432238B1 (en) | Method for fabricating piezoelectric/electrostrictive thick film using seeding layer | |
KR20230040637A (en) | Method for manufacturing flexible laminated piezoelectric composites | |
JP3022536B1 (en) | Piezoelectric / electrostrictive actuator and method of manufacturing the same | |
KR100289604B1 (en) | Piezoelectric/electrostrictive actuator and method for fabricating the same | |
KR20000028974A (en) | Method for forming piezoelectric/electrostrictive film element at low temperature using electrophoretic deposition and the piezoelectric/electrostrictive film element formed by the method | |
KR100352483B1 (en) | Method for fabricating piezoelectric/electrostrictive thick film using seeding layer | |
KR100315296B1 (en) | Ultra-fine ceramic oxide powder, method for producing the ultra-fine ceramic oxide powder, ceramic paste produced using the ultra-fine ceramic oxide powder, and method for producing the ceramic paste | |
KR100340756B1 (en) | Method for forming piezoelectric/electrostrictive film at a low temperature, and piezoelectric/electrostrictive film formed by the method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 19991117 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20010928 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20011227 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20011227 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20041015 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20051018 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20061020 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20070918 Start annual number: 7 End annual number: 7 |
|
FPAY | Annual fee payment |
Payment date: 20080930 Year of fee payment: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20080930 Start annual number: 8 End annual number: 8 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |