[go: up one dir, main page]

KR100303884B1 - Method for fabricating piezoelectric/electrostrictive ceramic micro actuator using photolithography - Google Patents

Method for fabricating piezoelectric/electrostrictive ceramic micro actuator using photolithography Download PDF

Info

Publication number
KR100303884B1
KR100303884B1 KR1019990027328A KR19990027328A KR100303884B1 KR 100303884 B1 KR100303884 B1 KR 100303884B1 KR 1019990027328 A KR1019990027328 A KR 1019990027328A KR 19990027328 A KR19990027328 A KR 19990027328A KR 100303884 B1 KR100303884 B1 KR 100303884B1
Authority
KR
South Korea
Prior art keywords
piezoelectric
ceramic
electric distortion
manufacturing
micro actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1019990027328A
Other languages
Korean (ko)
Other versions
KR20000047432A (en
Inventor
윤상경
박성준
정연경
Original Assignee
이형도
삼성전기주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이형도, 삼성전기주식회사 filed Critical 이형도
Priority to KR1019990027328A priority Critical patent/KR100303884B1/en
Publication of KR20000047432A publication Critical patent/KR20000047432A/en
Application granted granted Critical
Publication of KR100303884B1 publication Critical patent/KR100303884B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/082Shaping or machining of piezoelectric or electrostrictive bodies by etching, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/084Shaping or machining of piezoelectric or electrostrictive bodies by moulding or extrusion
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/093Forming inorganic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • H10N30/8554Lead-zirconium titanate [PZT] based
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Ceramic Engineering (AREA)
  • Micromachines (AREA)

Abstract

본 발명은 진동판을 제공하는 단계와; (진동판 위에 하부전극을 성형하는 단계와;) 진동판(또는 하부전극) 위에 포토레지스터를 도포하고 노광한 후 현상하여 미세패턴의 몰드를 형성하는 단계와; 100-500℃의 저온에서 비폭발성 산화-환원 연소반응에 의하여 제조되며 입자크기가 5㎛ 이하이고, 납(Pb), 티타늄(Ti)을 기본 구성원소로 하는 세라믹산화물분말과, 물 또는 유기용매를 베이스로 하여 제조한 상기 세라믹산화물분말과 동일 또는 유사성분의 세라믹졸용액을 혼합하여 세라믹페이스트를 제조하는 단계와; 상기 세라믹페이스트를 상기 몰드내부에 충진하여 압전/전왜막을 성형하는 단계와; 100-300℃에서 열처리함으로써 상기 몰드내부에 성형된 압전/전왜막을 소성하는 단계; 및 압전/전왜막위에 상부전극을 성형하는 단계를 포함하는 포토리소그라피법을 이용한 압전/전왜 세라믹 마이크로 액츄에이터의 제조방법에 관한 것으로, 미세패턴의 높은 높이/폭의 비(high aspect ratio)를 달성할 수 있고 하부구조와의 결합이 개선되며, 압전/전왜막을 몰드의 내부에 위치시킴으로써 외부로부터의 긁힘 등에 의해 압전/전왜막이 손상되는 것을 방지할 수 있는 등의 효과가 있다.The present invention comprises the steps of providing a diaphragm; (A step of forming a lower electrode on the vibration plate;) applying a photoresist on the vibration plate (or lower electrode), exposing and then developing to form a mold of a fine pattern; Prepared by non-explosive oxidation-reduction combustion reaction at a low temperature of 100-500 ℃, the particle size is 5㎛ or less, ceramic oxide powder with lead (Pb), titanium (Ti) as a basic element, water or organic solvent Preparing a ceramic paste by mixing a ceramic sol solution having the same or similar components as the ceramic oxide powder prepared as a base; Filling the ceramic paste into the mold to form a piezoelectric / distortion film; Firing the piezoelectric / electric distortion film formed in the mold by heat treatment at 100-300 ° C .; And a method of manufacturing a piezoelectric / electric distortion ceramic micro actuator using a photolithography method including forming an upper electrode on the piezoelectric / electric distortion film, to achieve a high aspect ratio of a fine pattern. It is possible to improve the coupling with the substructure and to prevent the piezoelectric / electric distortion film from being damaged by scratching from the outside by placing the piezoelectric / electric distortion film inside the mold.

Description

포토리소그라피법을 이용한 압전/전왜 세라믹 마이크로 액츄에이터의 제조방법{Method for fabricating piezoelectric/electrostrictive ceramic micro actuator using photolithography}Method for fabricating piezoelectric / electrostrictive ceramic micro actuator using photolithography

본 발명은 마이크로 액츄에이터의 제조방법에 관한 것으로, 보다 상세하게는 압전/전왜 세라믹페이스트를 사용하여 포토리소그라피법(Photolithography)에 의하여 마이크로 액츄에이터를 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing a micro actuator, and more particularly, to a method for manufacturing a micro actuator by photolithography using piezoelectric / electric warp ceramic paste.

일반적으로 마이크로 액츄에이터는 진동판과, 진동판의 상부에 형성된 하부전극과, 하부전극의 상부에 형성된 압전/전왜막과, 압전/전왜막의 상부에 형성된 상부전극으로 구성되며, 상부전극과 하부전극에 전원이 인가되면 그에 따라 전극사이에 놓인 압전/전왜막이 변형과 복원을 반복하면서 진동을 하게 된다.In general, the micro actuator is composed of a diaphragm, a lower electrode formed on the upper portion of the diaphragm, a piezoelectric / electrodistor film formed on the upper portion of the lower electrode, and an upper electrode formed on the piezoelectric / distortion film. When applied, the piezoelectric / electrodistor film placed between the electrodes vibrates while repeating deformation and restoration.

마이크로 액츄에이터에서 압전체로 사용되는 압전/전왜막을 제조하기 위하여 종래에는 고상법에 의하여 제조된 세라믹분말을 사용하여 왔다.In order to manufacture piezoelectric / electric warp films used as piezoelectric elements in micro actuators, ceramic powders manufactured by a solid phase method have been conventionally used.

산화물법이라고도 하는 고상법은 분말형태의 원료물질인 산화물 또는 용융염을 혼합하여 800-1200℃로 열처리한 후 분쇄하고 소결하여 세라믹분말을 제조하는 방법이다.The solid phase method, also called an oxide method, is a method of preparing a ceramic powder by mixing an oxide or molten salt, which is a raw material in powder form, and heat-processing at 800-1200 ° C, followed by grinding and sintering.

이와 같은 고상법에 의하여 제조되는 세라믹분말은 그 입자크기가 원료분말의 크기에 따라 달라지고 생성되는 분말의 입자크기가 0.2-2㎛로 비교적 크므로 0.1㎛ 이하의 미세한 입자를 얻기에는 부적절하며, 공정의 특성상 일반적으로 1000℃ 이상의 고온에서의 열처리가 필요한 문제점이 있다.The ceramic powder produced by the solid phase method is inappropriate to obtain fine particles of 0.1 μm or less because the particle size thereof varies depending on the size of the raw material powder and the particle size of the produced powder is relatively large, such as 0.2-2 μm. In general, there is a problem in that heat treatment is required at a high temperature of 1000 ° C. or higher.

세라믹분말을 이용하여 마이크로 액츄에이터를 제조함에 있어서 종래에는 진동판과 챔버의 하부구조위에 세라믹페이스트를 스크린 프린팅하여 미세패턴을 형성하는 방법을 주로 사용하여 왔다.In manufacturing a micro actuator using a ceramic powder, a method of forming a micro pattern by screen printing ceramic paste on the lower structure of a diaphragm and a chamber has been mainly used.

스크린 프린팅법은 세라믹페이스트를 제조하고 제조한 세라믹페이스트를 스크린을 이용하여 진동판에 인쇄한 후 500℃ 이상에서 탈바인더처리를 하고 1000℃ 이상에서 열처리하여 소성시킴으로써 소정의 두께를 가지는 압전/전왜막을 형성하는 방법이다.In the screen printing method, a ceramic paste is manufactured and the manufactured ceramic paste is printed on a diaphragm using a screen, followed by debindering at 500 ° C. or higher, followed by heat treatment at 1000 ° C. or higher to form a piezoelectric / electric distortion film having a predetermined thickness. That's how.

스크린 프린팅법을 이용하여 마이크로 액츄에이터를 제조하는 방법은 마이크로 액츄에이터의 집적도를 높일 수 있어 보편적으로 사용되고 있으나, 이 방법은 다음과 같은 문제점이 있다.The method of manufacturing a micro actuator using the screen printing method is commonly used to increase the degree of integration of the micro actuator, but this method has the following problems.

첫째, 인쇄되는 압전/전왜막의 두께를 얇게 만드는데 한계가 있다. 즉, 스크린 프린팅법에 의하여 제조할 수 있는 압전/전왜막의 두께는 5㎛가 한계이므로 막두께가 5㎛ 미만인 압전/전왜막을 제조하는 것이 곤란하다.First, there is a limit in making the thickness of the printed piezoelectric / electric distortion film thin. That is, since the thickness of the piezoelectric / electric distortion film which can be produced by the screen printing method is 5 µm, it is difficult to produce a piezoelectric / electric distortion film having a film thickness of less than 5 µm.

둘째, 사용되는 스크린의 유제막두께를 조절하거나 두 번 이상 반복하여 인쇄함으로써 두께가 두꺼운 압전/전왜막을 제조하는 것은 가능하지만, 프린팅이 반복됨에 따라 도 1에 도시한 바와 같이 세라믹페이스트(16)가 기존에 프린팅된 패턴의 옆면을 타고 흘러내리게 된다.Secondly, it is possible to produce a thick piezoelectric / electric distortion film by adjusting the emulsion film thickness of the screen to be used or printing it more than once, but as the printing is repeated, the ceramic paste 16 is shown as shown in FIG. It flows down the side of the previously printed pattern.

따라서 높은 높이/폭의 비(high aspect ratio)를 갖는 패턴을 얻기가 어렵고 압전/전왜막과 하부구조와의 정렬(align)이 어렵다.Therefore, it is difficult to obtain a pattern having a high aspect ratio, and it is difficult to align the piezoelectric / electrodistor film with the substructure.

셋째, 프린팅공정을 반복하는 경우 각 프린팅공정에 이어지는 열처리과정이 반복됨으로서 초기에 형성된 막의 열화가 발생할 가능성이 있다.Third, in the case of repeating the printing process, there is a possibility that deterioration of the film formed initially may occur because the heat treatment process subsequent to each printing process is repeated.

넷째, 스크린 프린팅법에 의하여 압전/전왜막을 성형하는 경우에는 미세패턴의 폭과 간격이 각각 30㎛ 이상으로 한정되므로 30㎛ 미만의 폭과 간격을 가지는 미세패턴을 형성하기 어렵다.Fourth, in the case of forming the piezoelectric / electric distortion film by the screen printing method, since the width and the spacing of the micropatterns are limited to 30 µm or more, it is difficult to form the micropatterns having the width and spacing of less than 30 µm.

다섯째, 스크린 프린팅의 결과가 스크린의 패턴뿐만 아니라 세라믹페이스트의 점도, 프린팅할 때의 압력, 속도 등의 조건에 의해서도 영향을 받게 된다.Fifth, the result of screen printing is influenced not only by the pattern of the screen but also by the conditions such as the viscosity of the ceramic paste, the pressure and the speed when printing.

상기의 문제점들을 해결하기 위한 본 발명은 저온에서의 단일공정에 의해서 원하는 두께를 가진 압전/전왜막을 얻을 수 있고, 두꺼운 막을 성형하는 경우에도 세라믹페이스트가 옆면으로 흘러 내리는 것을 방지할 수 있으며, 아울러 마이크로 액츄에이터의 성능에 중대한 영향을 미치는 상부전극의 두께도 조절이 가능한 마이크로 액츄에이터의 제조방법을 제공하는 것을 목적으로 한다.The present invention for solving the above problems can be obtained a piezoelectric / electrodistortion film having a desired thickness by a single process at a low temperature, it is possible to prevent the ceramic paste from flowing to the side even when forming a thick film, and micro An object of the present invention is to provide a method of manufacturing a micro actuator, in which the thickness of the upper electrode which has a significant influence on the performance of the actuator can be adjusted.

도 1은 종래의 스크린 프린팅을 이용하여 마이크로 액츄에이터를 제조한 경우 프린팅의 반복에 의하여 세라믹페이스트가 흘러내리는 현상을 도시한 개략도,1 is a schematic diagram illustrating a phenomenon in which a ceramic paste flows due to repetition of printing when a micro actuator is manufactured using conventional screen printing;

도 2는 금속을 진동판으로 사용한 경우 본 발명의 포토리소그라피법을 이용한 압전/전왜 세라믹 마이크로 액츄에이터의 제조공정을 도시한 공정도,2 is a process chart showing a manufacturing process of a piezoelectric / electric distortion ceramic micro actuator using the photolithography method of the present invention when a metal is used as the diaphragm;

도 3은 세라믹이나 유기화합물을 진동판으로 사용한 경우 본 발명의 포토리소그라피법을 이용한 압전/전왜 세라믹 마이크로 액츄에이터의 제조공정을 도시한 공정도.Figure 3 is a process diagram showing the manufacturing process of the piezoelectric / electrostrictive ceramic micro actuator using the photolithography method of the present invention when using a ceramic or an organic compound as a diaphragm.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

10 : 진동판 14 : 포토레지스터10: diaphragm 14: photoresist

16 : 압전/전왜물질 18 : 상부전극16: piezoelectric / electric distortion material 18: upper electrode

20 : 하부전극20: lower electrode

상기의 목적을 달성하기 위한 본 발명은 금속으로 이루어진 진동판을 제공하는 단계와; 상기 금속진동판위에 포토레지스터를 도포한 후 패터닝하여 미세패턴의 몰드를 형성하는 단계와; 100-500℃의 저온에서 비폭발성 산화-환원 연소반응에 의하여 제조되며 입자크기가 5㎛ 이하이고, 납(Pb), 티타늄(Ti)을 기본 구성원소로 하는 세라믹산화물분말과, 물 또는 유기용매를 베이스로 하여 제조한 상기 세라믹산화물분말과 동일 또는 유사성분의 세라믹졸용액을 혼합하여 세라믹페이스트를 제조하는 단계와; 상기 세라믹페이스트를 상기 몰드의 내부에 충진하여 압전/전왜막을 성형하는 단계와; 100-300℃에서 열처리함으로써 상기 몰드내부에 성형된 압전/전왜막을 소성하는 단계; 및 압전/전왜막위에 상부전극을 성형하는 단계를 포함하는 포토리소그라피법을 이용한 압전/전왜 세라믹 마이크로 액츄에이터의 제조방법에 그 특징이 있다.The present invention for achieving the above object comprises the steps of providing a diaphragm made of a metal; Applying a photoresist on the metal vibrating plate and patterning the same to form a mold having a fine pattern; Prepared by non-explosive oxidation-reduction combustion reaction at a low temperature of 100-500 ℃, the particle size is 5㎛ or less, ceramic oxide powder with lead (Pb), titanium (Ti) as a basic element, water or organic solvent Preparing a ceramic paste by mixing a ceramic sol solution having the same or similar components as the ceramic oxide powder prepared as a base; Filling the ceramic paste into the mold to form a piezoelectric / electric distortion film; Firing the piezoelectric / electric distortion film formed in the mold by heat treatment at 100-300 ° C .; And a method of manufacturing a piezoelectric / electric distortion ceramic micro actuator using a photolithography method including forming an upper electrode on the piezoelectric / electric distortion film.

또한 본 발명은 진동판을 제공하는 단계와; 진동판위에 하부전극을 성형하는 단계와; 하부전극위에 포토레지스터를 도포한 후 패터닝하여 미세패턴의 몰드를 형성하는 단계와; 100-500℃의 저온에서 비폭발성 산화-환원 연소반응에 의하여 제조되며 입자크기가 5㎛ 이하이고, 납(Pb), 티타늄(Ti)을 기본 구성원소로 하는 세라믹산화물분말과, 물 또는 유기용매를 베이스로 하여 제조한 상기 세라믹산화물분말과 동일 또는 유사성분의 세라믹졸용액을 혼합하여 세라믹페이스트를 제조하는 단계와; 상기 세라믹페이스트를 상기 몰드내부에 충진하여 압전/전왜막을 성형하는 단계와; 100-300℃에서 열처리함으로써 상기 몰드내부에 성형된 압전/전왜막을 소성하는 단계; 및 압전/전왜막위에 상부전극을 성형하는 단계를 포함하는 포토리소그라피법을 이용한 압전/전왜 세라믹 마이크로 액츄에이터의 제조방법에 그 특징이 있다.The present invention also provides a diaphragm; Forming a lower electrode on the diaphragm; Coating a photoresist on the lower electrode and patterning the photoresist to form a mold of a fine pattern; Prepared by non-explosive oxidation-reduction combustion reaction at a low temperature of 100-500 ℃, the particle size is 5㎛ or less, ceramic oxide powder with lead (Pb), titanium (Ti) as a basic element, water or organic solvent Preparing a ceramic paste by mixing a ceramic sol solution having the same or similar components as the ceramic oxide powder prepared as a base; Filling the ceramic paste into the mold to form a piezoelectric / distortion film; Firing the piezoelectric / electric distortion film formed in the mold by heat treatment at 100-300 ° C .; And a method of manufacturing a piezoelectric / electric distortion ceramic micro actuator using a photolithography method including forming an upper electrode on the piezoelectric / electric distortion film.

이하 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.

마이크로 액츄에이터를 제조하기 위한 진동판으로는 금속, 실리콘류의 세라믹 및 금속산화물계를 사용한다.As the diaphragm for manufacturing a micro actuator, a metal, a ceramic of silicon, and a metal oxide system are used.

금속을 진동판(10)으로 사용한 경우의 본 발명의 제조공정을 도 2에, 세라믹이나 유기화합물을 진동판(10)으로 사용한 경우의 본 발명의 제조공정을 도 3에 도시하였다.The manufacturing process of this invention at the time of using a metal as the diaphragm 10 is shown in FIG. 2, and the manufacturing process of this invention at the time of using a ceramic or organic compound as the diaphragm 10 is shown in FIG.

금속판으로는 종래에 사용되던 여러 가지 합금들을 사용할 수 있으며, 그 중에서 특히 스테인레스 스틸(SUS)이나 니켈(Ni)을 사용하는 것이 바람직하며, 금속판의 두께는 3-20㎛로 하는 것이 바람직하다.As the metal plate, various alloys conventionally used may be used. Among them, stainless steel (SUS) or nickel (Ni) is particularly preferable, and the metal plate is preferably 3-20 μm.

금속판을 진동판으로 사용하는 경우에는 금속이 전도성을 가져서 그 자체가 진동판과 하부전극의 기능을 동시에 할 수 있으므로 별도의 하부전극이 필요하지 않다.In the case of using the metal plate as the diaphragm, the metal has conductivity, so that the metal plate itself can simultaneously function as the diaphragm and the lower electrode, so that a separate lower electrode is not necessary.

실리콘류의 세라믹판으로는 실리콘(Si), 이산화규소(SiO2), 탄화규소(SiC), 질화규소(Si3N4) 등을 사용하는 것이 바람직하다. 또한 금속산화물계로는 유리계 또는 산화지르코늄(ZrO2)을 사용하는 것이 바람직하다.As the ceramic plate of silicon, it is preferable to use silicon (Si), silicon dioxide (SiO 2 ), silicon carbide (SiC), silicon nitride (Si 3 N 4 ), or the like. In addition, it is preferable to use glass or zirconium oxide (ZrO 2 ) as the metal oxide.

상기와 같은 세라믹판이나 금속산화물은 산화물분말이 함유된 슬러리를 그린시트형태로 만든 후 이를 소결하거나 슬러리상태에서 필요한 진동판형태를 만든 후에 소결하는 등의 종래의 방법으로 제조하여 사용한다.The ceramic plate or the metal oxide as described above may be prepared by using a conventional method such as sintering the slurry containing the oxide powder in the form of a green sheet and sintering it or making a sintering plate in the slurry state.

실리콘류의 세라믹이나 금속산화물을 진동판으로 사용하는 경우에는 그 자체가 전도성을 가지지 못하므로 별도의 하부전극(20)을 성형하여야 한다.In the case of using a silicon-like ceramic or metal oxide as the diaphragm, the lower electrode 20 must be formed because it does not have conductivity.

실리콘류의 세라믹이나 금속산화물을 진동판으로 사용하는 경우 하부전극으로는 백금, 은, 은/팔라듐(Pd)의 합금, 니켈(Ni), 구리(Cu) 등의 도전성 페이스트를 사용하며, 진동판위에 하부전극인 백금 등의 도전성 페이스트를 안착시킨 후 500-1400℃, 보다 바람직하게는 600-1200℃에서 열처리하여 진동판과 하부전극을 결합시킨다.In case of using a ceramic or metal oxide of silicon as the diaphragm, a conductive paste such as platinum, silver, silver / palladium (Pd), nickel (Ni) or copper (Cu) is used as the lower electrode. A conductive paste such as platinum, which is an electrode, is seated and then heat treated at 500-1400 ° C., more preferably 600-1200 ° C. to bond the diaphragm and the lower electrode.

수지류의 고분자성 유기화합물로는 폴리에스테르(Polyester)계, 폴리이미드(Polyimide)계 또는 테플론(Teflon)계 수지진동판을 주로 사용한다. 진동판의 두께는 7-50㎛로 하는 것이 바람직하며, 일반적으로 필름의 형태로 제조하여 사용한다.As the polymer organic compound of resins, polyester, polyimide, or Teflon resin vibrating plates are mainly used. The thickness of the diaphragm is preferably 7-50 μm, and is generally used in the form of a film.

수지 등의 고분자성 유기화합물을 진동판으로 사용하는 경우에도 그 자체가 전도성을 가지지 못하므로 별도의 하부전극을 성형하여야 한다.Even when a polymer organic compound such as a resin is used as the diaphragm, since it does not have conductivity itself, a separate lower electrode should be formed.

유기화합물을 진동판으로 사용하는 경우 하부전극으로는 은, 알루미늄, 금, 백금 등을 사용한다. 은을 사용하는 경우에는 주로 상업적으로 입수가능한 저온처리용 은페이스트를 사용하여 진동판위에 스크린 프린팅, 스텐실 프린팅 등의 프린팅법으로 성형하며, 알루미늄, 금, 백금을 사용하는 경우에는 스퍼터링, 진공증착 또는 증착에 의하여 성형한다.When the organic compound is used as the diaphragm, lower electrodes include silver, aluminum, gold, platinum, and the like. In case of using silver, it is mainly formed by printing method such as screen printing and stencil printing on the vibrating plate using commercially available low temperature treatment silver paste. In case of using aluminum, gold, and platinum, sputtering, vacuum deposition or deposition Mold by

유기화합물진동판의 상부에 하부전극을 안착시킨 후 100-300℃에서 열처리하여 진동판과 하부전극을 결합시킨다.The lower electrode is placed on top of the organic compound vibrating plate and heat treated at 100-300 ° C. to combine the diaphragm and the lower electrode.

상기의 과정을 거친 진동판위에 액상포토레지스터(Photoresister)나 드라이포토레지스터(Dry Photoresister)(14)를 부착한다. 이때 부착하는 포토레지스터의 두께는 1-200㎛의 범위내에서 필요한 두께만큼 조절할 수 있다.A liquid photoresist or dry photoresister 14 is attached to the vibrating plate through the above process. At this time, the thickness of the photoresist to be attached can be adjusted by the required thickness within the range of 1-200㎛.

부착한 포토레지스터는 원하는 패턴으로 패터닝하여 미세패턴의 몰드를 성형한다.The attached photoresist is patterned into a desired pattern to form a mold of a fine pattern.

포토레지스터는 원하는 패턴의 마스크로 마스킹한 후 정렬하여 노광하여 패터닝한다. 노광시에는 일정한 노출에너지가 필요하며, 노출에너지는 (조도×시간)으로 계산된다.The photoresist is masked with a mask of a desired pattern and then aligned and exposed to pattern. In exposure, a constant exposure energy is required, and the exposure energy is calculated as (illuminance x time).

노광 후에는 노광된 포토레지스터를 현상하며, 사용된 포토레지스터의 종류에 따라 사용되는 현상액의 종류가 달라진다.After exposure, the exposed photoresist is developed, and the type of developer used varies depending on the type of photoresist used.

양성포토레지스터를 사용하는 경우에는 현상액으로 수산화나트륨(NaOH), 수산화칼륨(KOH), 유기염기들(Organic bases)을 사용하고, 세척액으로는 물을 사용한다.In the case of using a positive photoresist, sodium hydroxide (NaOH), potassium hydroxide (KOH) and organic bases are used as a developing solution, and water is used as a washing solution.

반면 음성포토레지스터를 사용하는 경우에는 현상액으로 크실렌 스토다드용매(xylene Stoddard's solvent)를 사용하고, 세척액으로는 n-부틸아세테이트(n-buthyl acetate)를 사용한다.On the other hand, in the case of using a negative photoresist, xylene Stoddard's solvent is used as a developing solution, and n-butyl acetate is used as a washing solution.

노광된 포토레지스터를 현상한 후에는 불필요한 포토레지스터패턴을 제거하여 미세패턴의 몰드를 성형한다.After developing the exposed photoresist, an unnecessary photoresist pattern is removed to mold a fine pattern mold.

패터닝된 몰드는 사용되는 세라믹페이스트가 몰드로 사용된 포토레지스터와 서로 반응하는 경우에는 100-300℃에서의 열처리로 경화시켜 사용하며, 서로 반응하지 않는 물질인 경우에는 열처리없이 그대로 사용한다.The patterned mold is cured by heat treatment at 100-300 ° C. when the ceramic paste reacts with the photoresist used as the mold, and is used as it is without heat treatment when the material does not react with each other.

상기의 과정을 거친 몰드에 압전/전왜물질(16)을 원하는 두께만큼 충진한다.The piezoelectric / electric warp material 16 is filled in the mold having the above thickness to a desired thickness.

압전/전왜물질로는 세라믹산화물분말과 이 세라믹산화물분말과 동일 또는 유사성분의 세라믹졸용액을 혼합하여 제조한 세라믹페이스트를 사용한다.As piezoelectric / electric warp material, ceramic paste prepared by mixing ceramic oxide powder and ceramic sol solution of the same or similar components as the ceramic oxide powder is used.

본 발명에서 압전/전왜물질의 원료로 사용되는 세라믹산화물분말은 세라믹구성성분원료를 용매 또는 분산매에 충분히 용해 또는 균일하게 분산시켜 세라믹구성원소를 포함하는 용액 또는 분산혼합물을 제조하는 단계, 상기 세라믹구성성분이 용해 또는 분산된 용액 또는 분산혼합물에 상기 세라믹구성원소의 음이온과 산화-환원 연소반응을 일으키는데 필요한 양 또는 그 이상의 구연산을 첨가하여 혼합액을 제조하는 단계 및 상기 혼합액을 100-500℃에서 열처리하는 단계를 포함하여 제조되며, 700-900℃에서 추가 열처리하여 결정성을 증가시키는 단계를 추가로 포함할 수도 있다.In the present invention, the ceramic oxide powder used as a raw material of the piezoelectric / electric warp material is prepared by dissolving or uniformly dispersing the ceramic component material in a solvent or a dispersion medium to prepare a solution or dispersion mixture containing the ceramic component. Preparing a mixed solution by adding citric acid or an amount or more necessary to cause an oxidation-reduction combustion reaction with the anion of the ceramic component to a solution or dispersion mixture in which the components are dissolved or dispersed, and heat-treating the mixed solution at 100-500 ° C. It is prepared, including the step, may further comprise the step of further heat treatment at 700-900 ℃ to increase the crystallinity.

세라믹구성성분을 포함하는 원료로는 세라믹구성원소의 산화물, 탄산화물 또는 질산화물 등의 세라믹구성원소와 유기물 또는 무기물과의 염, 또는 세라믹구성원소의 착체중 선택하여 사용한다.The raw material containing the ceramic component is selected from a ceramic component such as an oxide, carbonate or nitrate of the ceramic component, a salt of an organic or inorganic substance, or a complex of ceramic components.

상기 세라믹구성원소로는 납(Pb), 티타늄(Ti)을 기본구성원소로 하는 압전/전왜 세라믹원소를 사용하는 것이 바람직하며, 특히 상기 세라믹구성원소는 납(Pb), 지르코늄(Zr), 티타늄(Ti) 또는 납(Pb), 마그네슘(Mg), 니오브(Nb)를 포함하는 성분으로 된 것을 사용하는 것이 바람직하다.As the ceramic component, it is preferable to use a piezoelectric / electrically distorted ceramic element having lead (Pb) and titanium (Ti) as a basic component, and in particular, the ceramic component may include lead (Pb), zirconium (Zr), or titanium (Ti). ) Or a component composed of lead (Pb), magnesium (Mg) and niobium (Nb).

세라믹구성성분원료를 용해 또는 분산시키기 위한 용매 또는 분산매로는 물 또는 유기용매중 세라믹구성성분을 포함하는 원료를 녹이거나 분산할 수 있는 것중 하나 또는 그 이상을 선택하여 사용한다. 유기용매중에서는 디메틸포름아미드(dimethyl formamide), 메톡시에탄올(methoxyethanol), 아세트산, 알콜류 등을 주로 사용한다.As a solvent or dispersion medium for dissolving or dispersing the ceramic component raw material, one or more selected from among those capable of dissolving or dispersing the raw material containing the ceramic component in water or an organic solvent is used. Among the organic solvents, dimethyl formamide, methoxyethanol, acetic acid and alcohols are mainly used.

연소조제로는 연소반응을 일으킬 수 있는 유기화합물인 구연산(Citric acid)을 사용한다. 종래의 방법에서 구연산은 연소조제가 아닌 착물형성제(complexing agent)로 반응의 균질성을 부여하기 위하여 사용되어 왔고 페치니방법(Pechini process)과 같은 공정에서 응용되어 왔으며, 구연산의 가연성과 착물형성효과를 이용함으로써 속도가 조절된 연소반응을 유발할 수 있다.As a combustion aid, citric acid, an organic compound that can cause a combustion reaction, is used. In the conventional method, citric acid has been used to impart homogeneity of the reaction as a complexing agent, not as a combustion aid, and has been applied in processes such as the Pechini process. By using can cause a controlled combustion reaction rate.

세라믹구성성분이 용해 또는 분산된 용액 또는 분산혼합물에 구연산을 가하여 혼합하여 혼합액을 제조한다. 첨가하는 구연산의 양은 상기 세라믹구성원소의 음이온과 산화-환원 연소반응을 일으키는데 필요한 양 또는 그 이상을 첨가한다. 첨가하는 구연산의 양에 따라 반응의 진행속도를 조절할 수 있다.Citric acid is added to a solution or dispersion mixture in which ceramic components are dissolved or dispersed to prepare a mixed solution. The amount of citric acid to be added is added to the amount or more necessary to cause an oxidation-reduction combustion reaction with the anion of the ceramic element. The rate of progress of the reaction can be controlled depending on the amount of citric acid added.

구연산을 가하여 혼합한 혼합액을 100-500℃에서 열처리한다. 열처리의 온도가 높아질수록 세라믹상의 결정성은 증가되지만, 열처리온도가 100℃이상만 되면 구연산의 연소반응은 충분히 개시될 수 있고, 500℃이상에서 열처리하여도 반응이 일어날 수 있지만, 그 이상의 온도에서 열처리하는 것은 종래의 방법과 비교할 때 의미가 없다.The mixed solution mixed with citric acid is heat-treated at 100-500 ° C. As the temperature of the heat treatment increases, the crystallinity of the ceramic phase increases, but when the heat treatment temperature is 100 ° C. or higher, the combustion reaction of citric acid can be sufficiently initiated. The reaction may occur even when the heat treatment is performed above 500 ° C., but the heat treatment is performed at a higher temperature. Is meaningless compared to conventional methods.

보다 바람직하게는 150-300℃에서 열처리하는데, 이 온도범위는 상당히 저온에서의 열처리이면서도 세라믹상의 결정성을 적절하게 확보할 수 있다.More preferably, the heat treatment is carried out at 150-300 ° C., and the temperature range can adequately secure the crystallinity of the ceramic phase even at a very low temperature.

상기 연소반응과정에서 구연산은 제거되고, 이때 발생되는 구연산의 반응열에 의해 세라믹산화물이 비산없이 형성된다.Citric acid is removed during the combustion reaction, and ceramic oxide is formed without scattering by the heat of reaction of citric acid generated at this time.

이러한 반응에서 세라믹구성원소외의 성분들은 충분한 시간동안의 연소반응에 의하여 제거되므로 불순물이 잔류하지 않는 순수한 형태의 세라믹산화물분말이 만들어진다.In this reaction, components other than the ceramic component are removed by a combustion reaction for a sufficient time, thereby forming a ceramic oxide powder in a pure form in which impurities do not remain.

상기의 방법으로 제조된 세라믹산화물분말은 입자의 크기가 5㎛ 이하, 특히 0.5㎛ 이하인 극히 미세하며 입경분포가 균일한 분말로서 기본입자(primary particle)가 독립체 또는 약한 응집체(soft aggregate)의 형태로 존재하며, 완전히 연소된 세라믹상이어서 추가열처리에 의해서도 중량이 감소하지 않는다.The ceramic oxide powder prepared by the above method is an extremely fine and uniform particle size distribution having a particle size of 5 μm or less, especially 0.5 μm or less, and the primary particles are in the form of an individual or a soft aggregate. It is a fully burned ceramic phase, so the weight is not reduced by further heat treatment.

또한 표면의 반응성이 우수하여 저온에서의 열처리만으로 성형이 가능하므로진동판의 자유도가 높고 진동판에 인쇄하거나 코팅하는 방법들을 다양하게 적용할 수 있다.In addition, since the surface is excellent in reactivity and can be formed only by heat treatment at low temperature, the degree of freedom of the vibration plate is high and various methods of printing or coating the vibration plate can be applied.

제조된 세라믹산화물분말의 결정성을 증가시키기 위해서는 제조된 세라믹산화물분말을 700-900℃에서 추가로 열처리하는 단계를 포함할 수도 있다.In order to increase the crystallinity of the ceramic oxide powder prepared, the ceramic oxide powder prepared may be further heat treated at 700-900 ° C.

상기의 방법에 의하여 제조된 세라믹분말에 세라믹분말과 친화성을 가지는 동일 또는 유사성분의 세라믹졸용액을 혼합하여 세라믹페이스트를 제조한다.Ceramic paste prepared by mixing the ceramic sol solution of the same or similar component having affinity with the ceramic powder to the ceramic powder prepared by the above method.

이때 세라믹산화물로는 PZT, PMN 또는 그들의 고용체(PZT-PMN) 복합산화물을 사용하는 것이 바람직하다.At this time, it is preferable to use PZT, PMN or their solid solution (PZT-PMN) composite oxide as the ceramic oxide.

또한 상기 세라믹산화물은 니켈(Ni), 란타늄(La), 바륨(Ba), 아연(Zn), 리튬(Li), 코발트(Co), 카드뮴(Cd), 세륨(Ce), 크롬(Cr), 안티몬(Sb), 철(Fe), 이트륨(Y), 탄탈(Ta), 텅스텐(W), 스트론튬(Sr), 칼슘(Ca), 비스무스(Bi), 주석(Sn), 망간(Mn) 중 하나 또는 그 이상의 원소를 추가로 포함할 수 있다.In addition, the ceramic oxide is nickel (Ni), lanthanum (La), barium (Ba), zinc (Zn), lithium (Li), cobalt (Co), cadmium (Cd), cerium (Ce), chromium (Cr), Antimony (Sb), iron (Fe), yttrium (Y), tantalum (Ta), tungsten (W), strontium (Sr), calcium (Ca), bismuth (Bi), tin (Sn), manganese (Mn) It may further comprise one or more elements.

세라믹졸용액은 물 또는 유기용매를 베이스로 하고 세라믹구성원소를 용해시켜 제조한다. 베이스가 되는 유기용매는 여러 가지를 사용할 수 있으나, 주로 아세트산, 디메틸포름아미드, 메톡시에탄올, 알콜류 중 선택하여 사용하는 것이 바람직하다.Ceramic sol solutions are prepared by dissolving ceramic components based on water or organic solvents. Although various organic solvents can be used as the base, it is preferable to use mainly selected from acetic acid, dimethylformamide, methoxyethanol, and alcohols.

세라믹졸용액의 제조시 사용하는 세라믹구성원소는 납(Pb), 지르코늄(Zr), 티타늄(Ti)을 포함하는 성분을 사용하는 것이 바람직하며, 사용하는 세라믹졸용액의 농도는 0.1-5M로 하는 것이 바람직하다.The ceramic component used in the manufacture of the ceramic sol solution is preferably a component containing lead (Pb), zirconium (Zr), titanium (Ti), the concentration of the ceramic sol solution to be used is 0.1-5M It is preferable.

세라믹산화물분말과 세라믹졸용액을 혼합할 때 세라믹졸용액의 함량은 세라믹산화물분말에 대해 10-200중량부로 하는 것이 바람직하다. 세라믹졸용액의 함량이 200중량부 이상인 경우에는 세라믹산화물분말이 지나치게 희석되어 혼합체의 점도가 낮고, 10중량부 미만인 경우에는 세라믹산화물분말의 양이 많아 점도가 지나치게 높아지기 때문이다.When the ceramic oxide powder and the ceramic sol solution are mixed, the content of the ceramic sol solution is preferably 10 to 200 parts by weight based on the ceramic oxide powder. This is because when the content of the ceramic sol solution is 200 parts by weight or more, the ceramic oxide powder is diluted too much and the viscosity of the mixture is low. When the content of the ceramic sol solution is less than 10 parts by weight, the amount of the ceramic oxide powder is too high and the viscosity becomes too high.

세라믹산화물분말과 세라믹졸용액 두 시스템을 혼합하면 액상의 세라믹졸용액이 고상인 세라믹산화물분말의 표면을 균일하게 코팅하면서 세라믹산화물분말입자를 연결하여 분말사이의 공극을 효과적으로 채우게 된다.When the ceramic oxide powder and the ceramic sol solution are mixed, the liquid ceramic sol solution uniformly coats the surface of the solid ceramic oxide powder and connects the ceramic oxide powder particles to effectively fill the pores between the powders.

이렇게 형성된 분말-졸 혼합체에서 세라믹고유의 특성을 가지는 세라믹산화물분말은 이와 동일 또는 유사한 성분의 세라믹졸용액에 둘러싸여 적당한 유동성을 가지게 되며, 세라믹졸이 세라믹산화물분말의 표면에서 반응매체로 작용하여 분말표면의 반응성이 향상된다.In the powder-sol mixture thus formed, the ceramic oxide powder having the characteristics of ceramics is surrounded by the ceramic sol solution of the same or similar component and has a proper fluidity. The ceramic sol acts as a reaction medium on the surface of the ceramic oxide powder and thus the powder surface. The reactivity of is improved.

또한 졸에 포함되어 있는 유기물성분은 향후 이 혼합체가 별도의 유기물과 접촉하게 될 때, 접촉계면의 안정성을 확보할 수 있게 해주어 분산성과 균질성을 부여하게 된다.In addition, the organic component contained in the sol, in the future when the mixture is in contact with a separate organic material, it is possible to secure the stability of the contact interface to impart dispersibility and homogeneity.

이러한 시스템은 낮은 온도에서 졸이 열분해되어 세라믹산화물분말과 동일 또는 유사한 조성으로 변환되기 때문에 저온에서도 입자간의 연결성이 향상된 세라믹시스템을 얻을 수 있게 된다.In such a system, since the sol is thermally decomposed at a low temperature and converted into the same or similar composition as the ceramic oxide powder, a ceramic system with improved inter-particle connectivity can be obtained even at low temperatures.

세라믹산화물분말과 세라믹졸용액을 혼합한 혼합체의 안정성과 성형에 필요한 유동성을 확보하기 위하여 물성조절용 유기용매를 첨가할 수도 있다. 물성조절용 유기용매로는 여러 가지를 사용할 수 있으나, 어느 정도의 점도를 가지면서 상온에서의 증기압이 낮은 글리콜(glycol)류나 알콜류를 기본으로 사용하는 것이 바람직하다.In order to ensure the stability of the mixture of the ceramic oxide powder and the ceramic sol solution and the fluidity required for molding, an organic solvent for controlling properties may be added. Various physical solvents may be used as the organic solvent for controlling physical properties, but it is preferable to use glycols or alcohols having a certain viscosity and low vapor pressure at room temperature.

세라믹산화물분말과 세라믹졸용액의 혼합체에 물성조절용 유기용매를 첨가하는 경우 물성조절용 유기용매의 첨가량은 세라믹산화물분말에 대해 1-100중량부로 하는 것이 바람직하다. 이는 물성조절용 유기용매의 첨가량이 1중량부 미만이면 물성조절용 유기용매를 첨가한 효과가 없고 첨가량이 100중량부를 넘으면 혼합체가 점도를 유지하지 못하고 지나치게 희석되어 성형시 성형성이 나빠지기 때문이다.When adding an organic solvent for controlling physical properties to the mixture of ceramic oxide powder and ceramic sol solution, the amount of the organic solvent for controlling physical properties is preferably 1-100 parts by weight based on the ceramic oxide powder. This is because if the amount of the organic solvent for controlling physical properties is less than 1 part by weight, the effect of adding the organic solvent for controlling physical properties is not effective, and if the amount is more than 100 parts by weight, the mixture does not maintain viscosity and is too diluted to deteriorate moldability during molding.

물성조절용 유기용매의 첨가량은 세라믹산화물분말에 대해 10-40중량부로 하는 것이 특히 바람직한데, 이 첨가량의 범위에서는 혼합체의 점도를 적절하게 유지하면서 물성조절용 유기용매를 첨가한 효과를 낼 수 있다.The addition amount of the organic solvent for controlling the physical properties is particularly preferably 10 to 40 parts by weight based on the ceramic oxide powder. In this range, the organic solvent for controlling the physical properties can be added while maintaining the viscosity of the mixture as appropriate.

또한 세라믹산화물분말과 세라믹졸용액의 혼합체에 물성조절용 용매를 첨가한 혼합체의 분산성과 균질성을 개선시키기 위하여 소량의 유기물을 첨가할 수도 있다. 이때 첨가하는 유기물은 긴사슬 알콜류 또는 극성유기용매를 사용하는 것이 바람직하다.In addition, a small amount of organic matter may be added to the mixture of the ceramic oxide powder and the ceramic sol solution in order to improve the dispersibility and homogeneity of the mixture in which the solvent for controlling physical properties is added. At this time, it is preferable to use long-chain alcohols or polar organic solvents to add.

긴사슬 알콜류중에서는 펜타놀(Pentanol)이나 헥사놀(Hexanol)을 사용하는 것이 바람직하며, 극성유기용매로는 아세틸아세톤 또는 메톡시에탄올을 사용하는 것이 바람직하다.Among the long chain alcohols, it is preferable to use pentanol or hexanol, and it is preferable to use acetylacetone or methoxyethanol as the polar organic solvent.

유기물의 첨가량은 세라믹산화물분말에 대해 1-100중량부로 하는 것이 바람직하다. 이는 유기물의 첨가량이 1중량부 미만이면 유기물을 첨가한 효과가 없고 첨가량이 100중량부를 넘으면 혼합체가 점도를 유지하지 못하고 지나치게 희석되어성형성이 나빠지기 때문이다.It is preferable that the addition amount of an organic substance shall be 1-100 weight part with respect to a ceramic oxide powder. This is because if the added amount of the organic substance is less than 1 part by weight, there is no effect of adding the organic substance. If the added amount is more than 100 parts by weight, the mixture does not maintain the viscosity and is too diluted to deteriorate the forming properties.

유기물의 첨가량은 세라믹산화물분말에 대해 10-40중량부로 하는 것이 특히 바람직한데, 이 첨가량의 범위에서는 혼합체의 점도를 적절하게 유지하면서 유기물첨가의 효과를 낼 수 있다.The addition amount of the organic material is particularly preferably 10 to 40 parts by weight based on the ceramic oxide powder. In this range, the addition of the organic material can be effected while maintaining the viscosity of the mixture as appropriate.

상기와 같은 방법에 의하여 제조된 세라믹페이스트를 미세패턴이 형성된 몰드에 충진한 후 100-300℃에서 열처리하여 압전/전왜막을 형성한다.The ceramic paste prepared by the above method is filled in a mold having a fine pattern, and then heat-treated at 100-300 ° C. to form a piezoelectric / electric distortion film.

이러한 열처리에 의해 용매가 제거되고 세라믹졸이 산화물입자의 표면에서 반응매체로 작용하여 상기 세라믹산화물입자간의 결합이 유도된다.The solvent is removed by the heat treatment, and the ceramic sol acts as a reaction medium on the surface of the oxide particles, thereby inducing bonding between the ceramic oxide particles.

100-300℃의 저온에서의 열처리만으로도 반응이 충분한 것은 세라믹산화물분말표면의 물이 세라믹졸용액을 가수분해하고 가수분해에 의하여 유리된 세라믹졸용액의 세라믹구성원료가 세라믹산화물분말과 결합하게 되는 서로간의 반응에 의해 소성과 동일한 반응이 이루어질 수 있기 때문이다. 또한 열처리과정에서 첨가된 유기물도 제거된다.Heat treatment at a low temperature of 100-300 ° C. is sufficient for the reaction that water on the surface of the ceramic oxide powder hydrolyzes the ceramic sol solution and that the ceramic constituents of the ceramic sol solution liberated by hydrolysis are combined with the ceramic oxide powder. This is because the same reaction as firing can be achieved by the reaction of the liver. In addition, organic matter added during the heat treatment is removed.

300℃ 이상에서의 열처리도 가능하지만, 몰드로 사용한 포토레지스터가 손상될 수 있으므로 바람직하지 않다.Although heat treatment at 300 DEG C or higher is possible, it is not preferable because the photoresist used in the mold may be damaged.

열처리에 의하여 소성된 압전/전왜막의 상부에 상부전극(18)을 안착시킨다.The upper electrode 18 is seated on the piezoelectric / distortion film fired by the heat treatment.

상부전극으로는 모두 은, 알루미늄, 금, 백금 등을 사용한다. 상부전극으로 은을 사용하는 경우에는 주로 상업적으로 입수가능한 저온처리용 은페이스트를 사용하여 진동판위에 프린팅법이나 블레이딩법으로 성형하며, 상부전극으로 알루미늄, 금, 백금을 사용하는 경우에는 스퍼터링, 진공증착에 의하여 전극을 형성한다.As the upper electrode, silver, aluminum, gold, platinum and the like are all used. When silver is used as the upper electrode, commercially available low temperature treatment silver paste is formed on the vibrating plate by printing or blading. When using aluminum, gold, or platinum as the upper electrode, sputtering and vacuum deposition are used. Thereby forming an electrode.

압전/전왜막의 상부에 상부전극을 안착시킨 후 100-300℃에서 열처리하여 압전/전왜막과 상부전극을 결합시킨다. 이 경우에도 300℃ 이상에서의 열처리가 가능하지만 몰드로 사용한 포토레지스터가 손상될 수 있으므로 바람직하지 않다.The upper electrode is placed on the piezoelectric / distortion film, and then heat-treated at 100-300 ° C. to bond the piezoelectric / electric distortion film and the upper electrode. Even in this case, heat treatment at 300 ° C. or higher is possible, but the photoresist used in the mold may be damaged, which is not preferable.

상부전극으로 알루미늄이나 금을 사용하는 경우에는 추가열처리없이 바로 사용할 수도 있다.If aluminum or gold is used as the upper electrode, it can be used immediately without further heat treatment.

몰드로 부착한 포토레지스터의 두께를 1-200㎛의 범위에서 미세조절이 가능하므로 성형되는 압전/전왜막과 상부전극의 두께를 자유롭게 조절할 수 있다.Since the thickness of the photoresist attached to the mold can be finely adjusted in the range of 1-200 μm, the thickness of the formed piezoelectric / electrodistor film and the upper electrode can be freely adjusted.

이때 성형되는 압전/전왜막의 두께는 1-100㎛가 바람직하며, 5-30㎛가 특히 바람직하다.At this time, the thickness of the piezoelectric / electric distortion film to be formed is preferably 1-100 μm, particularly preferably 5-30 μm.

상부전극을 형성한 후 포토레지스터는 필요에 따라 제거하거나 그냥 둔다. 포토레지스터층을 제거하는 경우에는 포토레지스터층을 500℃이상에서 열처리하거나 용매로 녹여내거나 용매로 녹인 후 초음파처리하여 제거한다. 포토레지스터층을 녹이는 용매로는 일반적으로 아세톤류, 알콜류, 희석한 염산이나 황산 등을 사용한다.After forming the upper electrode, the photoresist is removed or left as needed. In the case of removing the photoresist layer, the photoresist layer is heat-treated at 500 ° C. or higher, or dissolved in a solvent or dissolved in a solvent, and then removed by ultrasonication. As a solvent for dissolving the photoresist layer, acetones, alcohols, diluted hydrochloric acid or sulfuric acid are generally used.

종래의 경우에는 고온에서 열처리를 하여야 하므로 포토레지스터가 연소되어 제거될 수밖에 없었지만, 본 발명에서는 선택에 의하여 제거하거나 잔존시킬 수 있다.In the conventional case, since the heat treatment must be performed at a high temperature, the photoresist was inevitably removed by burning, but in the present invention, the photoresist can be selectively removed or left.

특히 기판으로 금속을 사용한 경우, 고온에서 열처리를 하면 휘거나 변질될 가능성이 있으므로, 300℃ 미만의 열처리로 포토레지스터를 잔존시키는 것이 바람직하다.In particular, when a metal is used as the substrate, it may be bent or deteriorated when the heat treatment is performed at a high temperature. Therefore, it is preferable to leave the photoresist by heat treatment below 300 ° C.

이하 실시예를 통하여 본 발명을 보다 상세하게 설명한다. 그러나 다음의 실시예들은 본 발명을 예시하는 것으로 본 발명의 범위를 한정하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are illustrative of the invention and do not limit the scope of the invention.

(실시예 1)(Example 1)

평균입경 50㎚인 미세 PZT 분말 5g을 에탄올 35㎖와 혼합하여 자동유발에서 40분간 갈아주었다. 여기에 2-메톡시에탄올 0.8g, 아세틸아세톤 0.2g와 PZT졸 3.0g를 넣고 1시간동안 혼합하여 세라믹페이스트를 제조하였다.5 g of fine PZT powder having an average particle diameter of 50 nm was mixed with 35 ml of ethanol and ground for 40 minutes by auto induction. 0.8 g of 2-methoxyethanol, 0.2 g of acetylacetone and 3.0 g of PZT sol were added thereto, and mixed for 1 hour to prepare a ceramic paste.

제조된 세라믹페이스트를 미세패턴된 감광성필름이 부착된 니켈진동판에 충진하고 실온에서 5시간동안 건조한 후 130℃에서 2시간동안 열처리하여 압전/전왜막을 형성하였다.The prepared ceramic paste was filled in a nickel vibrating plate to which a micropatterned photosensitive film was attached, dried at room temperature for 5 hours, and then heat-treated at 130 ° C. for 2 hours to form a piezoelectric / electric distortion film.

형성된 압전/전왜막의 상부에 은페이스트를 블레이딩법으로 성형한 후 200℃에서 열처리하여 마이크로 액츄에이터를 제조하였다.The silver paste was formed on the upper part of the formed piezoelectric / distortion film by a blading method and then heat-treated at 200 ° C. to prepare a micro actuator.

(실시예 2)(Example 2)

입경 50㎚인 미세 PZT/PMN분말 20g을 에탄올 50㎖와 함께 자동유발에서 40분간 갈아주었다. 여기에 1-펜탄올 0.6g, 트리-메틸렌글리콜 1.4g과 PZT졸 6g을 넣고 1시간동안 혼합하여 세라믹페이스트를 제조하였다.20 g of fine PZT / PMN powder having a particle diameter of 50 nm was ground for 40 minutes with 50 ml of ethanol. 0.6 g of 1-pentanol, 1.4 g of tri-methylene glycol and 6 g of PZT sol were added thereto, and mixed for 1 hour to prepare a ceramic paste.

제조한 세라믹페이스트를 미세패턴된 감광성필름이 부착된 SUS진동판에 충진하고 건조한 후 130℃에서 2시간, 300℃에서 1시간동안 열처리하여 압전/전왜막을 형성하였다.The prepared ceramic paste was filled in a SUS vibrating plate to which a micropatterned photosensitive film was attached and dried, and then heat-treated at 130 ° C. for 2 hours and at 300 ° C. for 1 hour to form a piezoelectric / electric distortion film.

형성된 압전/전왜막의 상부에 백금을 스퍼터링하고 150℃에서 열처리하여 마이크로 액츄에이터를 제조하였다.Platinum was sputtered on top of the formed piezoelectric / distortion film and heat treated at 150 ° C. to prepare a micro actuator.

(실시예 3)(Example 3)

입경 0.5㎛인 미세 PMN/PZT분말 5g에 1-펜타놀 0.3g, 트리-메틸렌글리콜 0.6g, PZT졸 1.5g을 넣고 자동유발에서 1시간 30분동안 갈아주어 세라믹페이스트를 제조하였다.0.3 g of 1-pentanol, 0.6 g of tri-methylene glycol, and 1.5 g of PZT sol were added to 5 g of fine PMN / PZT powder having a particle diameter of 0.5 μm, and the ceramic paste was prepared by grinding for 1 hour and 30 minutes by automatic induction.

제조한 세라믹페이스트를 미세패턴된 감광성필름이 부착된 폴리이미드계 수지진동판의 하부전극위에 충진하고 실온에서 1시간동안 건조한 후 100℃에서 2시간, 150℃에서 3시간 동안 열처리하여 압전/전왜막을 형성하였다.The prepared ceramic paste was filled on the lower electrode of the polyimide resin vibrating plate to which the micropatterned photosensitive film was attached, dried at room temperature for 1 hour, and then heat-treated at 100 ° C. for 2 hours and at 150 ° C. to form a piezoelectric / electrodistor film. It was.

형성된 압전/전왜막의 상부에 알루미늄을 진공증착하여 마이크로 액츄에이터를 제조하였다.Aluminum was vacuum-deposited on top of the formed piezoelectric / distortion film to prepare a micro actuator.

(실시예 4)(Example 4)

PZT/PMN분말 5g을 자동유발에서 30분간 갈아주고, 여기에 PZT졸 2g, 트리메틸렌글리콜 0.7g, 2-메톡시에탄올 0.5g을 가하고 자동유발에서 1시간동안 혼합하였다.5 g of PZT / PMN powder was ground for 30 minutes in an automatic induction, and 2 g of PZT sol, 0.7 g of trimethylene glycol, and 0.5 g of 2-methoxyethanol were added thereto and mixed for 1 hour in the automatic induction.

제조한 세라믹페이스트를 알루미나재질의 롤이 장착된 3-롤 밀(3-roll mill)에 통과시켜 균질화하고, 미세패턴된 감광성필름 몰드가 성형된 SUS기판에 충진하고 상온에서 평탄화(leveling)하였다. 평탄화가 완료된 세라믹후막을 건조하고, 250℃에서 1시간 동안 열처리하였다.The prepared ceramic paste was homogenized by passing through a 3-roll mill equipped with an alumina roll, and the micropatterned photosensitive film mold was filled into a molded SUS substrate and leveled at room temperature. The ceramic thick film of which the planarization was completed was dried and heat-treated at 250 ° C. for 1 hour.

상부전극으로 금을 진공증착하여 마이크로 액츄에이터를 제조하였다.Gold was vacuum deposited on the upper electrode to prepare a micro actuator.

(실시예 5)(Example 5)

PZT/PMN분말 5g에 트리메틸렌글리콜 0.7g, 1-펜타놀 0.5g을 가하고 자동유발에서 5시간동안 혼합하였다. 여기에 PZT졸 2g을 가하여 추가로 30분간 교반하였다.0.7 g of trimethylene glycol and 0.5 g of 1-pentanol were added to 5 g of PZT / PMN powder, and the mixture was mixed for 5 hours by autoinduction. 2 g of PZT sol was added thereto, followed by further stirring for 30 minutes.

제조된 페이스트를 미세패턴된 감광성필름 몰드가 성형된 니켈기판에 충진하고 상온에서 평탄화하였다. 평탄화가 완료된 세라믹후막을 70℃에서 건조하고, 250℃에서 1시간동안 열처리하였다.The prepared paste was filled in a nickel substrate on which a micropatterned photosensitive film mold was molded and flattened at room temperature. The planarized ceramic thick film was dried at 70 ° C. and heat-treated at 250 ° C. for 1 hour.

상부전극으로 금을 진공증착하여 마이크로 액츄에이터를 제조하였다.Gold was vacuum deposited on the upper electrode to prepare a micro actuator.

(실시예 6)(Example 6)

PZT/PMN분말 5g에 PZT 초산졸 2.5g을 가하여 30분간 교반하였다. 졸의 용매로 사용된 초산은 완전히 증발되고, 분말과 PZT(52/48)겔의 혼합체가 형성되었다. 여기에 트리메틸렌글리콜 0.8g, 1-펜타놀 0.4g을 가하고, 자동유발에서 1시간동안 혼합하였다.2.5 g of PZT acetate sol was added to 5 g of PZT / PMN powder, followed by stirring for 30 minutes. Acetic acid used as the solvent of the sol was completely evaporated and a mixture of powder and PZT (52/48) gel was formed. 0.8 g of trimethylene glycol and 0.4 g of 1-pentanol were added thereto, and the mixture was mixed for 1 hour by auto-induction.

이렇게 제조된 페이스트는 휘발성이 높은 초산이 제거되어 시간에 따른 점도변화가 없는 특징을 가지게 되며, 이 페이스트를 미세패턴된 감광성필름 몰드가 성형된 니켈기판에 충진하고, 130℃에서 건조하고, 200℃에서 2시간동안 열처리하였다.The paste thus prepared has a characteristic that no volatile acetic acid is removed and there is no viscosity change with time. The paste is filled into a nickel substrate on which a micropatterned photosensitive film mold is formed, dried at 130 ° C., and dried at 200 ° C. Heat treatment for 2 hours at.

상부전극으로 알루미늄을 진공증착하여 마이크로 액츄에이터를 제조하였다.Aluminum was vacuum-deposited as the upper electrode to prepare a micro actuator.

상기와 같은 본 발명은 몰드가 되는 포토레지스터층의 두께를 1-200㎛의 범위에서 변화시킬 수 있으므로 압전/전왜막 및 상부전극두께를 미세하게 조절할 수 있는 효과가 있다.The present invention as described above can change the thickness of the photoresist layer to be a mold in the range of 1-200㎛ has the effect of finely controlling the thickness of the piezoelectric / electrodistortion film and the upper electrode.

또한 세라믹페이스트의 유기물과 포토레지스터가 반응을 하는 경우에는 포토레지스터자체를 100-300℃에서 열처리하여 경화시킴으로써 이들간의 반응을 최소화할 수 있고, 세라믹페이스트만이 아니라 종래에는 소성이 불가능하였던 슬러리 형태의 세라미분말-졸-겔 혼합체도 사용할 수 있다.In addition, when the organic material of the ceramic paste reacts with the photoresist, the photoresist itself may be cured by heat treatment at 100-300 ° C. to minimize the reaction between them. Ceramic powder-sol-gel mixtures may also be used.

또한 압전/전왜막을 몰드의 내부에 위치시킴으로써 외부로부터의 긁힘 등에 의해 압전/전왜막이 손상되는 것을 방지할 수 있고, 몰드자체가 절연체이므로 상부전극과 전원인가선을 연결하는 경우에도 하부전극 또는 진동판에 대하여 별도의 절연층을 형성하는 공정이 필요없으므로 공정을 단순화시킬 수 있다.In addition, by placing the piezoelectric / electric strainer inside the mold, it is possible to prevent the piezoelectric / electric strainer from being damaged by scratches from the outside, and since the mold itself is an insulator, the lower electrode or the diaphragm may be used even when the upper electrode and the power supply line are connected. Since the process of forming a separate insulating layer is not necessary, the process can be simplified.

또한 스크린프린팅법을 사용하는 경우와 달리 미세화된 패턴의 높은 높이/폭의 비(high aspect ratio)를 달성할 수 있고, 하부구조와의 결합이 개선되는 효과가 있다.In addition, unlike the case of using the screen printing method, a high aspect ratio of the micronized pattern can be achieved, and the coupling with the substructure is improved.

Claims (31)

금속으로 이루어진 진동판을 제공하는 단계와;Providing a diaphragm made of metal; 상기 금속진동판위에 포토레지스터를 도포한 후 패터닝하여 미세패턴의 몰드를 형성하는 단계와;Applying a photoresist on the metal vibrating plate and patterning the same to form a mold having a fine pattern; 100-500℃의 저온에서 비폭발성 산화-환원 연소반응에 의하여 제조되며 입자크기가 5㎛ 이하이고, 납(Pb), 티타늄(Ti)을 기본 구성원소로 하는 세라믹산화물분말과, 물 또는 유기용매를 베이스로 하여 제조한 상기 세라믹산화물분말과 동일 또는 유사성분의 세라믹졸용액을 혼합하여 세라믹페이스트를 제조하는 단계와;Prepared by non-explosive oxidation-reduction combustion reaction at a low temperature of 100-500 ℃, the particle size is 5㎛ or less, ceramic oxide powder with lead (Pb), titanium (Ti) as a basic element, water or organic solvent Preparing a ceramic paste by mixing a ceramic sol solution having the same or similar components as the ceramic oxide powder prepared as a base; 상기 세라믹페이스트를 상기 몰드의 내부에 충진하여 압전/전왜막을 성형하는 단계와;Filling the ceramic paste into the mold to form a piezoelectric / electric distortion film; 100-300℃에서 열처리함으로써 상기 몰드내부에 성형된 압전/전왜막을 소성하는 단계; 및Firing the piezoelectric / electric distortion film formed in the mold by heat treatment at 100-300 ° C .; And 압전/전왜막위에 상부전극을 성형하는 단계를 포함하는 포토리소그라피법을 이용한 압전/전왜 세라믹 마이크로 액츄에이터의 제조방법.A method of manufacturing a piezoelectric / electric distortion ceramic micro actuator using a photolithography method comprising forming an upper electrode on a piezoelectric / electric distortion film. 제 1 항에 있어서, 몰드를 형성한 후 100-300℃에서 열처리하는 단계를 더 포함하는 것을 특징으로 하는 포토리소그라피법을 이용한 압전/전왜 세라믹 마이크로 액츄에이터의 제조방법.The method of claim 1, further comprising heat-treating at 100-300 ° C. after forming the mold. 제 1 항에 있어서, 상부전극을 성형한 후 100-300℃에서 열처리하는 단계를 더 포함하는 것을 특징으로 하는 포토리소그라피법을 이용한 압전/전왜 세라믹 마이크로 액츄에이터의 제조방법.The method of manufacturing a piezoelectric / electric distortion ceramic micro actuator using the photolithography method according to claim 1, further comprising the step of heat-treating at 100-300 ° C. after forming the upper electrode. 제 1 항에 있어서, 상부전극을 형성한 후 몰드를 제거하는 단계를 더 포함하는 것을 특징으로 하는 포토리소그라피법을 이용한 압전/전왜 세라믹 마이크로 액츄에이터의 제조방법.The method of claim 1, further comprising removing the mold after forming the upper electrode. 제 1 항에 있어서, 상기 금속으로는 스테인레스 스틸(SUS) 또는 니켈(Ni)을 사용하는 것을 특징으로 하는 포토리소그라피법을 이용한 압전/전왜 세라믹 마이크로 액츄에이터의 제조방법.The method of claim 1, wherein the metal is made of stainless steel (SUS) or nickel (Ni). 제 1 항에 있어서, 상기 포토레지스터의 두께는 1-200㎛로 하는 것을 특징으로 하는 포토리소그라피법을 이용한 압전/전왜 세라믹 마이크로 액츄에이터의 제조방법.The method of manufacturing a piezoelectric / electric distortion ceramic micro actuator using the photolithography method according to claim 1, wherein the photoresist has a thickness of 1-200 µm. 제 1 항에 있어서, 상기 세라믹산화물분말의 입자크기가 0.5㎛ 이하인 것을 특징으로 하는 포토리소그라피법을 이용한 압전/전왜 세라믹 마이크로 액츄에이터의 제조방법.The method of manufacturing a piezoelectric / electric distortion ceramic micro actuator using the photolithography method according to claim 1, wherein the ceramic oxide powder has a particle size of 0.5 m or less. 제 1 항에 있어서, 상기 세라믹산화물은 PZT, PMN 또는 그들의 고용체(PZT-PMN) 복합산화물인 것을 특징으로 하는 포토리소그라피법을 이용한 압전/전왜 세라믹 마이크로 액츄에이터의 제조방법.The method of claim 1, wherein the ceramic oxide is PZT, PMN or their solid solution (PZT-PMN) composite oxide. 제 8 항에 있어서, 상기 세라믹산화물은 니켈(Ni), 란타늄(La), 바륨(Ba), 아연(Zn), 리튬(Li), 코발트(Co), 카드뮴(Cd), 세륨(Ce), 크롬(Cr), 안티몬(Sb), 철(Fe), 이트륨(Y), 탄탈(Ta), 텅스텐(W), 스트론튬(Sr), 칼슘(Ca), 비스무스(Bi), 주석(Sn), 망간(Mn) 중 하나 또는 그 이상의 원소를 추가로 포함하는 것을 특징으로 하는 포토리소그라피법을 이용한 압전/전왜 세라믹 마이크로 액츄에이터의 제조방법.The method of claim 8, wherein the ceramic oxide is nickel (Ni), lanthanum (La), barium (Ba), zinc (Zn), lithium (Li), cobalt (Co), cadmium (Cd), cerium (Ce), Chromium (Cr), Antimony (Sb), Iron (Fe), Yttrium (Y), Tantalum (Ta), Tungsten (W), Strontium (Sr), Calcium (Ca), Bismuth (Bi), Tin (Sn), A method of manufacturing a piezoelectric / electric warp ceramic micro actuator using a photolithography method, characterized in that it further comprises one or more elements of manganese (Mn). 제 1 항에 있어서, 상기 압전/전왜막의 두께를 1-100㎛로 성형하는 것을 특징으로 하는 포토리소그라피법을 이용한 압전/전왜 세라믹 마이크로 액츄에이터의 제조방법.The method of manufacturing a piezoelectric / electric distortion ceramic micro actuator using the photolithography method according to claim 1, wherein the thickness of the piezoelectric / electric distortion film is formed to be 1-100 µm. 제 10 항에 있어서, 상기 압전/전왜막의 두께를 5-30㎛로 성형하는 것을 특징으로 하는 포토리소그라피법을 이용한 압전/전왜 세라믹 마이크로 액츄에이터의 제조방법.The method of manufacturing a piezoelectric / electric distortion ceramic micro actuator using the photolithography method according to claim 10, wherein the thickness of the piezoelectric / electric distortion film is molded to 5 to 30 µm. 제 1 항에 있어서, 상기 상부전극으로는 은(Ag), 알루미늄(Al), 금(Au) 또는백금(Pt)중 선택하여 사용하는 것을 특징으로 하는 포토리소그라피법을 이용한 압전/전왜 세라믹 마이크로 액츄에이터의 제조방법.The piezoelectric / electric distortion ceramic microactuator using the photolithography method according to claim 1, wherein the upper electrode is selected from silver (Ag), aluminum (Al), gold (Au) or platinum (Pt). Manufacturing method. 진동판을 제공하는 단계와;Providing a diaphragm; 진동판위에 하부전극을 성형하는 단계와;Forming a lower electrode on the diaphragm; 하부전극위에 포토레지스터를 도포한 후 패터닝하여 미세패턴의 몰드를 형성하는 단계와;Coating a photoresist on the lower electrode and patterning the photoresist to form a mold of a fine pattern; 100-500℃의 저온에서 비폭발성 산화-환원 연소반응에 의하여 제조되며 입자크기가 5㎛ 이하이고, 납(Pb), 티타늄(Ti)을 기본 구성원소로 하는 세라믹산화물분말과, 물 또는 유기용매를 베이스로 하여 제조한 상기 세라믹산화물분말과 동일 또는 유사성분의 세라믹졸용액을 혼합하여 세라믹페이스트를 제조하는 단계와;Prepared by non-explosive oxidation-reduction combustion reaction at a low temperature of 100-500 ℃, the particle size is 5㎛ or less, ceramic oxide powder with lead (Pb), titanium (Ti) as a basic element, water or organic solvent Preparing a ceramic paste by mixing a ceramic sol solution having the same or similar components as the ceramic oxide powder prepared as a base; 상기 세라믹페이스트를 상기 몰드내부에 충진하여 압전/전왜막을 성형하는 단계와;Filling the ceramic paste into the mold to form a piezoelectric / distortion film; 100-300℃에서 열처리함으로써 상기 몰드내부에 성형된 압전/전왜막을 소성하는 단계; 및Firing the piezoelectric / electric distortion film formed in the mold by heat treatment at 100-300 ° C .; And 압전/전왜막위에 상부전극을 성형하는 단계를 포함하는 포토리소그라피법을 이용한 압전/전왜 세라믹 마이크로 액츄에이터의 제조방법.A method of manufacturing a piezoelectric / electric distortion ceramic micro actuator using a photolithography method comprising forming an upper electrode on a piezoelectric / electric distortion film. 제 13 항에 있어서, 몰드를 형성한 후 100-300℃에서 열처리하는 단계를 더 포함하는 것을 특징으로 하는 포토리소그라피법을 이용한 압전/전왜 세라믹 마이크로 액츄에이터의 제조방법.15. The method of claim 13, further comprising heat treatment at 100-300 ° C. after forming the mold. 제 13 항에 있어서, 상부전극을 성형한 후 100-300℃에서 열처리하는 단계를 더 포함하는 것을 특징으로 하는 포토리소그라피법을 이용한 압전/전왜 세라믹 마이크로 액츄에이터의 제조방법.15. The method of claim 13, further comprising heat-treating at 100-300 ° C. after forming the upper electrode. 제 13 항에 있어서, 상부전극을 형성한 후 몰드를 제거하는 단계를 더 포함하는 것을 특징으로 하는 포토리소그라피법을 이용한 압전/전왜 세라믹 마이크로 액츄에이터의 제조방법.15. The method of claim 13, further comprising removing the mold after forming the upper electrode. 제 13 항에 있어서, 상기 진동판으로는 세라믹진동판을 사용하는 것을 특징으로 하는 포토리소그라피법을 이용한 압전/전왜 세라믹 마이크로 액츄에이터의 제조방법.The method of manufacturing a piezoelectric / electric distortion ceramic micro actuator using the photolithography method according to claim 13, wherein a ceramic vibrating plate is used as the diaphragm. 제 17 항에 있어서, 상기 세라믹진동판으로는 산화알루미늄(Al2O3), 산화지르코늄(ZrO2), 탄화규소(SiC), 질화규소(Si3N4), 이산화규소(SiO2) 또는 유리계를 사용하는 것을 특징으로 하는 포토리소그라피법을 이용한 압전/전왜 세라믹 마이크로 액츄에이터의 제조방법.The method of claim 17, wherein the ceramic vibrating plate is aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ), silicon carbide (SiC), silicon nitride (Si 3 N 4 ), silicon dioxide (SiO 2 ) or glass-based Method for producing a piezoelectric / electrostrictive ceramic micro actuator using a photolithography method, characterized in that using. 제 17 항에 있어서, 상기 진동판위에 성형되는 상기 하부전극으로는 백금(Pt), 은(Ag), 은/팔라듐(Ag/Pd)의 합금, 니켈(Ni), 구리(Cu) 등의 도전성 페이스트중 선택하여 사용하는 것을 특징으로 하는 포토리소그라피법을 이용한 압전/전왜 세라믹 마이크로 액츄에이터의 제조방법.18. The conductive paste of claim 17, wherein the lower electrode formed on the diaphragm includes an alloy of platinum (Pt), silver (Ag), silver / palladium (Ag / Pd), nickel (Ni), copper (Cu), or the like. A method of manufacturing a piezoelectric / electric distortion ceramic micro actuator using a photolithography method, characterized in that it is selected and used. 제 17 항에 있어서, 상기 진동판위에 상기 하부전극을 성형한 후 500-1400℃로 열처리하는 단계를 더 포함하는 것을 특징으로 하는 포토리소그라피법을 이용한 압전/전왜 세라믹 마이크로 액츄에이터의 제조방법.18. The method of claim 17, further comprising forming the lower electrode on the diaphragm and heat-treating it at 500-1400 ° C. 제 13 항에 있어서, 상기 진동판으로 수지류의 고분자성 유기화합물진동판을 사용하는 것을 특징으로 하는 포토리소그라피법을 이용한 압전/전왜 세라믹 마이크로 액츄에이터의 제조방법.The method of manufacturing a piezoelectric / electric distortion ceramic micro actuator using a photolithography method according to claim 13, wherein a high molecular weight organic organic compound vibration plate is used as the diaphragm. 제 21 항에 있어서, 상기 수지류의 고분자성 유기화합물진동판은 폴리에스테르계, 폴리이미드계 또는 테플론계 수지진동판을 사용하는 것을 특징으로 하는 포토리소그라피법을 이용한 압전/전왜 세라믹 마이크로 액츄에이터의 제조방법.22. The method of manufacturing a piezoelectric / electric distortion ceramic micro actuator using a photolithography method according to claim 21, wherein the polymeric organic compound vibration plate of the resin is a polyester, polyimide, or Teflon resin vibration plate. 제 22 항에 있어서, 상기 진동판위에 성형되는 상기 하부전극은 은(Ag), 알루미늄(Al), 금(Au) 또는 백금(Pt) 등의 금속류중 선택하여 사용하는 것을 특징으로 하는 포토리소그라피법을 이용한 압전/전왜 세라믹 마이크로 액츄에이터의 제조방법.23. The photolithography method of claim 22, wherein the lower electrode formed on the diaphragm is selected from metals such as silver (Ag), aluminum (Al), gold (Au), or platinum (Pt). Method of manufacturing piezoelectric / electric distortion ceramic micro actuators used. 제 22 항에 있어서, 상기 진동판위에 상기 하부전극을 성형한 후 100-300℃에서 열처리하는 단계를 더 포함하는 것을 특징으로 하는 포토리소그라피법을 이용한 압전/전왜 세라믹 마이크로 액츄에이터의 제조방법.23. The method of claim 22, further comprising the step of forming the lower electrode on the diaphragm and heat-treating at 100-300 ° C. The method of manufacturing a piezoelectric / electric distortion ceramic micro actuator using the photolithography method. 제 13 항에 있어서, 상기 상부전극으로는 은(Ag), 알루미늄(Al), 금(Au) 또는 백금(Pt)중 선택하여 사용하는 것을 특징으로 하는 포토리소그라피법을 이용한 압전/전왜 세라믹 마이크로 액츄에이터의 제조방법.14. The piezoelectric / electric distortion ceramic micro actuator using the photolithography method according to claim 13, wherein the upper electrode is selected from silver (Ag), aluminum (Al), gold (Au) or platinum (Pt). Manufacturing method. 제 13 항에 있어서, 상기 상부전극을 성형한 후 100-300℃에서 열처리하는 단계를 더 포함하는 것을 특징으로 하는 포토리소그라피법을 이용한 압전/전왜 세라믹 마이크로 액츄에이터의 제조방법.15. The method of claim 13, further comprising heat-treating at 100-300 ° C. after forming the upper electrode. 제 13 항에 있어서, 상기 세라믹산화물분말의 입자크기가 0.5㎛ 이하인 것을 특징으로 하는 포토리소그라피법을 이용한 압전/전왜 세라믹 마이크로 액츄에이터의 제조방법.The method of manufacturing a piezoelectric / electric warp ceramic micro actuator using the photolithography method according to claim 13, wherein the ceramic oxide powder has a particle size of 0.5 m or less. 제 13 항에 있어서, 상기 세라믹산화물은 PZT, PMN 또는 그들의 고용체(PZT-PMN) 복합산화물인 것을 특징으로 하는 포토리소그라피법을 이용한 압전/전왜 세라믹 마이크로 액츄에이터의 제조방법.The method of claim 13, wherein the ceramic oxide is PZT, PMN or their solid solution (PZT-PMN) composite oxide. 제 28 항에 있어서, 상기 세라믹산화물은 니켈(Ni), 란타늄(La), 바륨(Ba), 아연(Zn), 리튬(Li), 코발트(Co), 카드뮴(Cd), 세륨(Ce), 크롬(Cr), 안티몬(Sb), 철(Fe), 이트륨(Y), 탄탈(Ta), 텅스텐(W), 스트론튬(Sr), 칼슘(Ca), 비스무스(Bi), 주석(Sn), 망간(Mn) 중 하나 또는 그 이상의 원소를 추가로 포함하는 것을 특징으로 하는 포토리소그라피법을 이용한 압전/전왜 세라믹 마이크로 액츄에이터의 제조방법.The method of claim 28, wherein the ceramic oxide is nickel (Ni), lanthanum (La), barium (Ba), zinc (Zn), lithium (Li), cobalt (Co), cadmium (Cd), cerium (Ce), Chromium (Cr), Antimony (Sb), Iron (Fe), Yttrium (Y), Tantalum (Ta), Tungsten (W), Strontium (Sr), Calcium (Ca), Bismuth (Bi), Tin (Sn), A method of manufacturing a piezoelectric / electric warp ceramic micro actuator using a photolithography method, characterized in that it further comprises one or more elements of manganese (Mn). 제 13 항에 있어서, 상기 압전/전왜막의 두께를 1-100㎛로 성형하는 것을 특징으로 하는 포토리소그라피법을 이용한 압전/전왜 세라믹 마이크로 액츄에이터의 제조방법.The method of manufacturing a piezoelectric / electric distortion ceramic micro actuator using the photolithography method according to claim 13, wherein the thickness of the piezoelectric / electric distortion film is formed to be 1-100 µm. 제 30 항에 있어서, 상기 압전/전왜막의 두께를 5-30㎛로 성형하는 것을 특징으로 하는 포토리소그라피법을 이용한 압전/전왜 세라믹 마이크로 액츄에이터의 제조방법.31. The method of manufacturing a piezoelectric / electric distortion ceramic micro actuator using the photolithography method according to claim 30, wherein the thickness of the piezoelectric / electric distortion film is formed to be 5-30 µm.
KR1019990027328A 1998-12-30 1999-07-07 Method for fabricating piezoelectric/electrostrictive ceramic micro actuator using photolithography Expired - Fee Related KR100303884B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990027328A KR100303884B1 (en) 1998-12-30 1999-07-07 Method for fabricating piezoelectric/electrostrictive ceramic micro actuator using photolithography

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1019980060643 1998-12-30
KR19980060643 1998-12-30
KR1019990027328A KR100303884B1 (en) 1998-12-30 1999-07-07 Method for fabricating piezoelectric/electrostrictive ceramic micro actuator using photolithography

Publications (2)

Publication Number Publication Date
KR20000047432A KR20000047432A (en) 2000-07-25
KR100303884B1 true KR100303884B1 (en) 2001-11-01

Family

ID=26634505

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990027328A Expired - Fee Related KR100303884B1 (en) 1998-12-30 1999-07-07 Method for fabricating piezoelectric/electrostrictive ceramic micro actuator using photolithography

Country Status (1)

Country Link
KR (1) KR100303884B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101020850B1 (en) * 2008-10-15 2011-03-09 삼성전기주식회사 Inkjet Head Manufacturing Method

Also Published As

Publication number Publication date
KR20000047432A (en) 2000-07-25

Similar Documents

Publication Publication Date Title
US6265139B1 (en) Method for fabricating piezoelectric/electrostrictive ceramic micro actuator using photolithography
US6504287B2 (en) Multilayered piezoelectric/electrostrictive ceramic actuator
JPS5818961B2 (en) Method of forming refractory metallurgy on ceramic substrate
JPH04219359A (en) Electrically conductive zinc oxide sintered compact
KR100303884B1 (en) Method for fabricating piezoelectric/electrostrictive ceramic micro actuator using photolithography
US6594875B2 (en) Method for producing a piezoelectric/electrostrictive actuator
JP3213295B2 (en) Method for forming piezoelectric / electrostrictive film element at low temperature using electrophoretic film forming method and piezoelectric / electrostrictive film element
US6432238B1 (en) Method for fabricating piezoelectric/electrostrictive thick film using seeding layer
JP3022536B1 (en) Piezoelectric / electrostrictive actuator and method of manufacturing the same
JPS5855204B2 (en) Method for producing platinum powder for printing paste
KR100352483B1 (en) Method for fabricating piezoelectric/electrostrictive thick film using seeding layer
KR100289604B1 (en) Piezoelectric/electrostrictive actuator and method for fabricating the same
KR100344954B1 (en) Manufacturing method of multilayered piezoelectric/electrostrictive ceramic actuator by sintering process at low temperature and the actuator manufactured by the method
KR100340756B1 (en) Method for forming piezoelectric/electrostrictive film at a low temperature, and piezoelectric/electrostrictive film formed by the method
JPH11179906A (en) Manufacture of piezoelectric element unit and ink jet head employing it
JP2013089862A (en) Film-type piezoelectric/electrostrictive element and method for manufacturing the same
KR20000028974A (en) Method for forming piezoelectric/electrostrictive film element at low temperature using electrophoretic deposition and the piezoelectric/electrostrictive film element formed by the method
JP2005026479A (en) Electrode paste for ceramic electronic component
JP2683568B2 (en) Coloring agent for frosted tinted glass
KR20010008972A (en) Method for fabricating piezoelectric/electrostrictive actuator using adhesion process
KR100406646B1 (en) Fabricating Method of Thick Film Using Compound of Relaxer Ferroelectric Ceramics and Polymer Matrix
JP2554595B2 (en) Coloring agent for coloring glass and method for producing the same
JPH04206185A (en) Ain ceramics heater and its manufacture
JP2005051052A (en) Varistor and manufacturing method thereof
Ogawa et al. Sol-gel PTC BaTiO/sub 3/thin films: application of PTC film to heater plate

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 19990707

PA0201 Request for examination
PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20010423

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20010716

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20010718

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20040630

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20050630

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20060630

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20070629

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20080701

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20090616

Start annual number: 9

End annual number: 9

FPAY Annual fee payment

Payment date: 20100701

Year of fee payment: 10

PR1001 Payment of annual fee

Payment date: 20100701

Start annual number: 10

End annual number: 10

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee