[go: up one dir, main page]

KR100297354B1 - Method for fabricating a multi-layered Cu films by sputtering method - Google Patents

Method for fabricating a multi-layered Cu films by sputtering method Download PDF

Info

Publication number
KR100297354B1
KR100297354B1 KR1019990000413A KR19990000413A KR100297354B1 KR 100297354 B1 KR100297354 B1 KR 100297354B1 KR 1019990000413 A KR1019990000413 A KR 1019990000413A KR 19990000413 A KR19990000413 A KR 19990000413A KR 100297354 B1 KR100297354 B1 KR 100297354B1
Authority
KR
South Korea
Prior art keywords
copper film
deposition
electrical resistivity
thickness
mtorr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1019990000413A
Other languages
Korean (ko)
Other versions
KR20000050489A (en
Inventor
송재성
민복기
김현식
Original Assignee
윤문수
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤문수, 한국전기연구원 filed Critical 윤문수
Priority to KR1019990000413A priority Critical patent/KR100297354B1/en
Publication of KR20000050489A publication Critical patent/KR20000050489A/en
Application granted granted Critical
Publication of KR100297354B1 publication Critical patent/KR100297354B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3492Variation of parameters during sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

본 발명은 스퍼터링법에 의한 다층 구리막 제조방법에 관한 것으로서, 접착력을 우수하게 하는 증착 조건인 200 W, 20 mtorr의 조건하에서 구리막을 1차 증착한 후, 전기 비저항을 가장 낮게 하는 조건인 100 W, 10 mtorr의 증착 조건하에서 다시 2차 증착하여 2층 구리막(2-layered Cu film)을 제조하되, 2층 구리막의 전체 두께에 대한 상기 1차로 증착한 하부 구리막의 두께 비율()을 약 25로 함으로써, Cr, TiN, AlN과 같은 물질로 이루어진 중간층 박막이나, 열처리와 같은 복잡한 추가 공정 없이도, 낮은 비저항 특성과 높은 접착력 특성을 동시에 만족하는 구리막을 제조할 수 있어서, 제조 공정이 단순하여 경제성이 향상되는 효과가 있는 매우 유용한 발명이다.The present invention relates to a method for producing a multilayer copper film by the sputtering method, after the first deposition of a copper film under the conditions of 200 W, 20 mtorr, which is a deposition condition for excellent adhesion, 100 W, which is a condition for lowest electrical resistivity. Second deposition under a deposition condition of 10 mtorr to produce a 2-layered copper film, wherein the ratio of the thickness of the first deposited lower copper film to the total thickness of the two-layer copper film In this way, an interlayer thin film made of a material such as Cr, TiN, or AlN, or a copper film satisfying both low resistivity and high adhesive force properties can be produced simultaneously without complicated additional processes such as heat treatment. It is a very useful invention with the effect of improving.

Description

스퍼터링법에 의한 다층 구리막 제조방법 { Method for fabricating a multi-layered Cu films by sputtering method }Method for fabricating a multi-layered Cu films by sputtering method

본 발명은 스퍼터링법에 의한 다층 구리막 제조방법에 관한 것으로서, 더욱 상세하게는 다수의 스퍼터링 단계를 거쳐 구리막을 제조하되, 목표로 하는 특성에 따라 각 스퍼터링 단계별로 증착 조건을 상이하게 설정함으로써, 전체 구리막에 대해서 원하는 특성을 모두 얻을 수 있도록 한 스퍼터링법에 의한 다층 구리막 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a multilayer copper film by the sputtering method, and more particularly, to produce a copper film through a plurality of sputtering steps, by setting the deposition conditions differently for each sputtering step according to the desired characteristics, The present invention relates to a method for producing a multilayer copper film by sputtering so as to obtain all desired characteristics with respect to the copper film.

현재 박막(薄膜)소자의 배선(配線)으로 널리 사용되고 있는 알루미늄계 재료를 대체할 수 있는 새로운 재료로는 구리가 가장 유망한 것으로 부각되고 있는데, 이러한 구리막을 박막 소자용 배선으로 사용하기 위해서는, 수 ㎛의 두께에서 낮은 전기 비저항(比抵抗) 특성과, 실리콘 기판과의 높은 접착력 특성을 동시에 만족시켜야 한다.Currently, copper is the most promising new material that can replace aluminum-based materials, which are widely used as thin film devices. In order to use such copper films as thin film devices, several micrometers are needed. It is necessary to satisfy both the low electrical resistivity and the high adhesion with the silicon substrate at the thickness of.

현재 사용되는 구리막 증착기술로는 스퍼터링법(sputtering), 도금법, 화학기상(氣相)증착법 등이 있으며, 이들 중 저(低)저항 특성, 불순물 혼입량, 저온 증착 및 높은 증착 속도 등의 여러 장점을 갖고 있는 스퍼터링법이 보다 널리 이용되고 있다.Currently used copper film deposition techniques include sputtering, plating, and chemical vapor deposition. Among them, various advantages such as low resistance, impurity content, low temperature deposition and high deposition rate The sputtering method which has a is widely used.

그러나, 일반적인 스퍼터링법으로는 상기 낮은 전기 비저항(比抵抗) 특성과 높은 접착력 특성을 동시에 만족시키는 구리막을 제조하기 어려우며, 특히 구리막은 실리콘 웨이퍼(Si-wafer) 기판과의 열팽창 계수의 차이로 인해 접착력이 매우 나쁘며, 습식 식각법에 의해 미세 패턴을 형성하기가 어렵다.However, it is difficult to produce a copper film that satisfies the low electrical resistivity and high adhesion properties at the same time by a general sputtering method, in particular, the copper film has an adhesive force due to a difference in thermal expansion coefficient with a silicon wafer (Si-wafer) substrate. This is very bad, and it is difficult to form a fine pattern by wet etching.

이러한 문제점을 해결하기 위해 높은 증착 전력 및 증착 압력에서 구리막을 제조할 경우, 구리막이 주상정으로 성장하므로 전기 비저항이 매우 높게 되며, 또한 낮은 증착 전력 및 증착 압력에서 구리막을 제조할 경우에는 치밀한 미세 조직을 갖는 구리막을 제조할 수 있어 전기 비저항은 낮지만 기판과의 접착력이 낮아서 박리현상이 일어난다는 문제점이 있었다.In order to solve this problem, when the copper film is manufactured at high deposition power and deposition pressure, the electrical resistivity is very high because the copper film grows to the columnar top, and when the copper film is manufactured at low deposition power and deposition pressure, fine microstructure The copper film can be produced with a low electrical resistivity, but has a problem in that peeling occurs due to low adhesion to the substrate.

따라서, 종래에는 기판과의 접착력을 향상시키기 위해, 실리콘 웨이퍼 기판 위에 Cr, TiN, AlN과 같은 물질로 중간 박막층을 1차로 증착시킨 후 그 위에 원하는 두께의 구리막을 증착하는 방법을 사용하거나, 기판 위에 일단 구리막을 증착한 후 적당한 온도에서 별도로 열처리하는 방법 등을 사용함으로써, 상기 요구되는 두가지 특성을 동시에 만족시키는 구리막을 제조하였었다.Therefore, conventionally, in order to improve adhesion to the substrate, a method of first depositing an intermediate thin film layer of a material such as Cr, TiN, AlN on a silicon wafer substrate, and then depositing a copper film having a desired thickness thereon, or on the substrate By depositing a copper film once and then heat-treating separately at an appropriate temperature, etc., the copper film which satisfy | fills the said two required characteristics simultaneously was produced.

그러나, 이러한 제조방법은 새로운 물질을 추가로 사용하여야 하고, 공정이 복잡하여 경제성이 떨어지는 것은 물론, 다른 막에도 영향을 미치는 등 여러 가지 문제점이 있었다.However, this manufacturing method has to use a new material additionally, there are a number of problems, such as complicated process and less economical, affecting other membranes.

따라서, 본 발명은 상기와 같은 문제점을 해결하기 위하여 창작된 것으로서, 별도의 물질을 추가로 사용하는 중간층 증착 과정이나, 열처리와 같은 복잡한 공정을 추가하지 않으면서도 수 ㎛의 두께에서 낮은 전기 비저항(比抵抗) 특성과 높은접착력 특성을 동시에 만족시키는 스퍼터링법에 의한 다층 구리막 제조방법을 제공하는데에 목적이 있다.Accordingly, the present invention was created to solve the above problems, and has a low electrical resistivity at a thickness of several μm without adding a complicated process such as an intermediate layer deposition process or heat treatment using an additional material. Iv) It is an object of the present invention to provide a method for producing a multilayer copper film by the sputtering method which satisfies the characteristics and the high adhesive force characteristics simultaneously.

도 1은 증착 전력 100 W의 조건에서 제조한 단층 구리막의, 증착 압력에 따른 전기 비저항 특성 및 접착력 특성의 변화를 도시한 것이고,FIG. 1 illustrates changes in electrical resistivity and adhesion properties of deposition of a single layer copper film under a deposition power of 100 W according to deposition pressure.

도 2는 증착 전력 200 W의 조건에서 제조한 단층 구리막의, 증착 압력에 따른 전기 비저항 특성 및 접착력 특성의 변화를 도시한 것이고,FIG. 2 illustrates changes in electrical resistivity and adhesion properties of deposition of a single layer copper film produced under a deposition power of 200 W according to deposition pressure.

도 3은 본 발명에 따른 스퍼터링법에 의한 다층 구리막 제조방법을 이용하여 제조한 이층 구리막의 모식도이고,3 is a schematic diagram of a two-layer copper film prepared by using the method for producing a multilayer copper film by the sputtering method according to the present invention,

도 4는 본 발명에 따른 이층 증착법에 의해 제조된 다층 구리막의, 하부 구리막의 두께 비율에 따른 전기 비저항 특성 및 접착력 특성의 변화를 도시한 것이다.Figure 4 shows the change of the electrical resistivity characteristics and adhesive force characteristics of the multilayer copper film produced by the two-layer deposition method according to the present invention according to the thickness ratio of the lower copper film.

상기와 같은 목적을 달성하기 위한 본 발명에 따른 스퍼터링법에 의한 다층 구리막 제조방법은, 스퍼터링법을 이용한 구리막 제조방법에 있어서, 접착력 특성이 우수한 증착 조건하에서, 기판 위에 소정 두께의 구리막을 1차 증착하는 제 1단계; 및 전기 비저항 특성이 우수한 증착 조건하에서, 상기 증착된 구리막 위에 다시 구리막을 2차 증착하는 제 2단계를 포함하여 이루어지는 것에 그 특징이 있는 것이다.In the method for producing a multilayer copper film by the sputtering method according to the present invention for achieving the above object, in the copper film production method using the sputtering method, a copper film having a predetermined thickness on a substrate under deposition conditions excellent in adhesion properties 1 First deposition; And a second step of secondly depositing a copper film on the deposited copper film under deposition conditions with excellent electrical resistivity characteristics.

상기와 같이 이루어진 본 발명에 따른 스퍼터링법에 의한 다층 구리막 제조방법은, 초기 증착 조건이 전체 구리막의 접착력을 좌우하므로 먼저 접착력이 우수한 조건하에서 1차 증착한 후, 전기 비저항 특성이 우수한 조건에서 2차 증착함으로써, 전체적으로 기판과의 접착력이 충분히 높으면서 동시에 전기 비저항도 낮은 다층 구리막을 제조할 수 있게 되는 것이다.In the method of manufacturing a multilayer copper film by the sputtering method according to the present invention made as described above, since the initial deposition conditions influence the adhesion of the entire copper film, first the first deposition under conditions excellent in the adhesive strength, and then in the condition of excellent electrical resistivity characteristics 2 By further evaporating, it is possible to produce a multilayer copper film having a sufficiently high adhesive force with the substrate as a whole and a low electrical resistivity.

이하, 본 발명에 따른 스퍼터링법에 의한 다층 구리막 제조방법의 바람직한 실시예에 대해 첨부한 도면을 참조하여 상세히 설명한다.Hereinafter, with reference to the accompanying drawings, a preferred embodiment of a method for producing a multilayer copper film by the sputtering method according to the present invention will be described in detail.

본 발명에 따른 다층 구리막을 제조하기 위한 이하의 실험에서는 RF 마그네트론 스퍼터링 장치를 이용하였으며, 타겟(target)으로는 직경 4'인 구리를,기판(Substrate)으로는 실리콘 웨이퍼(Si-wafer)를 사용하되, 상기 기판은 증류수, TCE(Trichloroethylene), 아세톤, 에틸알코올 순으로 10분간 초음파 세척기를 사용하여 2회 반복 세척한 후, 아르곤(Ar) 가스로 건조시켜 사용하였다.In the following experiments for manufacturing a multilayer copper film according to the present invention, an RF magnetron sputtering apparatus was used, a copper having a diameter of 4 'was used as a target, and a silicon wafer (Si-wafer) was used as a substrate. However, the substrate was repeatedly washed twice using an ultrasonic cleaner for 10 minutes in distilled water, TCE (Trichloroethylene), acetone, and ethyl alcohol, and then dried with argon (Ar) gas.

또한, 상기 RF 마그네트론 스퍼터링 장치의 챔버(chamber) 내의 초기 진공도는 3×10-7torr 이하로 설정하고, 아르곤 유량은 8 cc/min로 일정하게 유지시켰으며, 챔버 내의 증착 압력을 조절한 후 RF 전력을 가하여 플라즈마를 안정하게 형성시켜, 타겟의 표면에 이미 형성되어 있는 산화막 및 오염물 등을 제거하기 위해 셔터(shutter)를 닫은 상태에서 20분 정도 예비 스퍼터링을 행한 후, 일반적인 증착법 및 이층 증착법을 이용하여 구리막을 제조하였다.In addition, the initial vacuum degree in the chamber (chamber) of the RF magnetron sputtering apparatus was set to 3 × 10 -7 torr or less, the argon flow rate was kept constant at 8 cc / min, after adjusting the deposition pressure in the chamber RF Applying electric power to form plasma stably, preliminary sputtering for about 20 minutes with the shutter closed to remove the oxide film, contaminants, etc. already formed on the surface of the target, and then using a general deposition method and a two-layer deposition method To prepare a copper film.

아래의 표 1은 본 발명의 실험에서 사용한 증착 조건을 나타낸 것이다.Table 1 below shows the deposition conditions used in the experiment of the present invention.

실험 변수Experimental variables 조건Condition 진공도(Vacuum)Vacuum 3×10-7torr 이하3 × 10 -7 torr or less 기판(Substrate)Substrate 실리콘 웨이퍼Silicon wafer 타겟(Target)Target 구리(Cu)(4',4N)Copper (Cu) (4 ', 4N) 전력(Power)Power 100 W, 200 W100 W, 200 W 아르곤 압력(Ar Pressure)Ar Pressure 5,10,20,30 mtorr5,10,20,30 mtorr 가스 유량(Gas Flow)Gas Flow 8 cc/min8 cc / min 온도(Temperature)Temperature 상온(Room Temperature)Room Temperature

먼저, 증착 전력을 100 W로 설정한 후 증착 압력을 변화시켜 가면서 단층 구리막을 제조하였으며, 도 1은 이와 같이 제조한 단층 구리막의, 증착 압력 변화에 따른 전기 비저항 특성 및 접착력 특성의 변화를 도시한 것으로서, 증착 압력이 10 mtorr일 때 전기 비저항이 2.07 μΩ·cm으로 가장 작았으며, 그 이상의 증착 압력에서는 전기 비저항이 증가하는 경향을 나타내었다. 구리막의 전기 비저항은 4단자법(4-probe method)으로 측정하였으며, 이하에서도 동일한 방법을 사용하였다.First, a single layer copper film was manufactured by changing the deposition pressure after setting the deposition power to 100 W, and FIG. 1 illustrates a change in electrical resistivity and adhesion properties according to the deposition pressure of the prepared single layer copper film. As the deposition pressure was 10 mtorr, the electrical resistivity was the smallest at 2.07 μΩcm, and the electrical resistivity increased at higher deposition pressures. The electrical resistivity of the copper film was measured by the 4-probe method, and the same method was used below.

제조된 구리막의 비저항 값이 벌크보다 약간 높은 것은, 박막 형성 중 미량의 불순물이 함유되었거나, 막 내부의 결함에 의한 효과라고 생각되며, 이로 인해 증착 압력이 증가할수록 전기 비저항이 증가하였다고 사료된다.The slightly higher resistivity value of the prepared copper film is considered to be due to the presence of a small amount of impurities during the formation of the thin film or a defect in the film. Therefore, it is considered that the electrical resistivity increases as the deposition pressure increases.

한편, 제조된 구리막을 박막 소자의 배선 재료로 사용하기 위한 또 하나의 특성인 구리막과 기판과의 접착력을 측정하기 위하여, 본 발명에서는 Belser와 Hicklin이 제안한 direct pull-off 테스트 법을 사용하였으며, 역시 이하에서도 동일한 방법을 사용하였다.Meanwhile, in order to measure the adhesion between the copper film and the substrate, which is another property for using the manufactured copper film as a wiring material of the thin film device, in the present invention, a direct pull-off test method proposed by Belser and Hicklin was used. Again, the same method was used below.

일반적으로, 증착된 구리막을 미세 패턴으로 형성하기 위해서는 접착력이 최소 600 g/cm2이상은 되어야 습식 식각 중에 기판과 박리가 일어나지 않고 양호한 패턴을 형성할 수 있으나, 증착 전력 100 W에서 증착된 구리막의 접착력은 증착 압력에 관계 없이 300 g/cm2이하의 매우 낮은 접착력을 갖고 있어서, 박막 소자에의 응용이 어렵다.In general, in order to form the deposited copper film in a fine pattern, the adhesion force must be at least 600 g / cm 2 or more, so that a good pattern can be formed without peeling from the substrate during wet etching. The adhesive force has a very low adhesive force of 300 g / cm 2 or less regardless of the deposition pressure, so that application to the thin film element is difficult.

결론적으로, 증착 전력 100 W에서 제조한 단층 구리막에 대해, 증착 압력 변화에 따른 전기 비저항 및 접착력 특성의 변화를 측정한 결과, 구리막의 전기 비저항은 증착 압력 10 mtorr일 때 2.07 μΩ·cm으로 매우 낮은 값을 가졌음에 반해, 접착력이 충분히 크지 못하여 전체적으로 볼 때 박막 소자의 배선 재료로 응용하기에는 부적당함을 알 수 있었다.In conclusion, as a result of measuring the change of the electrical resistivity and the adhesion property according to the deposition pressure change, the electrical resistivity of the copper film was 2.07 μΩ · cm at the deposition pressure of 10 mtorr. In contrast to the low value, the adhesive force was not sufficiently large, and as a whole, it was found to be inadequate for application as a wiring material of a thin film element.

이어서, 증착 전력을 200 W로 설정한 후 역시 증착 압력을 변화시켜 가면서 단층 구리막을 제조하였으며, 도 2는 이와 같이 제조한 단층 구리막의, 증착 압력 변화에 따른 전기 비저항 특성 및 접착력 특성의 변화를 도시한 것으로서, 3.7 μΩ·cm 이상 되는 높은 전기 비저항 값을 가지고 있음을 알 수 있다.Subsequently, after setting the deposition power to 200 W, a single layer copper film was also manufactured while varying the deposition pressure. FIG. 2 illustrates a change in the electrical resistivity and adhesion properties of the single layer copper film thus prepared according to the deposition pressure. As a result, it can be seen that it has a high electrical resistivity value of 3.7 μΩ · cm or more.

이는 증착 전력 100 W인 상기 실험 1의 경우에 비해 보다 커진 것이며, 그 이유는 증착 전력이 증가할수록 증착 속도가 빨라져서, 증착된 구리막에 많은 내부 응력과 결함이 형성되었기 때문이라고 생각된다.This is larger than in the case of Experiment 1, which has a deposition power of 100 W. The reason is that the deposition rate increases as the deposition power increases, so that many internal stresses and defects are formed in the deposited copper film.

그러나, 접착력은 특히 20 mtorr에서 840 g/cm2이라는 가장 높은 값을 나타내는 등 전체적으로 증착 전력 100 W에서 제조한 단층 구리막에 비해 상당히 높은 값을 나타냈으며, 그 이유는 증착 전력이 클수록 스퍼터되는 원자의 운동 에너지가 커져서 기판 표면에 결함을 생성시키고 이에 따라 원자의 침투 깊이가 상대적으로 증가함으로써, 기판과 박막 사이에 전이층이 형성되어 기판과의 결합에너지가 증가하였기 때문이라고 생각된다.However, the adhesion was significantly higher than the single-layer copper film produced at 100 W deposition power, especially at 20 mtorr, the highest value of 840 g / cm 2, because the higher the deposition power, the more sputtered atoms were. It is considered that the kinetic energy of increases the defects on the surface of the substrate, and thus the penetration depth of the atoms is relatively increased, whereby a transition layer is formed between the substrate and the thin film to increase the binding energy with the substrate.

결론적으로, 증착 전력 200 W에서 제조한 단층 구리막에 대해 증착 압력 변화에 따른 전기 비저항 및 접착력 특성의 변화를 측정한 결과, 접착력은 습식 식각이 가능할 만큼 매우 높았으나, 전기 비저항은 너무 높은 값을 가져서, 전체적으로는 증착 전력 100 W의 경우와 마찬가지로 박막 소자의 배선 재료로 응용하기에는 부적당함을 알 수 있었다.In conclusion, as a result of measuring the change of electrical resistivity and adhesion property according to the deposition pressure change for the single layer copper film manufactured at 200 W deposition power, the adhesion was very high enough to enable wet etching, but the electrical resistivity was too high. Therefore, it turned out that it is unsuitable for application to the wiring material of a thin film element as a whole in the case of 100 W of deposition power.

상기 실험 1 및 실험 2의 결과로부터, 한 가지 증착 조건만을 사용하여 박막을 성장시키는 단층 증착법으로는, 박막 소자의 배선 재료로 응용가능한, 낮은 전기 비저항과 높은 접착력을 동시에 만족시키는 구리막을 얻을 수 없다는 결론을 얻었다.From the results of Experiments 1 and 2, the single layer deposition method using only one deposition condition to grow a thin film cannot obtain a copper film that satisfies low electrical resistivity and high adhesive force, which is applicable to wiring material of a thin film element. A conclusion was made.

따라서, 본 발명에서는 상기 실험 2에서 얻어진, 접착력을 우수하게 하는 증착 조건인 200 W, 20 mtorr의 조건하에서 구리막을 1차 증착한 후, 전기 비저항을 가장 낮게 하는 조건인 100 W, 10 mtorr의 증착 조건하에서 다시 2차 증착함으로써, 도 3에 도시한 바와 같은 2층 구리막(2-layered Cu film)을 제조하였다.Therefore, in the present invention, after the first deposition of the copper film under the conditions of 200 W, 20 mtorr, which is the deposition condition for achieving excellent adhesion, obtained in Experiment 2, deposition of 100 W, 10 mtorr, which is the condition that lowers the electrical resistivity, is the lowest. By second deposition under the conditions again, a two-layered copper film as shown in FIG. 3 was prepared.

도 4는 이와 같은 방법으로 제조한 2층 구리막에 대해, 1차로 증착한 하부 구리막의 두께 비율()의 변화에 따른 전기 비저항 특성과 접착력 특성의 변화를 도시한 것으로서, 하부 구리막의 두께 비율이 증가함에 따라 전기 비저항이 증가하는 경향을 나타내었다. 여기서 두께 비율()이란 2층 구리막의 전체 두께중에서, 접착력이 우수한 증착 조건하에서 제조한 하부 구리막의 두께가 차지하는 비율, 즉 도 3에서 d/t×100이다.FIG. 4 is a graph illustrating changes in electrical resistivity and adhesive properties according to changes in the thickness ratio () of the lower copper film primarily deposited on the two-layer copper film manufactured by the above method. As it increased, the electrical resistivity tended to increase. Here, the thickness ratio () is the ratio of the thickness of the lower copper film manufactured under the deposition conditions with excellent adhesion among the total thickness of the two-layer copper film, that is, d / t × 100 in FIG. 3.

도 4에 의하면, 하부층 구리막의 두께비율이 25일 때 전기 비저항 값은 2.34 μΩ·cm 로서, 100 W, 10 mtorr의 증착 조건에서 단층 증착법으로 제조한 구리막의 전기 비저항 값 2.07 μΩ·cm 보다는 약간 높았지만, 기존의 알루미늄 배선재료의 전기 비저항 값 2.66 μΩ·cm 보다는 낮은 값을 나타내었다. 그러나, 하부 구리막의 두께비율이 증가함에 따라 전기 비저항 값도 급격히 증가하였다.According to FIG. 4, when the thickness ratio of the lower layer copper film is 25, the electrical resistivity value is 2.34 μΩ · cm, which is slightly higher than the electrical resistivity value of 2.07 μΩ · cm of the copper film manufactured by the single layer deposition method under the deposition conditions of 100 W and 10 mtorr. However, the electrical resistivity value of the existing aluminum wiring material was lower than 2.66 μΩ · cm. However, as the thickness ratio of the lower copper film was increased, the electrical resistivity value also increased rapidly.

한편, 접착력은 하부 구리막의 두께비율이 증가함에 따라 크게 증가하다가 두께비율이 25일 때 700 g/cm2의 값을 가졌으며, 그 이상의 두께비율에서는 접착력의 변화가 거의 없었다. 이는 접착력이 우수한 초기 조건에 의해 전체의 접착력이 좌우되기 때문이라고 생각된다.On the other hand, the adhesive strength was greatly increased as the thickness ratio of the lower copper film was increased, but had a value of 700 g / cm 2 when the thickness ratio was 25, and there was almost no change in the adhesive force at the thickness ratio above. This is considered to be because the adhesive force of the whole depends on the initial conditions which are excellent in adhesive force.

상기의 결과로부터, 접착력이 우수한 조건에서 1차 증착한 후 전기 비저항이 낮은 조건에서 다시 2차 증착하는 방법에 의해 제조한 다층 구리막은, 최적의 조건하에서 전기 비저항이 2.34 μΩ·cm, 접착력이 700 g/cm2으로서 박막소자의 배선 재료로 충분히 사용가능한 특성을 갖게 된다.From the above results, the multilayer copper film produced by the method of primary deposition under excellent adhesion and then secondary deposition under low electrical resistivity has an electrical resistivity of 2.34 μΩ · cm and adhesive strength of 700 under optimum conditions. It is g / cm <2> and has the characteristic which can be used sufficiently as a wiring material of a thin film element.

상기와 같이 구성된 본 발명에 따른 스퍼터링법에 의한 다층 구리막 제조방법은, 스퍼터링시의 증착 조건만을 적당히 조절함으로써, Cr, TiN, AlN과 같은 물질로 이루어진 중간층 박막이나, 열처리와 같은 복잡한 추가 공정 없이도, 낮은 비저항 특성과 높은 접착력 특성을 동시에 만족하는 구리막을 제조할 수 있어서, 제조 공정이 단순하여 경제성이 향상되는 효과가 있는 매우 유용한 발명이다.The method for manufacturing a multilayer copper film by the sputtering method according to the present invention configured as described above is appropriately controlling only the deposition conditions during sputtering, so that an intermediate layer thin film made of a material such as Cr, TiN, AlN, or a complicated additional process such as heat treatment is eliminated. It is a very useful invention that the copper film which satisfies the low specific resistance characteristic and the high adhesive force characteristic can be manufactured simultaneously, and the manufacturing process is simple and the economic efficiency is improved.

Claims (2)

스퍼터링법을 이용하여 실리콘 기판 위에구리막제조하는방법에 있어서,A method for producing a copper film on a silicon substrate using a sputtering method, 증착 전력이 180∼220W 이고 증착 압력이 15∼25 mtorr인제 1 증착 조건 하에서,상기기판 위에전체 구리막 두께의 10∼40%의 두께로 제 1구리막을형성하는 제 1 단계; 및A first step of forming a first copper film on the substrate at a thickness of 10 to 40% of the total copper film thickness under a first deposition condition having a deposition power of 180 to 220 W and a deposition pressure of 15 to 25 mtorr ; And 증착 전력이 80∼120W 이고 증착 압력이 5∼15 mtorr인제 2 증착 조건 하에서, 상기제 1구리막 위에상기 전체 구리막 두께의 허용 범위 내에서 제 2구리막을형성하는 제 2 단계를 포함하여 이루어지는 스퍼터링법에 의한 다층 구리막 제조방법. Deposition power is 80~120W under a second deposition condition of the evaporation pressure is 5~15 mtorr, formed by a second step of forming the second copper film in the acceptable range of the total thickness of the copper film on the first copper layer A method for producing a multilayer copper film by sputtering. 1항에 있어서,The method of claim 1 , 상기제 1구리막의 두께는상기전체구리막두께의 25%인 것을 특징으로 하는 스퍼터링법에 의한 다층 구리막 제조방법.The thickness of the said 1st copper film is 25% of the said total copper film thickness, The multilayer copper film manufacturing method by the sputtering method characterized by the above-mentioned.
KR1019990000413A 1999-01-11 1999-01-11 Method for fabricating a multi-layered Cu films by sputtering method Expired - Fee Related KR100297354B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990000413A KR100297354B1 (en) 1999-01-11 1999-01-11 Method for fabricating a multi-layered Cu films by sputtering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990000413A KR100297354B1 (en) 1999-01-11 1999-01-11 Method for fabricating a multi-layered Cu films by sputtering method

Publications (2)

Publication Number Publication Date
KR20000050489A KR20000050489A (en) 2000-08-05
KR100297354B1 true KR100297354B1 (en) 2001-09-22

Family

ID=19570944

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990000413A Expired - Fee Related KR100297354B1 (en) 1999-01-11 1999-01-11 Method for fabricating a multi-layered Cu films by sputtering method

Country Status (1)

Country Link
KR (1) KR100297354B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443654A (en) * 1990-06-11 1992-02-13 Matsushita Electric Works Ltd Preparation of copper film laminated alumina wafer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443654A (en) * 1990-06-11 1992-02-13 Matsushita Electric Works Ltd Preparation of copper film laminated alumina wafer

Also Published As

Publication number Publication date
KR20000050489A (en) 2000-08-05

Similar Documents

Publication Publication Date Title
US5407863A (en) Method of manufacturing semiconductor device
US6057237A (en) Tantalum-containing barrier layers for copper
KR102478822B1 (en) Semiconductor device with anti-warp layer
JPS63202911A (en) Method for manufacturing titanium/titanium nitride double layer in high-density integrated circuits
JP2004006535A (en) Piezoelectric element using ultra-highly oriented aluminum nitride thin film and method of manufacturing the same
CN104789928A (en) Preparation method for tantalum nitride and tantalum multi-layer film with characteristics of low resistance temperature coefficient and high resistivity
US20010019301A1 (en) Thin-film resistor, wiring substrate, and method for manufacturing the same
KR100308467B1 (en) Submicron Filling Method in Substrate
US5484517A (en) Method of forming multi-element thin hot film sensors on polyimide film
US4975389A (en) Aluminum metallization for semiconductor devices
KR100297354B1 (en) Method for fabricating a multi-layered Cu films by sputtering method
CN117497514A (en) Low-stress semiconductor device, preparation method thereof and electronic device
US20020075131A1 (en) Cermet thin film resistors
US6489231B1 (en) Method for forming barrier and seed layer
CN109763100B (en) Sensitive film in film pressure sensor and manufacturing method and application thereof
JP3288301B2 (en) Thin film resistor, method of manufacturing the same, and wiring board incorporating the thin film resistor
WO1999053114A1 (en) Continuous process for sputtering tantalum nitride films
TWI882941B (en) A method for forming an adhesion buffer layer on the walls of high aspect ratio through-holes of an insulating substrate
CN115939035A (en) Diffusion barrier layer, preparation method thereof and integrated circuit Cu interconnection structure
TW202303763A (en) A method for controlling the resistivity and crystallinity of low resistivity materials through pvd method
KR100883526B1 (en) Top plate of chuck for semiconductor wafer and its manufacturing method
JP3796694B2 (en) Metal-deposited plastic substrate and method for producing the same
KR100326585B1 (en) Manufacturing method of ferroelectric capacitor
CN120311154A (en) A method for preparing a composite film with low temperature coefficient of resistance
JPH04315457A (en) Aln circuit board

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 19990111

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20001020

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20010517

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20010521

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20010522

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20040506

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20050502

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20060502

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20070521

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20080522

Start annual number: 8

End annual number: 8

FPAY Annual fee payment

Payment date: 20090522

Year of fee payment: 9

PR1001 Payment of annual fee

Payment date: 20090522

Start annual number: 9

End annual number: 9

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee