[go: up one dir, main page]

KR100298856B1 - Sequential Circulation Operation Control Method of Parallel Multiple Compressor - Google Patents

Sequential Circulation Operation Control Method of Parallel Multiple Compressor Download PDF

Info

Publication number
KR100298856B1
KR100298856B1 KR1019980042617A KR19980042617A KR100298856B1 KR 100298856 B1 KR100298856 B1 KR 100298856B1 KR 1019980042617 A KR1019980042617 A KR 1019980042617A KR 19980042617 A KR19980042617 A KR 19980042617A KR 100298856 B1 KR100298856 B1 KR 100298856B1
Authority
KR
South Korea
Prior art keywords
compressor
suction pipe
temperature
unit
pressure
Prior art date
Application number
KR1019980042617A
Other languages
Korean (ko)
Other versions
KR20000025513A (en
Inventor
석정환
Original Assignee
정운오
원재 엔지니어링 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정운오, 원재 엔지니어링 주식회사 filed Critical 정운오
Priority to KR1019980042617A priority Critical patent/KR100298856B1/en
Publication of KR20000025513A publication Critical patent/KR20000025513A/en
Application granted granted Critical
Publication of KR100298856B1 publication Critical patent/KR100298856B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/04Combinations of two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control
    • F04B49/022Stopping, starting, unloading or idling control by means of pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/22Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/12Kind or type gaseous, i.e. compressible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

본 발명은 병렬 다중압축기(MULTI COMPRESSOR SYSTEM)의 순차순환운전제어 방법에 관한 것이다.The present invention relates to a sequential circulation operation control method of a parallel multiple compressor (MULTI COMPRESSOR SYSTEM).

경제발전과 함께 유통업이 대형화, 고급화되면서 상품 보존과 신선도 유지를 위하여 저온창고(냉동 및 냉장고).냉동.냉장쇼케이스등 저온설비의 이용이 증가되 고 또한 그 설비가 복잡해 지면서 기존의 설비방식으로는 안전관리와 유지보수가 어렵게 되고 있다.With the economic development, the distribution industry has become larger and more advanced, and the use of low-temperature facilities such as low-temperature warehouses (freezers and refrigerators), freezers, and refrigerated showcases is increasing to preserve products and maintain freshness. Safety management and maintenance are becoming difficult.

이에 따라 운전비용도 적게 들고 냉동배관설비도 단순해지는 병렬다중압축기 방식을 사용 하게 되는데 기존의 운전 방법으로는 냉동기 유니트내의 압축기 개별로 흡입관 압력을 설정하여 사용함으로서 흡입관 압력 설정이 낮은 압축기는 운전시간이 길고 흡입관 압력 설정이 높은 압축기는 운전시간이 적고 부하량 변화에 따른 기동,정지가 빈번 하게되면서 압축기개별로 운전시간과 운전조건이 고르지 않는 단점이 야기되고 있다.As a result, a parallel multi-compressor method is used, which reduces the operating cost and simplifies the refrigeration piping system. In the conventional operation method, a compressor having a low suction pipe pressure setting has a long operation time by setting the suction pipe pressure separately for the compressor in the refrigerator unit. Compressors with long and high suction pipe pressure settings have disadvantages in that the operating time and operating conditions are not uniform for individual compressors due to the short operation time and frequent starting and stopping due to load changes.

이러한 문제를 해결하기 위한 본 발명은 흡입관 압력 범위를 설정하여 설정된 흡입관 압력 범위 안에서 먼저 기동된 압축기를 먼저 정지시키는 운전 제어에 의해 운전조건과 운전시간을 고르게 유지하는 병렬 다중압축기의 순차순환운전제어 방법을 제안한 것이다.The present invention for solving this problem is a sequential circulating operation control method of the parallel multi-compressor to maintain the operation conditions and the operation time evenly by setting the suction pipe pressure range to stop the compressor first started within the set suction pipe pressure range. Would be suggested.

Description

병렬 다중압축기(MULTI COMPRESSOR SYSTEM)의 순차순환 운전제어방법Sequential Circulation Operation Control Method of MULTI COMPRESSOR SYSTEM

본 발명은 대형 유통센터나 또는 백화점 등에서 변질이 쉬운 냉동,냉장 상품의 진열과 보관을 위하여 다수의 저온창고(냉동,냉장고) 또는 진열용 쇼케이스 등을 사용 할 때에 절전효과가 우수하며 기계적으로 안정된 병렬 다중압축기(멀티냉동기유니트)방식의 운전 제어 방법인 병렬 다중압축기(MULTI COMPRESSOR SYSTEM)의 순차순환제어 방법에 관한 것이다.The present invention has excellent power saving effect and mechanically stable parallelism when using a large number of low-temperature warehouses (freezers, refrigerators) or showcases for display for the display and storage of refrigerated and refrigerated products that are easily altered in large distribution centers or department stores. The present invention relates to a sequential circulation control method of a parallel compressor (MULTI COMPRESSOR SYSTEM), which is an operation control method of a multiple compressor (multi chiller unit) type.

주지하는 바와같이 경제발전과 함께 유통업이 대형화, 고급화되면서 상품 보존과 신선도 유지를 하기 위하여 저온창고(냉동 냉장고). 또는 저온쇼케이스등 저온설비의 이용이 증가되고 또한 그 설비가 복잡해 지면서 기존의 설비방식으로는 안전관리와 유지보수가 어렵게 되고 있다.As is well known, low-temperature warehouses (frozen refrigerators) are used to preserve products and maintain freshness as the retail industry grows and expands along with economic development. In addition, as the use of low-temperature facilities such as low-temperature showcases increases and the facilities become more complicated, safety management and maintenance are difficult with the existing facilities.

이에 따라 운전비용도 적게 들고 냉동 배관설비도 단순해지는 병렬 다중압축기방식(MULTI COMPRESSOR SYSTEM)을 사용 하게 되는데에 이러한 종래의 운전 제어방법으로는 여러종류의 운전방법이 알려지고 있다.Accordingly, a parallel multi-compressor system (MULTI COMPRESSOR SYSTEM) is used, which reduces the operating cost and also simplifies the refrigeration piping facility. As such a conventional operation control method, various types of operation methods are known.

즉, 압축기를 개별로 운전시간을 체크하여 운전시간이 적은 압축기가 먼저 운전되고, 정지시에는 운전시간이 많은 압축기가 정지하는 운전방법을 이용할 때에는 부하량이 적은 상태에서 운전될 경우 운전시간이 적은 압축기가 운전 정지를 반복하여 이 압축기에서는 숏트싸이클 운전을 하게되는 폐단이 발생되며, 또 다른 제어 방법으로는 압축기 개별로 흡입관에 압력을 설정하여 설정된 영역에서 운전되는 방법이 있다. 일예를 들면 도 6에서와 같이 압축기 개별로 흡입관 압력을 각각 설정하여 제 1호기는 1.5㎏/㎠ 이상 압력에서 운전되고 0.5㎏/㎠ 이하 압력에서 정지하고, 제 2호기는 2㎏/㎠이상 압력에서 운전되고 1㎏/㎠이하 압력에서 정지하며, 제 3호기는 2.5㎏/㎠ 이상 압력에서 운전되고 1.5㎏/㎠이하 압력에서 정지되도록 하여 운전 순서가 제 1호기, 제 2호기, 제 3호기 순이고, 정지순서는 제 3호기, 제 2호기, 제 1호기의 순으로 되어진다. 따라서 압력 설정이 낮은 제 1호기의 운전 시간은 길고 압력 설정이 높은 제 3호기는 운전 시간이 짧아 압축기별로 운전시간 차이가 많이 나며, 방금 정지한 압축기가 부하량이 증가하면 바로 재기동 하는 숏트싸이클 운전을 하게 되는 폐단이 야기 되고 있다.In other words, the compressor with less operating time is checked first by checking the operating time of the compressor individually, and when the compressor is operated under low load when using the operation method in which the compressor with a large operating time stops. In this compressor, the closed end of the short cycle operation is generated by repeating the operation stop. Another control method is to set the pressure in the suction pipe individually and operate in the set area. For example, as shown in FIG. 6, the pressures of the suction pipes are individually set for each compressor, and the first unit operates at a pressure of 1.5 kg / cm 2 or more and stops at a pressure of 0.5 kg / cm 2 or less, and the second unit has a pressure of 2 kg / cm 2 or more. Operating at the pressure of less than 1㎏ / ㎠ and the third unit is operated at the pressure of 2.5㎏ / ㎠ or more and stopped at the pressure of 1.5㎏ / ㎠ or less so that the operation sequence is the 1st, 2nd, 3rd In this order, stop order is 3rd unit, 2nd unit, and 1st unit. Therefore, the operation time of the first unit with low pressure setting is long and the third unit with high pressure setting has a short operation time, so there is a large difference in operating time for each compressor, and the short cycle operation that is restarted immediately when the load of the compressor just stopped increases. The discontinuance is caused.

본 발명은 상기한 종래의 문제를 개선하기 위하여 안출된 것으로서 병렬다중압축기(멀티냉동기유니트)내의 압축기를 순차순환제어 방법으로 제어하도록 함을 목적으로 한 것이다.SUMMARY OF THE INVENTION The present invention has been made in order to solve the above-mentioned conventional problems, and an object thereof is to control a compressor in a parallel multiple compressor (multi-refrigerator unit) by a sequential circulation control method.

즉, 흡입관 압력을 압력센서로 측정하여 압력센서로부터 운전/정지 신호를 받아 운전신호이면 압축기를 1대씩 운전시키며 정지신호이면 먼저 운전된 압축기부터 정지시키는 병렬다중압축기의 순차순환제어 방식을 구성시켜 종래의 문제점을 개선하도록 한 것이다.That is, the sequential circulation control method of the parallel multiple compressor is constructed by measuring the suction pipe pressure with the pressure sensor and receiving the operation / stop signal from the pressure sensor and operating the compressor one by one when the operation signal is stopped, and by stopping the compressor which is operated first when the stop signal is received. It is to improve the problem.

제1a, b도는 본 발명의 구성도.1a, b is a block diagram of the present invention.

제2도는 본 발명에 압력범위 설정 설명도.2 is an explanatory view of the pressure range setting in the present invention.

제3도는 본 발명의 압력설정에 의한 운전 및 정지상태의 작동설명도.3 is an operation explanatory diagram of the operation and stop state by the pressure setting of the present invention.

제4도는 본 발명의 운전 및 정지순서의 설명도.4 is an explanatory diagram of the operation and stop sequence of the present invention.

제5a도는 본 발명의 작동설명의 플로차트.Figure 5a is a flowchart of the operational description of the present invention.

제5b도는 본 발명의 회로구성도.5b is a circuit diagram of the present invention.

제6도는 압축기 개별로 흡입관 압력을 각각 설정하는 종래의 설명도.6 is a conventional explanatory diagram in which the suction pipe pressures are individually set by the compressors individually.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

10 : 저온 창고 TC : 온도조절기10: low temperature warehouse TC: temperature controller

SV : 전자변SV: Electron valve

본 발명은 상기 목적을 달성하기 위하여 적정한 흡입관 압력을 미리 설정하고 흡입관 압력 센서로부터 운전/정지 신호를 받아 운전 신호이면 압축기를 1대씩 순차적으로 운전시키며 정지신호이면 먼저 운전된 압축기부터 정지시키는 병렬다중압축기의 순차순환제어 방식을 구성함으로서 방금 정지한 압축기가 바로 재기동되는 것을 방지하고 운전조건을 고르게 유지할 수 있도록 하였다.In order to achieve the above object, the present invention sets a proper suction pipe pressure in advance, receives a run / stop signal from a suction pipe pressure sensor, and sequentially operates the compressors one by one if it is an operation signal. By configuring the sequential circulation control method, the compressor just stopped can be prevented from restarting immediately and the operating conditions can be maintained evenly.

이를 첨부도면에 의해 상세한 실시예를 설명하면 다음과 같다.Detailed embodiments will be described below with reference to the accompanying drawings.

도 1은 본 발명의 구성도이고 도 2는 본 발명에 압력범위 설정 설명도이고 도 3은 압력설정에 의한 운전 및 정지상태의 작동설명도이고 도 4는 운전 및 정지순서의 설명도이다.1 is a configuration diagram of the present invention, Figure 2 is a pressure range setting explanatory diagram in the present invention, Figure 3 is an operation explanatory diagram of the operation and stop state by the pressure setting and Figure 4 is an explanatory view of the operation and stop sequence.

상기 도 1에 도시된 바와 같이 저온창고 및 냉동,냉장고와 쇼케이스등(이하 저온창고라함)(10)을 각각 병렬로 연결하고 냉동기 유니트 쪽도 병렬다중압축기방식으로 구성하고 저온창고(10)에 온도가 적정 온도보다 높을 경우 온도조절기(TC)에 의해 전자변(SV)이 열려 냉매가스가 증발기를 통과하여 흡입관으로 유입되어 흡입관 압력이 증가하여 설정된 압력(LOAD)에 도달하면 흡입관 압력센서로부터 운전신호를 받아 제1호기의 압축기를 운전하고 계속된 운전신호에 따라 제2호기, 제3호기,...순서로 압축기가 운전 되도록 함과, 저온창고(10)가 적정한 온도가 되면 온도조절기(TC)에 의해 전자변(SV)을 닫아 냉매의 흐름이 차단되어 흡입관 압력이 감소하여 설정된 압력(UNLOAD)에 도달하면 흡입관 압력센서로부터 정지 신호를 받아 먼저 운전된 제 1호기부터 제 2호기, 제 3호기,...순으로 정지시키도록 병렬다중압축기 순차순환제어방식을 이루도록 한 것이다.As shown in FIG. 1, the low temperature warehouse, the freezer, the freezer and the showcase (hereinafter referred to as the low temperature warehouse) 10 are connected in parallel, respectively, and the refrigerator unit is also configured in a parallel multiple compressor method and the temperature in the low temperature warehouse 10. If the temperature is higher than the proper temperature, the electronic valve SV is opened by the temperature controller TC, and the refrigerant gas flows through the evaporator and enters the suction pipe. When the suction pipe pressure increases and reaches the set pressure LOAD, the operating signal is sent from the suction pipe pressure sensor. The compressor of the first unit is operated and the compressor is operated in the order of the second, third, ... order according to the continued operation signal, and when the low temperature warehouse 10 reaches an appropriate temperature, the temperature controller TC When closing the solenoid valve (SV), the flow of refrigerant is blocked and the suction pipe pressure decreases to reach the set pressure (UNLOAD). It will achieve the one group, the third exhalation, ... parallel multi-compressor in order to stop the sequential rotation control method.

[실시예]EXAMPLE

도 1에서와 같이 저온창고(10)와 압축기를 2대 이상을 병렬로 연결하고 도 2에서와 같이 흡입관 압력을 설정하고 이에 의해 도 5의 (a) 작동설명의 플로차트에 도시된 순서로 작동시키면 도 (b)의 회로구성에 따라 가동된다.As shown in FIG. 1, when two or more low temperature warehouses 10 and a compressor are connected in parallel, and the suction pipe pressure is set as shown in FIG. 2, thereby operating in the order shown in the flowchart of FIG. It operates according to the circuit structure of FIG.

즉, 저온창고(10)에 온도가 적정 온도보다 높으면 온도조절기(TC)에 의해 전자변(SV)이 열리고 냉매가 유입되어 흡입관 압력이 증가하여 흡입관 압력이 설정된 압력(LOAD)지점에 도달하면 압력센서로부터 운전신호를 받아 제 1호압축기가 운전되고 설정된 시간내에 흡입관 압력이 내려가지 않으면 흡입관 압력센서로부터 운전신호를 받아 제 2호기가 운전되고 또다시 제 3호기 순으로 운전된다.That is, when the temperature is higher than the proper temperature in the low temperature warehouse 10, the electronic valve SV is opened by the temperature controller TC, the refrigerant is introduced, the suction pipe pressure increases, and the pressure sensor reaches the set pressure LOAD point. When the first compressor is operated by receiving the operation signal from the suction tube and the suction pipe pressure does not decrease within the set time, the second compressor is operated by receiving the operation signal from the suction tube pressure sensor, and then the third compressor is operated in the order of the third compressor.

설정 범위인 LOAD지점과 UNLOAD지점 사이의 압력상태에서는 현재상태를 유지하며 저온창고(10)의 온도가 적정온도에 이르면 온도조절기(TC)에 의해 전자변(SV)이 닫히고 냉매의 유입이 정지되고 흡입관 압력이 낮아져 흡입관 압력이 UNLOAD지점에 이르면 흡입관 압력센서로부터 정지신호를 받아 먼저 운전된 제 1호기부터 정지되고 계속된 정지신호로 제 2호기가 정지되며 부하량이 늘어 다시 흡입관 압력이 높아져 LOAD지점에 이르면 제 4호기가 운전되며 계속된 신호로 제 1호기가 운전되며 부하량이 줄어 흡입관 압력이 UNLOAD지점에 이르면 제 3호기가 정지되며 계속된 흡입관 압력센서의 정지 신호로 제4호기, 다시 제1호기 순으로 정지된다.It maintains its current state in the pressure state between LOAD point and UNLOAD point, which is the setting range. When temperature of low-temperature warehouse 10 reaches the proper temperature, the electronic valve (SV) is closed by the temperature controller (TC) and the inflow of refrigerant is stopped and the suction pipe When the pressure is lowered and the suction line pressure reaches the UNLOAD point, it receives the stop signal from the suction pipe pressure sensor and stops from the first unit operated first, and stops the second unit with the continuous stop signal. The fourth unit is operated and the first unit is operated by the continuous signal. When the load decreases and the suction tube pressure reaches the UNLOAD point, the third unit is stopped, and the stop signal of the suction tube pressure sensor is continued. Is stopped.

따라서 병렬 다중압축기방식의 냉동기 유니트내에서 각 냉동기는 순차적으로 순환 운전되도록 하게 되며 이러한 실시예의 회로구성을 도 5의 (b)에서 보이고 있다.Therefore, each of the refrigerators in the refrigerator unit of the parallel multiple compressor method is to be cyclically operated, and the circuit configuration of this embodiment is shown in Figure 5 (b).

이러한 회로구성에 따라 전원을 투입하면 TOFF타이머(TM)에 의해 접점10이 ON에서 1초후에 OFF되고 릴레이(AX11)는 자기유지 상태로 들어가며 접점11이 ON되어 제1호기 운전준비 상태가 되며 흡입관 압력이 증가하여 흡입관 압력이 LOAD지점에 도달하면 흡입관 압력센서로부터 운전신호를 받아 릴레이(AX1)가 여자되어 접점12가 ON되어 릴레이(AX12)는 자기유지되고 접점13이 ON되어 제1호기를 운전시키고 접점15가 OFF되어 릴레이(AX11)에 자기유지가 풀려 제1호기 운전준비 상태를 해제하고 접점14는 ON되어 릴레이(AX21)가 여자되어 자기유지 상태로 들어가 제 2호기를 운전준비 상태가 되며 설정된 시간이 지나도 압력이 줄지 아니하고 LOAD이상이면 압력센서로부터 운전신호를 받아 접점17이 ON되면 릴레이(AX22)는 자기유지되고 접점18에 의해 제2호기가 운전되며 릴레이(AX31)가 자기유지되어 제 3호기 운전준비 상태에 들어간다.When the power is turned on according to this circuit configuration, the contact 10 turns off after 1 second from the ON by the TOFF timer (TM), the relay (AX11) enters the self-maintaining state, the contact 11 turns on and becomes ready for operation of the first unit. When the pressure increases and the suction pipe pressure reaches the LOAD point, the operation signal is received from the suction pipe pressure sensor and the relay (AX1) is excited and the contact 12 is turned on.The relay (AX12) is self-holding and the contact 13 is turned on to operate the first unit Contact 15 turns OFF and the self-holding of the relay (AX11) is released to release the ready operation of the first unit, and the contact point 14 is turned ON, the relay (AX21) is excited to enter the self-holding state and the second unit is ready for operation. If the pressure does not decrease even after the set time, and if it is more than LOAD, when the contact 17 is turned on by receiving the operation signal from the pressure sensor, the relay (AX22) is self-maintained and the second unit is operated by the contact 18 and the relay (AX 31) is self-sustained and enters the ready state for operation of Unit 3.

흡입관 압력이 압력설정 범위 안에(LOAD,UNLOAD지점 사이) 있을 때에는 현재 압축기 운전상태를 유지하며 부하량이 줄어 흡입관 압력이 낮아져 흡입관 압력이 UNLOAD지점에 도달하면 흡입관 압력센서로부터 정지신호가 들어오고 접점18번이 OFF되어 릴레이(AX12)가 소자되고 접접13이 OFF되어 제1호기를 정지시키며 접점14가 OFF되어 제 2호기 운전준비 상태를 해제한다.When the suction line pressure is within the pressure setting range (between LOAD and UNLOAD points), the current compressor operation status is maintained and the load decreases, the suction pipe pressure decreases, and when the suction pipe pressure reaches the UNLOAD point, a stop signal comes from the suction pipe pressure sensor and contact point 18 Is turned off, the relay AX12 is deactivated, the contact 13 is turned off to stop the first unit, and the contact 14 is turned off to release the preparation state of the second unit.

상기와 같은 동작으로 운전신호가 들어오면 제 3호기가 운전되고 계속된 운전신호로 제 4호기, 제 1호기 순으로 운전되며 정지신호가 들어오면 제 2호기가 정지되고 계속된 정지신호로 제 3호기, 제 4호기, 제 1호기 순으로 정지한다.When the operation signal is received by the operation as described above, the third unit is operated and the continued operation signal is operated in the order of the fourth unit and the first unit, and when the stop signal is received, the second unit is stopped and the third is continued. The unit will stop in the order of Units No. 4 and No. 1.

흡입관 압력 변화에 따라 압축기 운전량을 0%에서 100%(4단 병렬연결의 경우 0%, 25%, 50%, 75%, 100%)까지 냉동기유니트(병렬다중압축기)내의 능력을 가감하여 현재시점에 부하량에 따른 적정한 운전량으로 운전수있고 병렬다중압축기(멀티냉동기유니트)내의 압축기 개별로 무리하게 운전되는 것을 방지하고 운전 조건을 고르게 유지할 수 있는 장점을 가진 발명이다.Depending on the pressure of the suction pipe, the compressor operation amount is changed from 0% to 100% (0%, 25%, 50%, 75%, 100% in the case of 4 stage parallel connection). The invention has the advantage of being able to operate with the proper operation amount according to the load at the time point and to prevent excessive operation of the compressors individually in the parallel multiple compressor (multi-cooler unit) and to maintain the operation conditions evenly.

본 발명은 공지와 같이 병렬다중압축기(MULTI COMPRESSOR SYSTEM)를 순차순환운전제어 하므로 먼저 운전된 압축기를 먼저 정지 시키는 방법으로 유니트내의 특정한 압축기에 무리한 부담을 주는 것을 방지하고 운전조건을 고르게 유지하므로 압축기에 고장 요인을 줄이고 운전 시점에 필요한 운전량 많큼 운전되므로 절전효과가 우수하며 운전 조건을 고르게 유지하여 균형적이고 안정된 운전이 가능한 유용한 발명이다.Since the present invention controls the sequential circulation operation of the MULTI COMPRESSOR SYSTEM as well known, the compressor is first stopped to prevent the burden on a particular compressor in the unit and to maintain the operation conditions evenly. It is a useful invention that can be balanced and stable operation by maintaining the operation condition evenly because it reduces the failure factor and operates a large amount of operation required at the time of operation.

Claims (1)

냉동기 유닛트 내에 2대 이상의 압축기 (COMPRESSOR)를 병렬로 연결하여 병렬다중압축기방식 (MULTI COMPRESSOR SYSTEM)으로 구성하고 저온 창고(10)에 온도가 적정 온도보다 높으면 온도 조절기(TC)에 의해 전자변(SV)가 열려 냉매가스가 증발기를 거쳐 흡입관으로 유입되어 그 압력이 증가되고 설정된 압력에 도달하면 흡입관 압력 센서로부터 운전신호를 받아 제1호기의 압축기를 운전하고 계속된 운전신호에 따라 제2호기, 제3호기..... 순서로 압축기가 운전되도록 하는 단계와, 저온창고(10)에 온도가 적정한 온도가 되면 온도조절기(TC)에 의해 전자변(SV)을 닫아 냉매의 흐름이 차단되어 흡입관 압력이 감소하여 설정된 압력에 도달하면 흡입관 압력센서로부터 정지신호를 받아 먼저 운전된 제1호기부터 제2호기, 제3호기..... 순으로 정지시키도록 하는 단계와, 재차 저온창고(10)에 온도가 상승하면 온도 조절기(TC)에 의해 전자변(SV)이 열려 냉매가스가 증발기를 거쳐 흡입관으로 유입되어 그 압력이 증가되고 설정된 압력에 도달하면 흡입관 압력 센서로부터 운전신호를 받아 제4호기, 제3호기, 제2호기, 제1호기 순으로 운전되는 단계와, 저온창고(10)의 온도가 적정한 상태가 되면 온도조절기(TC)에 의해 전자변(SV)을 닫아 냉매의 흐름이 차단되어 흡입관 압력이 감소하여 설정된 압력에 도달하면 흡입관 압력센서로부터 정지신호를 받아 제4호기, 제3호기, 제2호기, 제1호기 순으로 정지하는 단계와, 적은 부하 상태에서 운전될 때에도 제2호기가 운전된 후 정지되면 다음 운전은 제3호기부터 시작하여 운전되도록 하는 단계를 구비함을 특징으로 하는 병렬다중압축기(MULTI COMPRESSOR SYSTEM)의 순차순환운전제어방법.Two or more compressors are connected in parallel in the refrigerator unit to form a parallel compressor system, and if the temperature is higher than the proper temperature in the low temperature warehouse 10, the temperature controller (SV) is used. When the refrigerant gas flows into the suction pipe through the evaporator and the pressure increases and reaches the set pressure, it receives the operation signal from the suction pipe pressure sensor and operates the compressor of the first unit. When the compressor is operated in the order of the exhalation ..... and the temperature of the low temperature warehouse 10 reaches a proper temperature, the temperature of the refrigerant is blocked by closing the electronic valve SV by the temperature controller TC so that the pressure of the suction pipe is reduced. When the pressure decreases and reaches the set pressure, the stop signal is received from the suction pipe pressure sensor, and the first and second units are stopped in order from the first unit to the second unit and the third unit. When the temperature rises in the low temperature warehouse 10, the electronic valve SV is opened by the temperature controller TC, and the refrigerant gas flows into the suction pipe through the evaporator, and the pressure increases. When the pressure reaches the set pressure, the operating signal is received from the suction pipe pressure sensor. Step 4, 3, 2, 1 in the order of operation, and when the temperature of the low-temperature warehouse 10 is in an appropriate state, the electronic valve (SV) is closed by the temperature controller TC to cool the refrigerant. When the flow is blocked and the suction pipe pressure decreases to reach the set pressure, the controller receives the stop signal from the suction pipe pressure sensor and stops in the order of No. 4, No. 3, No. 2 and No. 1, and operates under low load. Even when the second unit is stopped after the operation of the second operation is a sequential circulation operation control method of a parallel compressor (MULTI COMPRESSOR SYSTEM) characterized in that it comprises a step to be operated starting from the third unit.
KR1019980042617A 1998-10-12 1998-10-12 Sequential Circulation Operation Control Method of Parallel Multiple Compressor KR100298856B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980042617A KR100298856B1 (en) 1998-10-12 1998-10-12 Sequential Circulation Operation Control Method of Parallel Multiple Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980042617A KR100298856B1 (en) 1998-10-12 1998-10-12 Sequential Circulation Operation Control Method of Parallel Multiple Compressor

Publications (2)

Publication Number Publication Date
KR20000025513A KR20000025513A (en) 2000-05-06
KR100298856B1 true KR100298856B1 (en) 2001-11-22

Family

ID=19553762

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980042617A KR100298856B1 (en) 1998-10-12 1998-10-12 Sequential Circulation Operation Control Method of Parallel Multiple Compressor

Country Status (1)

Country Link
KR (1) KR100298856B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101730487B1 (en) * 2012-11-06 2017-04-26 한화테크윈 주식회사 A compressing system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010004058A (en) * 1999-06-28 2001-01-15 전주범 compressor control methode for separated type air-conditioner having large capacity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101730487B1 (en) * 2012-11-06 2017-04-26 한화테크윈 주식회사 A compressing system

Also Published As

Publication number Publication date
KR20000025513A (en) 2000-05-06

Similar Documents

Publication Publication Date Title
US4151722A (en) Automatic defrost control for refrigeration systems
US20100089094A1 (en) Cooling storage
KR20160118748A (en) Method for controlling defrost period by temperature difference of evaporator inlet/outlet and system using thereof
JPH10238920A (en) Operating state managing apparatus for equipment
KR100298856B1 (en) Sequential Circulation Operation Control Method of Parallel Multiple Compressor
KR20090057822A (en) Thermo-hygrostat
JP2002340386A (en) Control method for air conditioner
JP2002257425A (en) Refrigeration equipment
JP2019078444A (en) Cooling box
CN100429465C (en) Chiller systems for shops
CN116697651A (en) Method and device for determining abnormality of four-way valve of refrigerating unit
JPH11161318A (en) Operation state managing device for equipment
CN107860162A (en) A control system for an air-cooled refrigerator
JP4845560B2 (en) Cooling system
JP4382468B2 (en) Refrigerator control device
JP2000020866A (en) Device for managing operating state of equipment
KR102662390B1 (en) Refrigerator automatic control system
KR100229488B1 (en) Independent cooling refrigerator and its control method
JP4357075B2 (en) Control device for cooling storage
CN115289730B (en) Refrigerating unit, unit control method and device
JPH102624A (en) Automatic operation controller of compressor for refrigerator facility
JPH0338620Y2 (en)
JP2004116995A (en) Refrigeration equipment
JP3219040B2 (en) Refrigeration equipment
JP2010071599A (en) Ice thermal storage system

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 19981012

PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 19981012

Comment text: Request for Examination of Application

PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20000811

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20010430

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20010604

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20010605

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20040602

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20050603

Start annual number: 5

End annual number: 5

FPAY Annual fee payment

Payment date: 20060530

Year of fee payment: 6

PR1001 Payment of annual fee

Payment date: 20060530

Start annual number: 6

End annual number: 6

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee