[go: up one dir, main page]

KR100311057B1 - Photo-bioreactor and method for culturing photosynthetic bacteria using the same - Google Patents

Photo-bioreactor and method for culturing photosynthetic bacteria using the same Download PDF

Info

Publication number
KR100311057B1
KR100311057B1 KR1019980012731A KR19980012731A KR100311057B1 KR 100311057 B1 KR100311057 B1 KR 100311057B1 KR 1019980012731 A KR1019980012731 A KR 1019980012731A KR 19980012731 A KR19980012731 A KR 19980012731A KR 100311057 B1 KR100311057 B1 KR 100311057B1
Authority
KR
South Korea
Prior art keywords
circulation
reactor
temperature
photosynthetic microorganisms
tubular reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
KR1019980012731A
Other languages
Korean (ko)
Other versions
KR19980025294A (en
Inventor
이진석
성기돈
박순철
신철승
김미선
이준표
Original Assignee
손재익
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 손재익, 한국에너지기술연구원 filed Critical 손재익
Priority to KR1019980012731A priority Critical patent/KR100311057B1/en
Publication of KR19980025294A publication Critical patent/KR19980025294A/en
Application granted granted Critical
Publication of KR100311057B1 publication Critical patent/KR100311057B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/02Apparatus for enzymology or microbiology with agitation means; with heat exchange means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/36Apparatus for enzymology or microbiology including condition or time responsive control, e.g. automatically controlled fermentors
    • C12M1/38Temperature-responsive control
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/08Flask, bottle or test tube
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/04Filters; Permeable or porous membranes or plates, e.g. dialysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/18Heat exchange systems, e.g. heat jackets or outer envelopes
    • C12M41/24Heat exchange systems, e.g. heat jackets or outer envelopes inside the vessel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/02Separating microorganisms from the culture medium; Concentration of biomass

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

본 발명은 광합성에 의해 생육하는 미생물을 배양하기 위한 생물반응기 및 이를 이용한 광합성 미생물의 배양 방법에 관한 것으로 광 생물 반응기의 주 문제점인 낮은 광 활용 효율과 온도 조절 문제를 해결하기 위한 내부 순환형 광 생물반응기 및 이를 이용한 광합성 미생물의 배양방법에 관한 것이다.The present invention relates to a bioreactor for culturing microorganisms grown by photosynthesis and a method for culturing photosynthetic microorganisms using the same, and an internal cycle type optical organism for solving low light utilization efficiency and temperature control problems, which are the main problems of the photobioreactor. It relates to a reactor and a method of culturing photosynthetic microorganisms using the same.

종래 사계절이 있는 나라에서는 외부의 기온에 따라서 내부의 온도를 유지할수 없어서 광합성 미생물의 배양이 불가능하였다.Conventionally, in the country with four seasons, the internal temperature cannot be maintained according to the external temperature, and thus it is impossible to culture photosynthetic microorganisms.

따라서 본 발명은 광합성 미생물을 배양하기 위한 수직 관형 반응기의 내부에 형성된 순환관에 열 교환기를 설치하여 외부 기온에 관계없이 내부의 온도를 조절할수 있도록 하며 광합성 미생물이 순환되도록 구성시키며, 순환관의 하측으로 순환공을 형성하여 광합성 미생물이 순환되도록 구성하고 순환관의 하측 외부에서 수직 관형 반응기의 하측에 순환공이 형성된 공기 순환판을 설치하여 수직 관형 반응기의 벽으로 공기가 공급되도록 구성하고, 순환관은 수직 관형 반응기 직경의 1/3 지점에 설치하여 외부의 기온에 관계없이 광합성 미생물의 배양이 가능하도록 하는 것이다.Therefore, the present invention is to install a heat exchanger in the circulation tube formed inside the vertical tubular reactor for culturing photosynthetic microorganisms to control the internal temperature irrespective of the outside temperature and to configure the photosynthetic microorganisms to circulate, the lower side of the circulation tube It forms a circulation hole so that the photosynthetic microorganism is circulated and installs an air circulation plate formed with a circulation hole in the lower side of the vertical tubular reactor from the outside of the circulation tube so that air is supplied to the wall of the vertical tubular reactor. It is installed at one third of the diameter of the vertical tubular reactor to allow the cultivation of photosynthetic microorganisms regardless of the outside temperature.

Description

내부순환형 광 생물반응기 및 이를 이용한 광합성 미생물의 배양방법Internal Circulation Type Photobioreactor and Culture Method of Photosynthetic Microorganism Using the Same

본 발명은 광합성에 의해 생육하는 미생물을 배양하기 위한 생물반응기 및 이를 이용한 광합성 미생물의 배양 방법에 관한 것으로 광 생물 반응기의 주 문제점인 낮은 광 활용 효율과 온도 조절 문제를 해결하기 위한 내부순환형 광 생물반응기 및 이를 이용한 광합성 미생물의 배양방법에 관한 것이다.The present invention relates to a bioreactor for culturing microorganisms grown by photosynthesis and a method of culturing photosynthetic microorganisms using the same, and an internal circulation type optical organism for solving low light utilization efficiency and temperature control problems, which are the main problems of the photobioreactor. It relates to a reactor and a method of culturing photosynthetic microorganisms using the same.

미세조류의 배양은 사료, 식용 색소와 의약용 원료 물질등의 유용 물질을 생산할 목적으로 활용되고 있다.Microalgae cultivation is used to produce useful substances such as feed, food coloring and pharmaceutical raw materials.

최근 산업체 배출 CO2가 지구 온난화의 주범으로 지목됨에 따라 CO2를 고정화하기 위해 미세조류를 활용하려는 연구가 활발하게 진행되고 있다.Recently, as industrial emission CO 2 is pointed out as the main culprit of global warming, research is being actively conducted to utilize microalgae to fix CO 2 .

현재 상용화된 미세조류 배양조는 모두 호수 형태의 반응기어서 미국, 호주, 이스라엘등 일부 국가에서만 실제 사용되고 있으며 반응기 설치에 필요한 부지의 확보가 어려운 일본, 우리나라등에서는 적용이 곤란한 실정이다.Currently, the microalgae culture tanks commercialized are all lake-type reactors, which are actually used only in some countries such as the United States, Australia, and Israel, and are difficult to apply in Japan and Korea, where it is difficult to secure a site for reactor installation.

또한 미세조류 배양에 적합한 온도는 약 25℃ - 35℃로서 사계절이 있는 우리나라의 경우 1년중 수개월(5월초 - 10월초)동안만 미세조류의 옥외 배양이 가능하여 공정의 경제성이 낮은 문제점이 있다.In addition, the temperature suitable for culturing microalgae is about 25 ° C.-35 ° C., and in Korea with four seasons, it is possible to cultivate algae algae for only a few months (early May-early October) during the year.

죄근 부지의 확보가 어려운 장소에서 사용 가능한(즉 단위 면적당 미세조류 생육속도가 높은) 반응기를 개발하기 위한 연구가 활발히 진행되고 있다.Research is actively underway to develop reactors that can be used in difficult-to-finish locations (ie, high algal growth rates per unit area).

원통형 관을 수직으로 한 수직 관형 반응기는 그 기하학적 형태 때문에 동일한 양의 미세조류를 생산하는데 필요한 부지 면적이 호수형 반응기에 비에 1/20 또는 그 이하 이어서 단위면적당 균체 생산성이 그 만큼 높아 우리나라와 같이 유휴 부지가 없는 나라에서 특히 실용화 가능성이 높은 것으로 판단되다.Vertical tubular reactors with a cylindrical tube vertically have a land area required to produce the same amount of microalgae due to its geometry, which is 1/20 or less compared to that of a lake-type reactor, resulting in high cell productivity per unit area. In countries where there is no idle land, the possibility of commercialization is high.

이러한 수직 관형 반응기를 사용하여 대규모 미세조류 배양 공정을 옥외에 설치, 운전하기 위해서는 해결해야만 하는 문제점이 많이 있다.There are many problems that must be solved in order to install and operate a large scale microalgae culture process outdoors using such a vertical tubular reactor.

첫째, 옥외 배양의 경우 미세 조류 배양 온도는 외부 기온에 따라 변하므로 배양 온도를 미세조류의 생육에 적합한 온도인 25℃ - 35℃로 유지하여야 한다.First, in the case of outdoor cultivation, the microalgae cultivation temperature changes according to the outside temperature, so the cultivation temperature should be maintained at 25 ° C.-35 ° C., which is suitable for the growth of microalgae.

그러나 현재까지 개발된 모든 미세조류 배양조는 온도 조절 기능이 없어 겨울이 없는 지역에서만 상업 운전중이다.However, all of the microalgal cultures developed to date are commercially operated only in winter-free regions due to the lack of temperature control.

우리나라와 같이 겨울이 있는 지역에서는 현재 개발된 미세조류 배양조의 적용은 곤란한 실정이다.Application of the currently developed microalgal culture tank is difficult in regions with winters such as Korea.

둘째, 반응기내 미세조류의 농도가 높아지면 균체 자체에 의한 그림자 효과로 인해 반응기 안쪽에 있는 균체는 바깥쪽에 있는 균체에 비해 빛을 흡수할수 있는 기회가 적다.Second, when the concentration of microalgae in the reactor is increased, the cells inside the reactor have less chance to absorb light than the cells on the outside due to the shadow effect by the cells themselves.

따라서 모든 미생물이 균일하게 빛에 노출될수 있도록 반응기를 설계하는 것이 반응기의 미세조류 생산성을 높일수 있는 것이다.Therefore, designing the reactor so that all microorganisms can be uniformly exposed to light can increase the microalgae productivity of the reactor.

그러나 현재까지의 기술은 가스를 공급하는데 따른 배지의 교반과 교반의 결과로 미세조류 균체는 무작위적으로 빛을 접하게 하여 미세조류 균체 농도가 높아지면서 빛의 활용 효율이 떨어져 균체 생산성이 점차 감소하게 되는 문제점이 있다.However, until now, as a result of the agitation and stirring of the medium to supply gas, the microalgae cells are randomly exposed to light, and the concentration of the microalgae cells increases to decrease the utilization efficiency of the light. There is a problem.

그러므로 미세조류의 농도가 높은 경우에도 빛의 활용 효율을 높이기 위해서는 모든 미세조류가 균일하게 빛에 노출될수 있는 장치를 필요로 한다.Therefore, even when the concentration of microalgae is high, in order to improve the light utilization efficiency, all microalgae need a device that can be uniformly exposed to light.

기존의 관형 반응기에서는 반응기내 온도를 조절하기 위해 반응기 외벽에 자켓을 부착하고 온도 조절을 위한 온/냉수를 자켓에 공급하는 방법이 사용되고 있으나, 이러한 시스템은 광합성 미생물의 배양에서는 미생물의 생육에 필수 에너지원인 빛의 투과율을 30%이상 감소시켜 광합성 미생물의 생육 속도를 그만큼 떨어뜨리는 문제점이 있다.In the conventional tubular reactor, a jacket is attached to the outer wall of the reactor to control the temperature in the reactor, and a method of supplying the jacket with hot / cold water for controlling the temperature is used. Cause There is a problem of reducing the growth rate of photosynthetic microorganisms by reducing the transmittance of light by more than 30%.

본 발명은 반응기 내부에 열교환기를 설치하고 교환기의 형태를 균체기 순환되도록 순환 관(drught tube)의 형태로 한 공기 부양식 반응기(air-lift reactor)를 설치하여 외부의 기온에 관계없이 내부 온도를 최적 값으로 조절하여 전천후 운전이 가능하다는 점과 동일한 배양 조건에서 높은 농도의 미세조류 배양시 순환관이 장착되지 않은 수직 관형 반응기에 비해 미세조류의 생육속도를 약 20%이상 높일 수 있는 것이다.The present invention is to install a heat exchanger inside the reactor and to install the air-lift reactor (drught tube) in the form of a tube (drught tube) to circulate the form of the exchanger to the internal temperature regardless of the outside temperature It is possible to increase the growth rate of microalgae more than about 20% compared to the vertical tubular reactor which is not equipped with a circulation tube at the same culture conditions that all weather operation is possible by adjusting to the optimum value.

미세조류는 일정 세기 이상의 빛을 흡수하면 잉여 빛을 체내에 저장하여 빛의 공급이 중단되더라도 단시간 광합성을 계속할 수 있다.When microalgae absorb light above a certain intensity, excess light is stored in the body, allowing photosynthesis to continue for a short time even if the light supply is interrupted.

또한 태양 빛의 세기는 미세조류가 소화할수 있는 최대 빛의 세기에 약 20배에 달하는 것이어서 반응기내 미세조류를 태양 빛에 일정시간 노출시킨후 빛이 없는 곳으로 이동 시키면 빛이 없어도 균체내에 저장된 잉여 빛에너지를 활용하여 잉여 빛에너지를 소진할 때 까지 광합성을 하며 성장할 수 있다.In addition, the intensity of solar light is about 20 times the maximum light intensity that microalgae can digest, so if the microalgae in the reactor is exposed to sunlight for some time and moved to the place where there is no light, surplus stored in the cell without light By utilizing light energy, it can grow with photosynthesis until it uses up the surplus light energy.

따라서 그동안 반응기내의 태양 빛을 충분히 흡수하지 못한 다른 균체를 태양 빛에 노출시킬 수 있어 빛의 활용 효율을 그만큼 증가시킬수 있다.Therefore, other cells that have not sufficiently absorbed solar light in the reactor can be exposed to sunlight, thereby increasing the utilization efficiency of light.

본 발명은 반응기내에 미생물 배양 배지의 온도조절을 위한 열교환기를 설치하여 반응기내의 온도가 광합성 미생물의 배양에 적합한 온도로 유지되도록 한다.The present invention provides a heat exchanger for controlling the temperature of the microorganism culture medium in the reactor so that the temperature in the reactor is maintained at a temperature suitable for the culture of photosynthetic microorganisms.

본 발명은 균체의 빛 활용 효율을 높이기 위해 열 교환기의 형태를 균체가 순환될 수 있도록 순환관의 형태로 하여 계절에 관계없이 옥외 배양이 가능한 것이다.The present invention is capable of outdoor cultivation regardless of the season in the form of a circulation tube so that the cells can be circulated in the form of a heat exchanger to increase the light utilization efficiency of the cells.

도 1 은 본 발명의 광 생물반응기의 설치상태도1 is a state diagram of the optical bioreactor of the present invention

도 2 는 본 발명의 내부순환형 광 생물반응기의 운전원리를 나타낸 설치상태Figure 2 is an installation state showing the operating principle of the internal circulation optical bioreactor of the present invention

Degree

도 3 은 본 발명의 기포탑 반응기와 내부순환형 광 생물반응기에서의 균주의 생육속도를 표시한 그래프Figure 3 is a graph showing the growth rate of the strain in the bubble column reactor and the internal circulation optical bioreactor of the present invention

도 4 는 본 발명의 내부순환형 광 생물반응기의 온도를 기록한 그래프Figure 4 is a graph recording the temperature of the internal circulation optical bioreactor of the present invention

도 5 는 본 발명의 겨울철 옥외에서 광 생물반응기를 이용한 균주의 생육실험 결과에 대한 그래프5 is a graph for the growth test results of the strain using the optical bioreactor outdoors in the winter of the present invention

1 : 반응기 2 : 열 교환기1: reactor 2: heat exchanger

3 : 공기 분산판 4 : 공기 주입구3: air dispersion plate 4: air inlet

5 : 항온 순환기 6 : 유량조절밸브5: constant temperature circulator 6: flow control valve

7 : 냉,온수 주입구 13 : 순환관7: cold, hot water inlet 13: circulation tube

14 : 순환공 15 : 공기 주입공14: circulation hole 15: air injection hole

본 발명에 적용 가능한 미생물은 대사 활동에 빛이 필요한 모든 광합성 미생물이며, 본 발명에서 예시한 특정 미생물에 국한되는 것은 아니다.Microorganisms applicable to the present invention are all photosynthetic microorganisms that require light for metabolic activity, and are not limited to the specific microorganisms exemplified in the present invention.

본 발명에 따른 내부 순환형 수직 관형 반응기의 실시예인 도 1 과 도 2 에 의하여 설명하기로 한다.1 and 2, which are examples of the internal circulation vertical tubular reactor according to the present invention.

반응기내 균체의 빛에 노출될 기회를 높이기 위해 미생물이 수직 관형 반응기(1)안에서 순환할 수 있도록 순환관(13)을 형성하고 순환관(13)의 저면으로 순환공(14)을 설치하였다.In order to increase the chance of exposure to light of the cells in the reactor, a circulation tube 13 was formed to allow microorganisms to circulate in the vertical tubular reactor 1, and a circulation hole 14 was installed at the bottom of the circulation tube 13.

빛에 노출될 때 이산화탄소 가스는 순환관(13)의 외부로 공급되도록 수직 관형 반응기(1)의 하측에서 공기 주입구(4)를 설치하여 순환관(13)의 하측은 차단되고 외측에서 광합성의 효율을 높이도록 하기 위하여 수직 관형 반응기(1)의 벽을 따라 상승하도록 공기 주입구(15)를 형성한 공기 분산판(3)을 설치하였다.When exposed to light, the carbon dioxide gas is installed at the lower side of the vertical tubular reactor 1 so that the carbon dioxide gas is supplied to the outside of the circulation tube 13 so that the lower side of the circulation tube 13 is blocked and the efficiency of photosynthesis on the outside is provided. In order to raise the air distribution plate (3) having an air inlet (15) was installed to rise along the wall of the vertical tubular reactor (1).

순환관(13)에는 열 교환기(2)를 설치하되 내부가 중공상태이며 상측의 냉,온수 배출구(9)를 설치하여 항온 순환기(5)에 연결하고 항온 순환기(5)에서 유량조절밸브(6)를 통하여 하측의 냉,온수 주입구(7)에 연결한다.The heat exchanger (2) is installed in the circulation pipe (13), and the inside is hollow, and the cold and hot water outlet (9) of the upper side is installed and connected to the constant temperature circulator (5) and the flow control valve (6) in the constant temperature circulator (5). Connect to the cold, hot water inlet (7) on the lower side.

수직 관형 반응기(1)의 벽에는 써모커플(8)을 설치하여 온도조절기(10)에 연결하고 이를 온도기록계(11)에 연결하여 반응기내의 온도를 냉,온수로 조절할 수 있도록 한다.A thermocouple 8 is installed on the wall of the vertical tubular reactor 1 so as to be connected to the temperature controller 10 and connected to the temperature recorder 11 so that the temperature in the reactor can be controlled by cold and hot water.

이러한 구성으로 이루어진 본 발명은 수직 관형 반응기(1)는 공기 주입구(4)를 통하여 공기가 공급되면서 공기 분산판(3)의 공기 주입구(15)에 의하여 순환관(13)의 외부로 공급되면 빛에 노출될 때 이산화탄소 가스는 광합성의 효율을 높이도록 하였고, 수직 관형 반응기(1)의 벽을 따라 상승하며 충분한 미생물을 흡수한 광합성 미생물은 순환관(13)의 상단에서 내부로 들어가게된다.According to the present invention having the above configuration, the vertical tubular reactor 1 is supplied to the outside through the air inlet 4 while being supplied to the outside of the circulation pipe 13 by the air inlet 15 of the air distribution plate 3. When exposed to carbon dioxide gas to increase the efficiency of photosynthesis, photosynthetic microorganisms that rise along the walls of the vertical tubular reactor (1) and absorbed enough microorganisms enter the interior from the top of the circulation tube (13).

그러나 순환관(13)의 내부에 들어가게되며 내부에서는 빛의 공급이 차단되지만 빛에 노출됐을 때 균체내에 저장한 잉여 빛 에너지를 사용하여 생육활동을 계속할 수 있게된다.However, the inside of the circulation tube 13 and the light supply is cut off from the inside, but when exposed to the light it is possible to continue the growth activity using the surplus light energy stored in the cells.

순환관(13)의 하단에 도달한 미세조류 균체는 순환공(14)을 통하여 외부로 이동되어 다시 태양 빛에 노출돼 생육에 필요한 빛을 흡수할 수 있다.The microalgal cells reaching the lower end of the circulation tube 13 are moved to the outside through the circulation hole 14 to be exposed to sunlight again to absorb the light necessary for growth.

따라서 수직 관형 반응기(1)내의 모든 균체는 순환하며 빛에 균일하게 노출돼 빛의 활용효율을 높일 수 있다.Therefore, all the cells in the vertical tubular reactor (1) is circulated and evenly exposed to light can increase the utilization efficiency of light.

이와 같은 기능은 미세조류 균체의 농도가 높을 때 특히 유용하다.This function is particularly useful when the concentration of microalgal cells is high.

미세조류의 농도가 1g/1일 때 태양 빛이 투과할수 있는 깊이는 약 3 ~ 4cm에 불과하다.When the concentration of microalgae is 1g / 1, the depth of sunlight can penetrate only about 3 ~ 4cm.

따라서 충분한 빛이 공급 가능하도록 반응기 내벽과 순환관 외부벽의 간격은 약 2 ~ 4cm일 때 가장 적합한 것으로 나타났다.Therefore, the gap between the inner wall of the reactor and the outer wall of the circulation pipe was found to be most suitable when sufficient light was supplied.

순환관의 경우 관이 반응기 직경의 1/3 지점에 있을 때 미생물의 생육 속도가 가장 높았다.In the case of the circulation tube, the growth rate of the microorganism was the highest when the tube was located at 1/3 of the reactor diameter.

실시예1Example 1

파이렉스(Pyrex) 유리 재질의 8L 수직관형 반응기(내경 12cm × 높이 80cm)에서 분리한 클로렐라 변이주 KR-1(특허 출원중)을 배양하였다.Chlorella mutant KR-1 (patent pending) isolated from a Pyrex glass 8L vertical tubular reactor (inner diameter 12 cm x height 80 cm) was incubated.

배지는 KNO35g, MgSO47H2O 2.5g, KH2PO41.25g, 미량 시약 1ml를 증류수 1L에 용해하여 만들었다.The medium was prepared by dissolving 5 g of KNO 3 , 2.5 g of MgSO 4 7H 2 O, 1.25 g of KH 2 PO 4 , and 1 ml of a trace reagent in 1 L of distilled water.

미량 시약은 NaFeEDTA 14.5㎎, H3BO32.86㎎, MnSO47H2O 2.5㎎, ZnSO47H2O 0.222㎎, CuSO45H2O 0.079㎎, Na2MoO40.021㎎를 1L의 증류수에 용해하여 제조하였다.The trace reagent is 14.5 mg NaFeEDTA, 2.86 mg H 3 BO 3 , 2.5 mg MnSO 4 7H 2 O 2.5 mg, 0.222 mg ZnSO 4 7H 2 O, 0.079 mg CuSO 4 5H 2 O, 0.021 mg Na 2 MoO 4 in 1 L distilled water. It was prepared by.

배지 5L를 고압 멸균솥에서 멸균하여 반응기에 넣고 클로렐라 KR - 1을 접종하여 배양하였다.5 L of the medium was sterilized in a high pressure sterilizer, placed in a reactor, and incubated by inoculating Chlorella KR-1.

빛은 형광등으로 공급하였으며 반응기에 공급된 빛 에너지의 양은 180㎛ol/㎡-sec, 이산화탄소 가스는 0.3vvm으로 공급하였으며 배지온도는 25℃로 유지하며 7일간 배양하였다.Light was supplied as a fluorescent lamp, the amount of light energy supplied to the reactor was 180 μmol / ㎡-sec, carbon dioxide gas was supplied at 0.3vvm, and the culture medium was maintained at 25 ° C. for 7 days.

미생물의 생육정도는 배양액을 분리하여 수확한후 105℃에서 24시간 건조후 측정하여 준비한 세포 건조 중량을 기준한 흡광도-건조중량의 표준 곡선에 의해 나타냈다.The degree of growth of the microorganisms was expressed by a standard curve of absorbance-dry weight based on the dry weight of the cells prepared by separating and harvesting the culture medium and drying at 105 ° C. for 24 hours.

본 발명의 반응기를 이용한 경우 동일한 조건에서 운전한 내부 순환관을 넣지 않은 단순 기포탑 반응기(bubble column)에 비해 약 1.2배 높았다.([도 3] 참고)In the case of using the reactor of the present invention, it was about 1.2 times higher than a simple bubble column reactor (bubble column) without an internal circulation tube operated under the same conditions. (See FIG. 3).

실시 예 2. 광 생물반응기의 온도 조절 실험.Example 2. Temperature Control Experiments of Photobioreactors.

8L(내경 12㎝ × 높이 80㎝)와 20L(내경 20㎝ × 80㎝) 수직 관형 반응기를 외부 기온이 -5℃-10℃인 겨울에 옥외에서 온도 조절 실험을 하였다.Temperature control experiments were carried out outdoors in winter with 8 L (inner diameter 12 cm × height 80 cm) and 20 L (inner diameter 20 cm × 80 cm) vertical tubular reactors.

두 반응기 모두 항온조의 온도와 순환 유속을 적절하게 조정하므로서 외부 기온에 관계없이 반응기내 온도를 미세조류 배양에 적합한 30℃-35℃로 유지할 수 있었다.([도 4] 참고)Both reactors were able to maintain the temperature in the reactor at 30 ° C.-35 ° C. suitable for microalgae cultivation regardless of the outside temperature by appropriately adjusting the temperature and circulation flow rate of the thermostat. (See FIG. 4).

실시 예 3. 광 생물반응기에서 광합성 미생물의 옥외 배양 실험.Example 3 Outdoor Culture Experiments of Photosynthetic Microorganisms in a Photobioreactor.

겨울에 옥외에서 8L와 20L의 수직 관형 반응기를 사용하여 햇빛을 이용하며 클로렐라 KR - 1을 배양하였다.In winter, chlorella KR-1 was incubated in sunlight using 8 L and 20 L vertical tubular reactors outdoors.

앞에 기술한 조성외 배지를 사용하였으며 10% CO2가스를 0.3vvm의 유량으로 공급하였다.The out-of-composition medium described above was used and 10% CO 2 gas was supplied at a flow rate of 0.3vvm.

동일한 운전 조건에서 온도 조절없이 배양한 경우 미생물의 생육이 전혀 이루어지지 않은데 비해 내부 순환관이 장착된 8L와 20L 반응기에서는 7일 배양시 각각 배양 말기의 균체농도가 3.34g/L와 2.22g/L로 평균 균체 생산성으로 환산하면 각각 0.39g/L-일과 0.23g/L-일이었다.([도 5] 참고)In the same operating conditions, the microorganisms were not grown at all without temperature control, whereas in the 8L and 20L reactors equipped with internal circulation tubes, the cell concentrations at the end of the culture were 3.34g / L and 2.22g / L, respectively. The average cell productivity was 0.39g / L-day and 0.23g / L-day, respectively. (See FIG. 5).

이러한 균체 생산성은 온도 조절이 잘 되는 실내에서 25℃로 유지하며 배양하였을 때 얻은 평균 균체 생산성 0.404g/L-일(8L 반응기 기준)과 차이가 거의 없어 겨울철에도 옥외에서 미세조류 배양이 성공적으로 이루어졌음을 보여준다.Since the cell productivity was maintained at 25 ° C. in a well-controlled room, the average cell productivity obtained when cultivated was little different from that of 0.404 g / L-day (based on 8 L reactor). Show that you lost.

본 발명은 미세조류 배양 반응기의 수직 관형으로하여 공정의 설치에 필요한 단면적을 대폭 줄였으며, 반응기의 내부에서 순환되면서 반응기의 벽을 따라서 상승하며 충분한 빛을 흡수한후 순환관 내부로 들어가면 빛은 차단되지만 빛에 노출됐을 때 균체내에 저장한 잉여 빛 에너지를 사용하여 생육활동을 계속할 수 있도록 하는 것이다.The present invention is a vertical tube of the microalgae culture reactor to significantly reduce the cross-sectional area required for the installation of the process, as it circulates inside the reactor and rises along the wall of the reactor and absorbs enough light and enters the circulation tube after blocking the light. However, when exposed to light, the surplus light energy stored in the cells can be used to continue the growth activity.

본 발명은 열 교환기를 설치하여 내부의 온도를 배양에 적합한 온도로 제어할수 있는 것이어서 외부 기온이나 계절에 관계없이 옥외 배양이 가능하며 미세조류 배양 공정의 적용 가능성을 획기적으로 향상시킨 것이다.The present invention is to install a heat exchanger to control the internal temperature to a temperature suitable for cultivation, so that outdoor cultivation is possible regardless of the external temperature or season, and greatly improved the applicability of the microalgal culture process.

Claims (4)

광합성 미생물을 배양하기 위한 수직 관형 반응기의 내부에 형성된 순환관에 열 교환기를 설치하여 외부 기온에 관계없이 내부의 온도를 조절할 수 있도록 하며 광합성 미생물이 순환되도록 구성시키고,A heat exchanger is installed in a circulation tube formed inside a vertical tubular reactor for culturing photosynthetic microorganisms to control the internal temperature regardless of the outside temperature, and to configure the photosynthetic microorganisms to circulate. 순환관의 하측으로 순환공을 형성하여 광합성 미생물이 순환되도록 구성시키며,By forming a circulation hole in the lower side of the circulation tube is configured to circulate photosynthetic microorganisms, 순환관의 하측 외부에서 수직 관형 반응기의 하측에 공기 주입구가 형성된 공기 분산판을 설치하여 수직 관형 반응기의 벽으로 공기가 공급되도록 구성시킨 내부 순환 수직 광 생물 반응기.An internal circulation vertical optical bioreactor configured to supply air to the walls of the vertical tubular reactor by installing an air dispersion plate having an air inlet formed below the vertical tubular reactor from the outside of the circulation tube. 제1항에 있어서, 순환관은 반응기 내벽과 순환관 외벽 사이의 간격이 2∼4㎝를 유지하도록 구성하는 내부 순환 수직 광 생물 반응기.The internal circulation vertical optical bioreactor of claim 1, wherein the circulation tube is configured to maintain a spacing between the reactor inner wall and the outer tube outer wall of 2 to 4 cm. 제 1 항에 있어서, 순환관은 수직 관형 반응기 직경의 1/3 지점에 설치하는 내부 순환 수직 광 생물 반응기.The internal circulation vertical optical bioreactor of claim 1, wherein the circulation tube is installed at one third of the diameter of the vertical tubular reactor. 수직 관형 반응기의 내부에 하측으로 순환공이 형성된 순환관을 설치하여 열 교환기에 의해 25∼30℃의 온도를 유지하면서 하측에서 공기를 공급하여 미생물이 순환관을 순환하도록 하여 광합성 미생물의 고 농도 배양이 가능하도록 하는 내부순환 수직 광 생물 반응기를 이용한 광합성 미생물의 배양방법.By installing a circulation tube formed with a circulation hole in the lower side inside the vertical tubular reactor, while maintaining a temperature of 25 ~ 30 ℃ by a heat exchanger to supply air from the lower side to allow the microorganisms to circulate the circulation tube to cultivate high concentration of photosynthetic microorganisms Method for culturing photosynthetic microorganisms using an internal circulation vertical optical bioreactor to enable it.
KR1019980012731A 1998-04-06 1998-04-06 Photo-bioreactor and method for culturing photosynthetic bacteria using the same Expired - Lifetime KR100311057B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980012731A KR100311057B1 (en) 1998-04-06 1998-04-06 Photo-bioreactor and method for culturing photosynthetic bacteria using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980012731A KR100311057B1 (en) 1998-04-06 1998-04-06 Photo-bioreactor and method for culturing photosynthetic bacteria using the same

Publications (2)

Publication Number Publication Date
KR19980025294A KR19980025294A (en) 1998-07-06
KR100311057B1 true KR100311057B1 (en) 2002-04-22

Family

ID=37530977

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980012731A Expired - Lifetime KR100311057B1 (en) 1998-04-06 1998-04-06 Photo-bioreactor and method for culturing photosynthetic bacteria using the same

Country Status (1)

Country Link
KR (1) KR100311057B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008107518A1 (en) * 2007-03-05 2008-09-12 Teknillinen Korkeakoulu Bioreactor
KR101022755B1 (en) * 2008-09-16 2011-03-17 윤성배 Removable Microbial Culture Device
CN102973961A (en) * 2012-11-22 2013-03-20 华侨大学 Ozone sterilization method for photobioreactor for culturing photosynthetic bacteria in large scale

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100470060B1 (en) * 2000-12-21 2005-02-04 주식회사 포스코 Culturing method of micro-algae with high contents of fatty acids by using steelmaking slag
KR100420492B1 (en) * 2001-04-27 2004-03-02 (주)아쿠아넷 High-density cultivating apparatus for phytoplankton
KR100420928B1 (en) * 2001-08-02 2004-03-02 한국과학기술연구원 Anti-fouling photobioreactor
KR100399977B1 (en) * 2001-08-27 2003-09-29 이철균 A modular photobioreactor used in large-scale microalgal cultures
KR20030079379A (en) * 2002-04-03 2003-10-10 썬테크 주식회사 Simplified Microorganism Multiplying Apparatus
KR100439971B1 (en) * 2002-09-18 2004-07-12 학교법인 인하학원 Bubble column photobioreactors and methods for culturing photosynthetic microorganism using them
KR100815469B1 (en) * 2007-03-08 2008-03-20 인하대학교 산학협력단 Low quality microbial extraction device using ultra-miniature gun generator
KR101736964B1 (en) 2015-08-06 2017-05-18 한국에너지기술연구원 Bioreactor of an air flotation type

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0316910A1 (en) * 1987-11-17 1989-05-24 Phillips Petroleum Company Heat exchange apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0316910A1 (en) * 1987-11-17 1989-05-24 Phillips Petroleum Company Heat exchange apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008107518A1 (en) * 2007-03-05 2008-09-12 Teknillinen Korkeakoulu Bioreactor
KR101022755B1 (en) * 2008-09-16 2011-03-17 윤성배 Removable Microbial Culture Device
CN102973961A (en) * 2012-11-22 2013-03-20 华侨大学 Ozone sterilization method for photobioreactor for culturing photosynthetic bacteria in large scale

Also Published As

Publication number Publication date
KR19980025294A (en) 1998-07-06

Similar Documents

Publication Publication Date Title
KR100490641B1 (en) Multiple layer photobioreactors and method for culturing photosynthetic microorganisms using them
Suh et al. Photobioreactor engineering: design and performance
CN101870953B (en) A method of cultivating microalgae
US5846816A (en) Apparatus for biomass production
US4952511A (en) Photobioreactor
KR100311057B1 (en) Photo-bioreactor and method for culturing photosynthetic bacteria using the same
CN201245657Y (en) Photobioreactor for microalgae cultivation
Carvalho et al. Microalgae bioreactors
WO2009037683A1 (en) A system and apparatus for growing cultures
CN101497473A (en) Aeration type photobioreactor and method of use thereof
de Ortega et al. Production of Chlorella biomass in different types of flat bioreactors in temperate zones
Dębowski et al. Microalgae–cultivation methods
CN104611221A (en) Closed runway pool type photobioreactor
Tredici et al. Cultivation of Spirulina (Arthrospira) platensis in flat plate reactors
KR100818203B1 (en) Cell circulating photobioreactor and culture method of photosynthetic microorganisms using the same
Magdaong et al. Effect of aeration rate and light cycle on the growth characteristics of Chlorella sorokiniana in a photobioreactor
CN105002085A (en) Culture farm special-purpose microalgae photo-biological culture system and culture method
KR100439971B1 (en) Bubble column photobioreactors and methods for culturing photosynthetic microorganism using them
KR20150097296A (en) trapezoidal flat-shapedphotobioreactor
KR100822824B1 (en) Vertical Flat Transparent Photosynthetic Bacteria Cultivator for Biological Hydrogen Production
KR102026721B1 (en) Apparatus Capable of Controlling Light Soure and temperature for Outdoor Mass Culturing of Microalgae
Perera et al. Investigation of the Effect of Solar Irradiation and Temperature on H. pluvialis Production in Photobioreactors Under Outdoor Cultivation in Sri Lanka
CN218596357U (en) System for utilize sunlight to breed little algae
CN104789451A (en) Photosynthetic organism culture apparatus
CN214032498U (en) Micro-algae culture system

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 19980406

PA0201 Request for examination
G15R Request for early publication
PG1501 Laying open of application

Comment text: Request for Early Opening

Patent event code: PG15011R01I

Patent event date: 19980410

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20000504

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20010824

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20010922

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20010924

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20040823

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20050823

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20060901

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20070903

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20080904

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20090909

Start annual number: 9

End annual number: 9

PR1001 Payment of annual fee

Payment date: 20100714

Start annual number: 10

End annual number: 10

PR1001 Payment of annual fee

Payment date: 20110816

Start annual number: 11

End annual number: 11

FPAY Annual fee payment

Payment date: 20120919

Year of fee payment: 12

PR1001 Payment of annual fee

Payment date: 20120919

Start annual number: 12

End annual number: 12

FPAY Annual fee payment

Payment date: 20130916

Year of fee payment: 13

PR1001 Payment of annual fee

Payment date: 20130916

Start annual number: 13

End annual number: 13

FPAY Annual fee payment

Payment date: 20141121

Year of fee payment: 14

PR1001 Payment of annual fee

Payment date: 20141121

Start annual number: 14

End annual number: 14

FPAY Annual fee payment

Payment date: 20150903

Year of fee payment: 15

PR1001 Payment of annual fee

Payment date: 20150903

Start annual number: 15

End annual number: 15

FPAY Annual fee payment

Payment date: 20160912

Year of fee payment: 16

PR1001 Payment of annual fee

Payment date: 20160912

Start annual number: 16

End annual number: 16

FPAY Annual fee payment

Payment date: 20170907

Year of fee payment: 17

PR1001 Payment of annual fee

Payment date: 20170907

Start annual number: 17

End annual number: 17

EXPY Expiration of term
PC1801 Expiration of term

Termination date: 20181006

Termination category: Expiration of duration