[go: up one dir, main page]

KR100270088B1 - Coke gas purification method using slaked lime - Google Patents

Coke gas purification method using slaked lime Download PDF

Info

Publication number
KR100270088B1
KR100270088B1 KR1019960070051A KR19960070051A KR100270088B1 KR 100270088 B1 KR100270088 B1 KR 100270088B1 KR 1019960070051 A KR1019960070051 A KR 1019960070051A KR 19960070051 A KR19960070051 A KR 19960070051A KR 100270088 B1 KR100270088 B1 KR 100270088B1
Authority
KR
South Korea
Prior art keywords
absorption tower
ammonia
liquid
hydrogen sulfide
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1019960070051A
Other languages
Korean (ko)
Other versions
KR19980051177A (en
Inventor
김장규
Original Assignee
이구택
포항종합제철주식회사
신현준
재단법인포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철주식회사, 신현준, 재단법인포항산업과학연구원 filed Critical 이구택
Priority to KR1019960070051A priority Critical patent/KR100270088B1/en
Publication of KR19980051177A publication Critical patent/KR19980051177A/en
Application granted granted Critical
Publication of KR100270088B1 publication Critical patent/KR100270088B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1468Removing hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/52Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/58Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/80Semi-solid phase processes, i.e. by using slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/604Hydroxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Industrial Gases (AREA)

Abstract

본 발명은 제칠소의 코크스로에서 발생되는 코크스가스를 정제하는 방법에 관한 것으로서, 코크스가스 정제공정에서 발생하는 페수에서 문제가되는 시안화합물을 따로 회수하여 유용한 화학물질로서 이용가능 하도록하고 또한 이로 인하여 폐수처리의 문제를 해결함과 동시에 황화수소를 회수하므로써 황으로 산화시키는 공정에서 발생하는 폐가스의 문제점을 동시에 해결할 수 있는 소석회를 이용한 코크스가스 정제방법을 제공하고자 하는데, 그 목적이 있다.The present invention relates to a method for purifying coke gas generated in a coke oven of a mill, and to recovering the cyan compound in question from wastewater generated in the coke gas refining process so that it can be used as a useful chemical and thereby wastewater. It is an object of the present invention to provide a method for refining coke gas using slaked lime which can simultaneously solve the problem of waste gas generated in the process of oxidizing to sulfur by recovering hydrogen sulfide.

본 발명은 코크스가스 정제방법에 있어서, 수분 및 타르, 나프탈렌 및 미세타르입자가 순차적으로 제거된 코크스가스를 시안화수소흡수탑(20)에서 보내어 코크스가스중의 시안화수소와 액중의 다황화 암모늄을 반응시켜 티오시안암모늄으로 흡수제거하고, 시안화수소가 제거된 상기 가스를 황화수소 흡수탑(7)에 보내어 황화수소를 흡수제거한 다음, 암모니아 흡수탑(8)에 보내어 암모니아를 흡수제거한후, 냉각한 다음, 벤졸흡수탑(10)으로 보내어 벤젠, 톨루엔 및 크실렌을 제거하여 외부로 배출하고; 상기 시안화수소 흡수탑(20)에서 배출되는 흡수액을 결정화기(21)에서 증발시커 티오시안암모늄 결정을 형성시킨 후 이 결정을 분리시킨 다음 흡수액을 시안화수소 흡수탑(20)으로 순환시키고; 상기 황화수소 흡수탑(7)에서 배출되는 흡수액을 산소가 순환되는 산화탑(22)에 보내어 황화수소를 산화시킨 후, 고액분리기(23)에서 고액분리를 한 다음 불용성고체를 황증발기(24)에서 가열시켜 황을 증발시킨 후 슬래그로 배출시키고, 상기 액체중의 일부를 암모니아 포화기(25)로 보내어 암모니아로 포화시키고, 황을 공급한 다음, 시안화수소흡수탑(20)으로 보내어 시안화수소 흡수액으로 보충하고, 상기 액체중의 나머지를 슬러리 보충탑(26)으로 보내어 소석회슬러리를 보충한 다음 황화수소 흡수탑(7)으로 보내고; 그리고 상기 암모니아 흡수탑(8)에서 배출된 흡수액을 증류시켜 암모니아를 분리시키고, 이 암모니아의 일부를 상기 암모니아 포화기(25)에 보내도록 구성되는 소석회를 이용한 코크스가스 정제방법을 그 요지로 한다.In the present invention, in the coke gas purification method, coke gas in which water and tar, naphthalene and fine tar particles are sequentially removed is sent from the hydrogen cyanide absorption tower 20 to react hydrogen cyanide in the coke gas with ammonium polysulfide in the liquid. Absorption is carried out by thiocyanic ammonium, and the hydrogen cyanide-free gas is sent to the hydrogen sulfide absorption tower (7) to absorb and remove hydrogen sulfide. Then, the gas is sent to the ammonia absorption tower (8) to absorb and remove ammonia, and then cooled. Sent to the absorption tower (10) to remove benzene, toluene and xylene to discharge to the outside; The absorption liquid discharged from the hydrogen cyanide absorption tower 20 is evaporated in the crystallizer 21 to form thiocyanium ammonium crystals, the crystals are separated, and the absorption liquid is circulated to the hydrogen cyanide absorption tower 20; After sending the absorbing liquid discharged from the hydrogen sulfide absorption tower 7 to the oxidation tower 22 through which oxygen is circulated, the hydrogen sulfide is oxidized, and then solid-liquid separation in the solid-liquid separator 23, and then the insoluble solid is heated in the sulfur evaporator 24. To evaporate the sulfur and then discharge it into slag, and send some of the liquid to the ammonia saturator 25 to saturate with ammonia, supply sulfur, and then send it to the hydrogen cyanide absorption tower 20 to supplement with hydrogen cyanide absorption liquid. Send the remainder of the liquid to the slurry replenishment tower 26 to replenish the slaked lime slurry and then to the hydrogen sulfide absorption tower 7; The main point is a method for purifying coke gas using slaked lime which is configured to distill the absorbing liquid discharged from the ammonia absorption tower 8 to separate ammonia and to send a part of the ammonia to the ammonia saturator 25.

Description

소석회를 이용한 코크스가스 정제방법Coke gas purification method using slaked lime

제1도는 황화수소의 습식산화법을 이용한 종래의 코크스가스 정제법을 나타내는 공정도.1 is a process chart showing a conventional coke gas purification method using a wet oxidation method of hydrogen sulfide.

제2도는 본 발명에 따라 코크스가스를 정제하는 공정을 나타내는 공정도.2 is a process chart showing a process for purifying coke gas according to the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

7 : 황화수소흡수탑 8 : 암모니아흡수탑7: hydrogen sulfide absorption tower 8: ammonia absorption tower

10 : 벤졸흡수탑 20 : 시안화수소흡수탑10: benzol absorption tower 20: hydrogen cyanide absorption tower

21 : 결정화기 22 : 산화탑21: crystallizer 22: oxidation tower

23 : 고액분리기 24 : 황증발기23: solid-liquid separator 24: sulfur evaporator

25 : 암모니아포화기 26 : 슬러리보충탑25: ammonia saturator 26: slurry supplement tower

본 발명은 제철소의 코크스로에서 발생되는 코크스가스를 정제하는 방법에 관한 것으로써, 보다 상세하게는, 시안화수소를 포집한 후 황화수소를 흡수하여 산화시키는 소석회를 이용한 코크스가스 정제방법에 관한 것이다.The present invention relates to a method for purifying coke gas generated in a coke oven of an ironworks, and more particularly, to a method for refining coke gas using calcined lime that collects hydrogen cyanide and then absorbs and oxidizes hydrogen sulfide.

코크스가스는 석탄을 건류하여 코크스로 만들 때 나오는 가스로서 이를 정제할 때 부산물로서 여러 가지 화학물질을 얻을 수가 있고 정제된 가스는 연료가스로서 이용될 수 있다.Coke gas is a gas produced by distilling coal into coke, and when it is purified, various chemicals can be obtained as by-products, and the purified gas can be used as fuel gas.

코크스가스를 정제할 때 사용되는 종래의 방법은 우선 암모니아를 제거하여 황산용액에 흡수시키든지 분해로에서 분해하여 공기중에 방산시키는 방법이 사용되었다. 이때 암모니아를 분해로에서 분해하는 경우에는 암모니아와 황화수소가 섞여있을 경우에는 분해로가스에 황산화물이 포함되어 공해물질로서 배출되는 문제점이 있었다. 암모니아를 제거하는 또 하나의 방법으로는 인산용액에 흡수하여 순수한 암모니아로 회수하는 포삼법이 있다.Conventional methods used for the purification of coke gas have been used to remove ammonia and absorb it in sulfuric acid solution or to decompose in cracking furnace and dissipate in air. At this time, when ammonia is decomposed in the cracking furnace, when ammonia and hydrogen sulfide are mixed, sulfur oxides are included in the cracking furnace gas, which causes a problem of being discharged as a pollutant. Another method of removing ammonia is the ginseng method, which is absorbed in a phosphate solution and recovered as pure ammonia.

그러나, 암모니아 보다도 제거가 어렵고 공해를 유발시키는 물질로서 황화수소와 시안화수소가 있는데 이들의 제거를 위해 지금까지 수많은 공정들이 개발되어 왔다. 황화수소는 석회석에 흡수시켜 제거하는 방법으로 출발하였으며 산화철 등을 촉매로 이용하여 산화시켜 황으로 제거하는 건식산화법과 건식 산화공정의 단점들을 극복하기 위해서 습식 공정이 개발되었는데 기본적인 목표들은 필요한 부지면적과 소요인력을 줄이고 생산되는 황의 순도를 높이기 위해 개발되었다. 이 방법에서 황화수소를 알칼리용액에 흡수시킨후 산소운반체를 이용해 황화수소를 산화시킴으로써 제거한다. 이때 흡수탑에서 촉매에 의해 황화수소를 산화시키면서 황화수소의 흡수율을 높이는데 촉매는 다시 재생탑에서 재생된다. 습식 황화수소 제거법의 대표적인 것으로는 일본에서 개발된 후막스공정(Fumnnks Process, Aromatics 27, 174,1975)이 있는데 이 공정에서는 산소운반체인 촉매로서 피크린산을 사용하고 이와 비슷한 다카학스공정(Takahax Process, Chemical Economy & Engineering Review 2,27,1970)에서는 나프토쿼논-2-술폰산 나트륩을 촉매로 사용하고 있다.However, hydrogen sulfide and hydrogen cyanide are more difficult to remove and cause pollution than ammonia, and numerous processes have been developed to remove them. Hydrogen sulfide was started by absorbing and removing limestone and wet process was developed to overcome the disadvantages of dry oxidation and dry oxidation process by oxidizing iron oxide and removing it with sulfur. The basic objectives are necessary land area and requirements. It was developed to reduce manpower and increase the purity of sulfur produced. In this method, hydrogen sulfide is absorbed into an alkaline solution and then removed by oxidizing hydrogen sulfide using an oxygen carrier. At this time, while absorbing hydrogen sulfide by the catalyst in the absorption tower to increase the hydrogen sulfide absorption rate, the catalyst is regenerated in the regeneration tower. Representative of the wet hydrogen sulfide removal method is the Fumnnks Process (Aromatics 27, 174,1975) developed in Japan, which uses picric acid as an oxygen carrier catalyst and similar Takahax process (Takahax Process, Chemical Economy). Engineering Review 2,27,1970) uses naphthoquinone-2-sulfonic acid natzate as a catalyst.

상기한 습식황화수소를 제1도를 통해 상세히 설명하면 다음과 같다. 제1도에 나타난 바와 같이, 코크스로에서 배출된 코크스가스가 코크스가스 포집관(1)에 모아지고 냉각되어 수분 및 타르가 응축되고 응축된 수분 및 타르는 기액분리기(2)에서 분리되어 처리되고, 가스는 냉각탑(3)에서 냉각된 후 나프탈렌 흡수탑(4)에서 나프탈렌이 제거되고 블로우어(5)를 거쳐 전기집진기(6)로 보내진다.The wet hydrogen sulfide will be described in detail with reference to FIG. 1 as follows. As shown in FIG. 1, the coke gas discharged from the coke oven is collected and cooled in the coke gas collecting pipe (1) to condense water and tar, and the condensed water and tar are separated and processed in the gas-liquid separator (2). After the gas is cooled in the cooling tower 3, the naphthalene is removed from the naphthalene absorption tower 4 and sent to the electrostatic precipitator 6 via the blower 5.

전기집진기(6)에서 응축된 미세입자타르가 제거되고 미세타르입자가 제거된 가스는 황화수소흡수탑(7)으로 이동하여 황화수소 및 시안화수소가 흡수제거된 다음, 암모니아 포집기(8)에서 암모니아가 제거된 후, 냉각탑(9)에서 냉각된 다음, 벤졸흡수탑(10)에서 벤젠, 톨루엔, 크실렌등이 제거된 후 외부로 배출된다.The fine particle tar condensed in the electrostatic precipitator 6 is removed and the gas from which the fine tar particles have been removed is moved to the hydrogen sulfide absorption tower 7 to absorb and remove hydrogen sulfide and hydrogen cyanide, and then ammonia is removed from the ammonia collector 8. After the cooling is performed in the cooling tower 9, the benzene, toluene, xylene, and the like are removed from the benzol absorption tower 10 and then discharged to the outside.

또한, 황화수소 흡수탑(7)에서 배출되는 흡수액은 산화탑(11)에서 산화되어 고액분리기(13)에서 황이 분리된 다음, 액중일부는 폐액처리되고, 액의 대부분은 흡수액으로 재순환된다.In addition, the absorbing liquid discharged from the hydrogen sulfide absorption tower 7 is oxidized in the oxidation tower 11 and the sulfur is separated in the solid-liquid separator 13, and then some of the liquid is waste-treated, and most of the liquid is recycled to the absorbing liquid.

상기 산화탑(11)으로부터 나오는 폐공기는 폐공기처리설비(12)에 의해 처리 된다.The waste air from the oxidation tower 11 is treated by the waste air treatment facility 12.

한편, 기액분리기(2)에서 분리된 타르와 응축수는 안수타르분리기(15)에서 응축수와 타르가 분리되고 응축수는 증류탑(14)에서 암모니아등이 증류되고 증류된 가스는 코크스가스와 합해지고 응축수는 폐수처리장치로 보내어진다.On the other hand, the tar and condensate separated in the gas-liquid separator 2 is separated from the condensate and tar in the anhydrous tar separator 15, the ammonia is distilled from the distillation column 14, the distilled gas is combined with coke gas and the condensate is Sent to the wastewater treatment unit.

그러나, 상기한 습식공정은 값비싼 촉매를 이용하기 때문에 촉매를 재생하는산화재생탑이 필요하게 되고 그에 따른 순환공정내의 여러 화합물의 축적에 따른 부작용도 발생한다. 대표적인 축적물로는 티오황산염과 티오시안산염이다. 이의 제거를 위해서는 순환액의 일부를 빼서 폐기하는 방법이나 과산화수소로 티오황산염을 황산염으로 산화시키는 방법 등이 있다. 그러나 티오시안산염을 일정농도 이하로 유지하기 위하여서는 액의 일부를 폐기시키는 방법밖에 없다. 이과정에서 폐수의 발생은 필언적이고 티오시안산염은 생물학적으로 난분해성이기 때문에 폐수처리의 어려움이 따른다. 또한, 상기한 방법에서는 공기에 의한 산화재생탑의 운전시 많은 양의 폐가스가 발생하여 이를 처리하는데에 따른 어려움이 존재한다.However, since the wet process uses an expensive catalyst, an oxidation and regeneration tower for regenerating the catalyst is required, and thus, side effects due to the accumulation of various compounds in the circulation process occur. Representative accumulations are thiosulfate and thiocyanate. In order to remove this, a part of the circulating fluid is removed and discarded, or a method of oxidizing thiosulfate to sulfate with hydrogen peroxide. However, the only way to keep the thiocyanate below a certain concentration is to discard part of the solution. In this process, the generation of wastewater is imperative and thiocyanate is biologically difficult to decompose, which leads to the difficulty of treating wastewater. In addition, in the above method, a large amount of waste gas is generated during operation of the air regeneration tower by air, and thus there is a difficulty in treating the waste gas.

상기한 방법에서 시안화합물을 따로 회수하지 못하는 단점을 해결하기 위하여 다황산나트륨(Sodium polysulfide; NaSx)용액에 흡수시켜 티오시안산나트륨 (NaCNS)으로 회수하는 공정이 최근에 개발되었다.(Coke and Chemistry, No.5, pp.20-22, 1984) .In order to solve the drawback of not recovering the cyanide compounds separately in the above method, a process for recovering sodium cyanate (NaCNS) by absorbing it in sodium polysulfide (NaSx) solution has recently been developed. (Coke and Chemistry, No. 5, pp. 20-22, 1984).

그러나, 상기 공정은 티오시안산염과 페놀을 회수하는데 주목적을 두고 개발되었기 때문에 황화수소를 회수하고 처리하면서 생기는 CN-이온 및 CNS-이온 등의 공해물질이 발생되는 문제점이 있다.However, since the process was developed with the main purpose of recovering thiocyanate and phenol, pollutants such as CN - ions and CNS - ions generated during the recovery and treatment of hydrogen sulfide are generated.

이에, 본 발명자는 상기한 종래방법들 제반문제점을 해결하기 위하여 연구를행하고, 그 결과에 근거하여 본 발명을 제안하게 된 것으로써, 본 발명은 코크스가스 정제공정에서 발생하는 폐수에서 문제가 되는 시안화합물을 따로 회수하여 유용한 화학물질로서 이용가능하도록 하고, 또한 이로인하여 폐수처리의 문제를 해결함과 동시에 황화수소를 회수하므로써, 황으로 산화시키는 공정에서 발생하는 페가스의 문제점을 동시에 해결할 수 있는 소석회를 이용한 코크스가스 정제방법을 제공하고자 하는데, 그 목적이 있다.Accordingly, the present inventors have conducted research to solve the above-mentioned problems of the conventional methods, and based on the results, the present invention proposes the present invention, which is a problem in the wastewater generated in the coke gas purification process. By recovering the compounds separately, they can be used as useful chemicals, thereby solving the problem of wastewater treatment and simultaneously recovering hydrogen sulfide, thereby reducing the problem of waste gas in the process of oxidizing to sulfur. To provide a method for purifying the coke gas used, the purpose is.

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

본 발명은 코크스가스를 응축시켜 수분 및 타르를 분리시키고 수분 및 타르가 분리된 코크스가스를 냉각한 후, 나프탈렌 흡수탑에서 나프탈렌을 제거시킨 다음, 응축된 미세입자 타르를 제거한 후, 황화수소 흡수탑에서 황화수소 및 시안화수소를 흡수제거하고; 상기 황화수소 흡수탑에서 배출되는 흡수액을 산화탑에서 산화시켜 황화수소를 황으로 산화시킨후, 고액분리기에서 황을 분리한 다음, 폐액처리 및 흡수액으로 재순환시키고; 그리고 상기 황화수소흡수탑에서 나온 가스를 암모니아 포집기로 보내어 암모니아를 제거한 후, 냉각한 다음, 벤졸 흡수탑으로 보내어 벤젠, 톨루엔, 크실렌 등을 제거시킨 후 외부로 배출시키는 공정을 포함하여 구성되는 코크스가스 정제방법에 있어서/수분 및 타르, 나프탈렌 및 미세타르입자가 순차적으로 제거된 코크스가스를 시안화수소 흡수탑에 보내어 코크스가스중의 시안화수소와 액중의 다황화 암모늄을 반응시켜 티오시안암모늄으로 흡수제거하고, 시안화수소가 제거된 상기 가스를 황화수소 흡수탑에 보내어 황화수소를 흡수제거 한 다음, 암모니아 흡수탑에 보내어 암모니아를 흡수제거한 후, 냉각한 다음, 벤졸 흡수탑으로 보내어 벤젠, 톨루엔 및 크실렌을 제거하여 외부로 배출하고; 상기 시안화수소 흡수탑에서 배출되는 흡수액을 결정화기에서 증발시켜 티오시안 암모늄결정을 형성시킨 후 이 결정을 분리시킨 다음 흡수액을 시화수소 흡수탑으로 순환시키고; 상기 황화수소 흡수탑에서 배출되는 흡수액을 산소가 순환되는 산화탑에 보내어 황화수소를 산화시킨 후, 고액분리기에서 고액분리를 한 다음, 불용성고체를 가열시켜 황을 증발시킨후 슬래그로 배출시키고, 상기 액체증의 일부를 암모니아 포화기로 보내어 암모니아로 포화시키고, 황을 공급한 다음, 시안화수소흡수탑으로 보내어 시안화수소 흡수액으로 보충하고, 상기 액체중의 나머지를 슬러리보충탑으로 보내어 소석회 슬러리를 보충한 다음 황화수소 흡수탑으로 보내고; 그리고 상기 암모니아 흡수탑에서 배출된 흡수액을 증류시켜 암모니아를 분리시키고, 이 암모니아의 일부를 상기 암모니아 포화기에 보내도록 구성되는 소석회를 이용한 코크스 가스 정제방법에 관한 것이다.The present invention is condensed coke gas to separate the water and tar, and after cooling the coke gas separated water and tar, remove naphthalene from the naphthalene absorption tower, remove the condensed fine particles tar, in the hydrogen sulfide absorption tower Absorbs and removes hydrogen sulfide and hydrogen cyanide; Oxidizing the absorbed liquid discharged from the hydrogen sulfide absorption tower in an oxidation tower to oxidize hydrogen sulfide to sulfur, separating sulfur in a solid-liquid separator, and then recycling the waste liquid and recycling the absorbed liquid; The gas from the hydrogen sulfide absorption tower is sent to an ammonia collector to remove ammonia, cooled, and then sent to a benzol absorption tower to remove benzene, toluene, xylene, and the like, and to discharge the coke gas to the outside. In the process, the coke gas from which water and tar, naphthalene and fine tar particles are sequentially removed is sent to a hydrogen cyanide absorption tower to react with hydrogen cyanide in the coke gas and ammonium polysulfide in the liquid to absorb and remove the thiocyanate, The hydrogen cyanide-free gas is sent to a hydrogen sulfide absorption tower to absorb and remove hydrogen sulfide, then to an ammonia absorption tower to absorb and remove ammonia, and then cooled to a benzol absorption tower to remove benzene, toluene and xylene to the outside. Exhaust; The absorption liquid discharged from the hydrogen cyanide absorption tower is evaporated in a crystallizer to form thiocyanate ammonium crystals, the crystals are separated, and the absorption liquid is circulated to the hydrogenation absorption column; The absorbed liquid discharged from the hydrogen sulfide absorption tower is sent to an oxidation tower through which oxygen is circulated to oxidize hydrogen sulfide, and then solid-liquid separation is carried out in a solid-liquid separator. The insoluble solid is heated to evaporate sulfur and then discharged into slag. Part of is sent to ammonia saturator, saturated with ammonia, supplied with sulfur, then sent to hydrogen cyanide absorption tower to replenish with hydrogen cyanide absorption liquid, and the remainder of the liquid is sent to slurry replenishment tower to replenish calcined lime slurry, and then hydrogen sulfide absorption Send it to the tower; The present invention relates to a method for purifying coke gas using slaked lime which is configured to distill an absorbent liquid discharged from the ammonia absorption tower to separate ammonia and send a portion of the ammonia to the ammonia saturator.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

제2도에 나타난 바와 같이, 코크스로에서 배출된 코크스가스를 코크스가스 포집관(1)에 모으고 냉각하여 수분 및 타르를 응축시키고, 응축된 수분 및 타르를 기액분리기(2)에서 분리하여 처리하고, 가스는 냉각탑(3)에서 냉각된 후, 나프탈렌 흡수탑(4)에서 나프탈렌이 제거되고 블로우어(5)를 거쳐 전기 집진기로 보내진다.As shown in FIG. 2, the coke gas discharged from the coke oven is collected and cooled in the coke gas collecting pipe (1) to condense moisture and tar, and the condensed water and tar are separated and treated in the gas-liquid separator (2). After the gas is cooled in the cooling tower (3), the naphthalene is removed from the naphthalene absorption tower (4) and sent to the electrostatic precipitator through the blower (5).

전기집진기(6)에서 응축된 미세입자타르가 제거되고 미세타르가 제거된 가스는 시안화수소흡수탑(20)에 보내어 코크스가스중의 시안화수소와 액중의 다황화암모늄을 반응시켜 티오시안암모늄으로 흡수제거되고, 극히 일부는 티오시안산 칼슘으로 된다.The fine particle tar condensed in the electrostatic precipitator 6 is removed, and the fine tar is removed, and the gas is sent to the hydrogen cyanide absorption tower 20 to react hydrogen cyanide in the coke gas with ammonium polysulfide in the liquid to be absorbed as thiocyanate. It is removed and only a part of it becomes calcium thiocyanate.

상기와 같이 시안화수소가 제거된 상기 가스를 황화수소 흡수탑(7)에 보내어 황화수소를 흡수제거한다. 황화수소 흡수탑(7)에서는 황화수소가 슬러리 보충탑 (26)에서 공급되는 소석회와 반응하여 Ca(SH)2형태로 흡수제거된다.As described above, the gas from which hydrogen cyanide is removed is sent to the hydrogen sulfide absorption tower 7 to absorb and remove hydrogen sulfide. In the hydrogen sulfide absorption tower 7, hydrogen sulfide reacts with the slaked lime supplied from the slurry supplement tower 26 to be absorbed and removed in the form of Ca (SH) 2 .

상기와 같이 황화수소가 제거된 가스를 암모니아 흡수탑(8)에 보내어 인산용액을 이용하여 암모니아를 흡수제거한 후 냉각탑(9)에서 냉각한 다음, 벤졸흡수탑 (10)으로 보내어 벤젠, 톨루엔 및 크실렌 등을 제거시킨 후, 외부로 배출시킨다.As described above, the hydrogen sulfide-free gas is sent to the ammonia absorption tower (8) to absorb and remove the ammonia using a phosphate solution, and then cooled in the cooling tower (9), and then sent to the benzol absorption tower (10) such as benzene, toluene and xylene, etc. After removing, discharge to the outside.

상기 시안화수소 흡수탑(20)에서 배출되는 흡수액은 결정화기(21)에서 황화수소 흡수탑(7)으로부터 받아들여지는 만큼의 수분을 증발시켜 티오시안 암모늄결정을 형성시킨 후 이 결정을 분리시킨 다음, 시안화수소 흡수탑(20)으로 순환된다.The absorbent liquid discharged from the hydrogen cyanide absorption tower 20 is evaporated as much water is received from the hydrogen sulfide absorption tower 7 in the crystallizer 21 to form a thiocyanate ammonium crystal, and then separated from the crystal. Circulated to the hydrogen cyanide absorption tower 20.

상기 황화수소 흡수탑(7)에서 배출되는 흡수액은 산소가 순환되는 산화탑 (22)으로 이동되어 황화수소를 산화시킨 후 고액분리기(23)에서 고액분리된 다음, 불용성고체는 황증발기(24)에서 가열되어 황을 증발시킨후 슬래그로 배출되고 상기 액체의 일부는 암모니아 포화기(25)로 이동되어 암모니아로 포화되고 황이 공급된 다음 시안화수소흡수탑(20)으로 보내어져 시안화수소흡수액으로 보충되고, 그리고 상기 액체중의 나머지는 슬러리 보충탑(26)으로 보내어져 소석회슬러리를 보충시킨 다음, 황화수소 흡수탑(7)으로 보내어진다.The absorbing liquid discharged from the hydrogen sulfide absorption tower 7 is moved to the oxidation tower 22 where oxygen is circulated to oxidize hydrogen sulfide, and then solid-liquid separated in the solid-liquid separator 23, and then the insoluble solid is heated in the sulfur evaporator 24. Sulfur is evaporated and then discharged into slag, and a portion of the liquid is transferred to the ammonia saturator 25, saturated with ammonia, and supplied with sulfur, and then sent to the hydrogen cyanide absorption tower 20 to be replenished with hydrogen cyanide absorption liquid, and The remainder of the liquid is sent to the slurry replenishment tower 26 to replenish the slaked lime slurry and then to the hydrogen sulfide absorption tower 7.

황화수소 흡수탑에서 시안화수소 흡수탑으로 보내어지는 흡수액 유량은 시안화수소 1g 당 1.2L 이상이 바람직한데, 그 이유는 여기에 암모니아를 포화시키고 황을 보충해서 다황화 암모늄이나 다황화 칼슘의 양이 시안화수소와 반응할 수 있는 충분한 양을 공급해 주어야 하는데 유량이 그 이하에서는 소요되는 양만큼 공급할 수 없기 때문이다.The flow rate of the absorbent liquid from the hydrogen sulfide absorption tower to the hydrogen cyanide absorption tower is preferably at least 1.2 L per 1 g of hydrogen cyanide, because the amount of ammonium polysulfide or calcium polysulfide is saturated by ammonia saturation and sulfur supplementation. It must be supplied in sufficient quantity to react with, because the flow rate can not supply as much as required.

상기 암모니아 흡수탑(8)에서 배출된 흡수액은 암모니아 증류기(23)에서 증류되어 암모니아를 분리시키고, 이 암모니아의 일부는 상기 암모니아 포화기(25)에 보내어진다.The absorption liquid discharged from the ammonia absorption tower 8 is distilled in the ammonia distillation unit 23 to separate ammonia, and a part of this ammonia is sent to the ammonia saturator 25.

한편, 기액분리기(2)에서 분리된 타르와 응축수는 종래방법에서와 같이, 안수타르분리기(5)에서 응축수와 타르가 분리되고 응축수는 증류탑(14)에서 암모니아등이 증류되고, 증류된 가스는 코크스가스와 합해지고 응축수는 폐수처리장치로 보내어진다.On the other hand, the tar and condensate separated in the gas-liquid separator (2), as in the conventional method, the condensate and tar is separated in the ordough tar separator (5), the condensate is distilled from the distillation column (14), the distilled gas It is combined with coke gas and condensate is sent to the wastewater treatment unit.

상기한 바와 같이 본 발명은 황화수소를 흡수제거할 때 생기는 문제점을 산화탑에서의 티오시안산염의 축적을 방지하고자 시안화수소를 제거하는 흡수탑(20)을 두어 티오시안산염으로 회수하고 시안화수소가 제거된 가스를 황화수소 흡수탑(7)으로 들어가도록 하였다. 이 때 흡수액에 황화수소 흡수탑의 흡수액 산화탑으로부터 분리된 흡수액을 일부 취하여 시안화수소 흡수탑 흡수액 중에 첨가하게 되면 황화수소흡수액에 투입된 소석회와 흡수액중의 암모니아와 황이 결합된 다황화 칼슘이나 다황화암모니아가 공급되고 또한 흡수된 시안화수소는 황화수소 흡수탑으로부터 공급된 다황화 칼슘이나 다황화암모니아와 반응하여 티오시안산 칼슘이나 티오시안산 암모니아로 변한다. 황화수소 흡수탑으로부터 공급되어지는 흡수액은 암모니아 포화기(25)에서 암모니아 흡수탑으로 부터 공급되는 암모니아에 포화되어 보내어지는 동시에 부족되는 황을 공급해 주도록 하였고 이렇게 함으로써 적은 양만 공급해 주어도 시안화수소와 반응할 수 있는 충분한 암모니아 및 황이 공급되게 된다. 이 흡수액중에 축적되는 티오시안산 칼슘이나 티오시안산 암모니아는 결정화기(21)에서 결정화가 되어 결정이 분리되고 결정이 분리된 흡수액은 재순환된다.As described above, the present invention has an absorption tower 20 for removing hydrogen cyanide to prevent the accumulation of thiocyanate in the oxidation tower, and recovers it as thiocyanate and removes hydrogen cyanide. The gas was allowed to enter the hydrogen sulfide absorption tower (7). At this time, when the absorbent liquid is partially absorbed from the absorption column of the hydrogen sulfide absorption tower and added to the hydrogen cyanide absorption tower absorbent, calcined lime added to the hydrogen sulfide absorption liquid and calcium polysulfide or ammonia sulfide combined with ammonia and sulfur in the absorbent liquid are supplied. The hydrogen cyanide is absorbed and converted into calcium thiocyanate or ammonia thiocyanate by reaction with calcium polysulfide or ammonia sulfide supplied from a hydrogen sulfide absorption tower. The absorbing liquid supplied from the hydrogen sulfide absorption tower was saturated in the ammonia supplied from the ammonia absorption tower in the ammonia saturator 25 to supply the insufficient sulfur and thus reacted with the hydrogen cyanide even if a small amount was supplied. Sufficient ammonia and sulfur will be supplied. Calcium thiocyanate and ammonia thiocyanate accumulated in the absorbent liquid are crystallized in the crystallization unit 21 to separate crystals, and the absorbent liquid from which the crystals are separated is recycled.

결정화기에서는 가열하여 수분을 증발시키는 방법을 이용하기 때문에 폐수의 발생이 없이 황화수소 흡수액을 계속 공급받을 수가 있게 된다. 황화수소 흡수탑에서는 소석회슬러리를 이용하였으며 소석희 슬러리에 흡수된 황화수소를 산화탑(22)에서 산화시킬때에는 폐가스의 방출을 방지하고자 순산소를 이용하여서 산화탑(22)로부터 나오는 가스는 전량 다시 재순환하여 사용할 수 있도록 하였다. 산화탑(22)로부터 나오는 흡수액은 고액분리기에서 고상과 액상이 분리되도록 하고 액체는 슬러리 보충탑(26)에 소석회 슬러리가 보충되도록하여 전량 재순환시켜 황화수소 흡수탑으로 보내어지도록 하고 폐수의 발생이 없도록 하였다. 고액분리기에서 분리된 고체는 소석회슬러리, 황산칼습, 황 등을 프함하고 있으며 황 증류기에서 황을 회수하고 나머지는 슬래그로 폐기하도록 하였다. 암모니아는 포삼법을 이용해 흡수제거되도록 하였으며 여기서부터 발생되는 암모니아는 시안화수소 흡수탑에 공급되도록 하였다.In the crystallizer, a method of heating and evaporating moisture is used to continuously receive the hydrogen sulfide absorbing liquid without generating waste water. In the hydrogen sulfide absorption tower, hydrated lime slurry was used. When oxidizing hydrogen sulfide absorbed in the slurry in the sintered slurry in the oxidation tower 22, the exhaust gas from the oxidation tower 22 was recycled again using pure oxygen to prevent emission of waste gas. It can be used. The absorbent liquid from the oxidation tower 22 was separated from the solid phase and the liquid phase in the solid-liquid separator, and the liquid was replenished in the slurry replenishment tower 26 to supplement the slurry of slaked lime so that the entire volume was recycled to be sent to the hydrogen sulfide absorption tower and no waste water was generated. . The solid separated in the solid-liquid separator contains hydrated lime slurry, sulfuric acid sulfuric acid, sulfur, and the like. The sulfur was recovered in a sulfur distiller and the rest was disposed of as slag. Ammonia was absorbed and removed using the ginseng method, and the ammonia generated therefrom was supplied to the hydrogen cyanide absorption tower.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예]EXAMPLE

질소가스를 기본가스로 하여 암모니아, 황화수소, 시안화수소의 함량이 각각5g/N㎥, 5g/N㎥, 1.5g/N㎥ 인 혼합가스를 실험용으로 하여 사용하였고 가스유량은70N㎥/h가 되도록 하여 실험하였다. 흡수탑들은 모두 층진탑으로 하였다.Using nitrogen gas as the base gas, a mixed gas containing 5g / Nm3, 5g / Nm3 and 1.5g / Nm3 of ammonia, hydrogen sulfide and hydrogen cyanide was used for the experiment and the gas flow rate was 70Nm3 / h. The experiment was carried out. The absorption towers were all stratified towers.

이때 흡수탑에 통과하는 흡수액 유량은 110L/h가 되도록 하였다. 흡수탑 운전을 처음 시작할때에는 흡수액을 인위적으로 제조하였는데 황화나트륨을 4.5g/L농도가 되도록 녹이고 여기에 황을 15g/L 가 되도록 첨가한 후 가열하여 다황화 나트륨용액을 200L 가량 만들어 사용하였다. 일단 운전이 시작되면 소비되는 황화나트륨을 보충하기 위하여 계속공급되도록 하기 위해 황화수소 흡수탑의 고액분리기에서 분리된 흡수액의 일부를 암모니아 포화기에 통과시켜 암모니아를 공급한 후 4L/h의 유량으로 공급하여 다황화 칼슘이나 다황화 암모니아 형태로 공급되도록 하었다. 암모니아 포화기에서는 또한 부족되는 황을 공급하기 위하여 122g/h의 양으로 연속공급되도록 하였다. 일단 정상상태에 도달하면 티오시안산 칼슴이나 티오시안산 암모니아로 회수되는 결정의 양은 불순물을 포함하여 약 310g/h 이었다.At this time, the absorption liquid flow rate passing through the absorption tower was 110L / h. At the beginning of the absorption tower operation, the absorbent liquid was artificially prepared. Sodium sulfide was dissolved to 4.5g / L concentration, sulfur was added to 15g / L, and heated to make about 200L of sodium sulfide solution. Once the operation is started, a part of the absorbed liquid separated from the solid-liquid separator of the hydrogen sulfide absorption tower is passed through the ammonia saturator to supply the sodium sulfide to be consumed, and then supplied with ammonia and supplied at a flow rate of 4 L / h. Calcium sulfide or polysulfide ammonia was supplied. The ammonia saturator was also allowed to be fed continuously in an amount of 122 g / h in order to feed shortage of sulfur. Once the steady state was reached, the amount of crystals recovered with thiocyanate and ammonia thiocyanate was about 310 g / h including impurities.

시안화수소 흡수탑에서와 황화수소 흡수탑에서는 매우 알칼리성이 높은 상태에서 운전이 되고 흡수가 일어나면서 동시에 반응하여 없어지기 때문에 흡수율이 매우 높았으며 시안화수소 흡수탑에서 시안화수소가 흡수되고나면 혼합가스중의 시안화수소의 농도는 0.002g/N㎥으로 떨어졌다.In the hydrogen cyanide absorption tower and in the hydrogen sulfide absorption tower, the absorption rate was very high because it was operated in a highly alkaline state and absorbed and reacted at the same time, and the hydrogen cyanide was absorbed from the hydrogen cyanide absorption tower. The concentration of hydrogen dropped to 0.002 g / Nm 3.

황화수소 흡수탑을 통과한 후에는 혼합가스 중 황화수소의 농도가 0.01g/N㎥까지 떨어졌다. 황화수소 흡수탑을 통과하는 흡수탑의 흡수액 유량은 250L/h 가 되도록 하였고 처음에 소석회를 흡수액의 10%가 되도록 혼합한 용액을 사용하였다.미세한 분말형태의 소석회를 소석회슬러리 보충탑에 공급해 주어서 흡수액은 소석회 슬러리 형태로 흡수탑에 공급되도록 하였다. 이때 공급되는 소석회 양은 3.1kg/h로 매 30분마다 공급해 주었다. 황의 증기를 응축해 포집했을때 그 양은 약 305g/h 이었으며 배출되는 슬래그 양은 2.5kg/h 이었다. 이때 암모니아 흡수탑에서의 암모니아 흡수율도 매우 높아 최종 배출농도는 0.01g/N㎥ 이었다.After passing through the hydrogen sulfide absorption tower, the concentration of hydrogen sulfide in the mixed gas dropped to 0.01 g / Nm 3. The absorbent flow rate of the absorption tower passing through the hydrogen sulfide absorption tower was 250 L / h, and a solution obtained by mixing the lime with 10% of the absorbent solution was initially used. The fine powdered slaked lime was supplied to the slaked lime slurry replenishment tower. The lime was allowed to be supplied to the absorption tower in the form of slurry. At this time, the amount of calcined lime fed 3.1kg / h was supplied every 30 minutes. When condensation of sulfur vapor was collected, the amount was about 305 g / h and the slag discharged was 2.5 kg / h. At this time, the ammonia absorption rate in the ammonia absorption tower was also very high and the final discharge concentration was 0.01 g / Nm3.

상술한 바와 같이, 본 발명은 시안화수소를 따로 분리할 수 있기 때문에 황화수소 흡수액에 티오시안산염이 축적되지 않고 또한 부산물로 생성되는 황산칼슘은 용해도가 매우 낮기 때문에 슬래그 형태로 제거될 수가 있고 티오황산염은 티오황산칼슘으로 일부제거되기 때문에 이들의 농도조절을 위한 폐수의 발생이 전허 없이 흡수액을 항상 재순환시켜 일부제거되기 때문에 이들의 농도조절을 위한 폐수의 발생이 전혀 없이 흡수액을 항상 재순환시켜 사용할 수 있을 뿐만아니라 전혀 다른 원료를 쓰지 않고도 자체 공정에서 나오는 황화칼슘이나 암모니아를 이용하여 값비싼 화학원료로 쓰일수 있는 티오시안산 칼슘이나 티오시안산 암모니아를 회수할 수 있는 장점이 있고, 또한, 황화수소의 산화를 위하여 공기를 쓰지 않고 산소를 쓰기 때문에 반응하지 않고 배출되는 산소를 전량 배순환시켜 기존의 산화탑에서 발생하는 폐가스의 문제를 해결할 수 있는 효과가 있는 것이다.As described above, in the present invention, since hydrogen cyanide can be separated separately, the thiocyanate is not accumulated in the hydrogen sulfide absorbing liquid, and the calcium sulfate produced as a by-product can be removed in the form of slag because the solubility is very low. Partial elimination with calcium thiosulfate allows the generation of wastewater for control of their concentration to be partially removed by recycling the absorbents at all times without authorization, so that the absorbents can always be recycled and used without generating any wastewater for controlling their concentration. In addition, it has the advantage of recovering calcium thiocyanate or ammonia thiocyanate, which can be used as an expensive chemical raw material, using calcium sulfide or ammonia from its own process without using any other raw materials. Because it uses oxygen instead of air Baesunhwan to the total amount of oxygen is discharged will not be effective to solve the problem of the waste gases generated in the conventional oxidation tower.

Claims (2)

코크스가스를 응축시켜 수분 및 타르를 분리시키고 수분 및 타르가 분리된 코크스가스를 냉각한 후, 나프탈렌 흡수탑(4)에서 나프탈렌을 제거시킨 다음, 응축된 미세입자 타르를 제거한 후, 황화수소 흡수탑(7)에서 황화수소 및 시안화수소를 흡수제거하고; 상기 황화수소 흡수탑(7)에서 배출되는 흡수액을 산화탑에서 산화시켜 황화수소를 황으로 산화시킨후, 고액분리기에서 황을 분리한 다음, 페액처리및 흡수액으로 재순환시키고; 그리고 상기 황화수소흡수탑(7)에서 나온 가스를 암모니아 포집기로 보내어 암모니아를 제거한 후, 냉각한 다음, 벤졸흡수탑(10)으로 보내어 벤젠, 톨루엔, 크실렌 등을 제거시킨 후 외부로 배출시키는 공정을 포함하여 구성되는 코크스가스 정제방법에 있어서, 수분 및 타르, 나프탈렌 및 미세타르 입자가 순차적으로 제거된 코크스가스를 시안화수소흡수탑(20)에 보내어 코크스가스중의 시안화수소와 액중의 다황화 암모늄을 반응시켜 티오시안암모늄으로 흡수제거하고, 시안화수소가 제거된 상기 가스를 황화수소흡수탑(7)에 보내어 황화수소를 흡수제거한 다음, 암모니아 흡수탑(8)에 보내어 암모니아를 흡수제거한 후, 냉각한 다음, 벤졸흡수탑 (10)으로 보내어 벤젠, 툴루엔 및 크실렌을 제거하여 외부로 배출하고, 상기 시안화수소 흡수탑(20)에서 배출되는 흡수액을 결정화기(21)에서 증발시켜 티오시안 암모늄결정을 형성시킨 후 이 결정을 분리시킨 다음 흡수액을 시안화수소 흡수탑(20)으로 순환시키고; 상기 황화수소 흡수탑(7)에서 배출되는 흡수액을 산소가 순환되는 산화탑(22)에 보내어 황화수소를 산화시킨 후, 고액분리기(23)에서 고액분리를 한 다음, 불용성 고체를 황증발기(24)에서 가열시켜 황을 증발시킨 후 슬래그로 배출시키고, 상기 액체중의 일부를 암모니아 포화기(25)로 보내어 암모니아로 포화시키고, 황을 공급한 다음, 시안화수소흡수탑(20)으로 보내어 시안화수소 흡수액으로 보충하고, 상기 액체중의 나머지를 슬러리 보충탑(26)으로 보내어 소석회슬러리를 보충한 다음 황화수소흡수탑(7)으로 보내고; 그리고 상기 암모니아 흡수탑(8)에서 배출된 흡수액을 증류시켜 암모니아를 분리시키고, 이 암모니아의 일부를 상기 암모니아 포화기(25)에 보내도록 구성되는 소석회를 이용한 코크스가스 정제방법.After condensing coke gas to separate water and tar and cooling the coke gas from which water and tar are separated, the naphthalene is removed from the naphthalene absorption tower 4, and then the condensed fine particle tar is removed. Absorb and remove hydrogen sulfide and hydrogen cyanide in 7); Oxidizing the absorbed liquid discharged from the hydrogen sulfide absorption tower 7 in an oxidation tower to oxidize hydrogen sulfide to sulfur, separating sulfur in a solid-liquid separator, and then recycling the waste liquid and recycling the absorbed liquid; And removing the ammonia by sending the gas from the hydrogen sulfide absorption tower (7) to the ammonia collector, and then cooling and then sending the gas to the benzol absorption tower (10) to remove benzene, toluene, xylene, etc. In the coke gas purification method, the coke gas from which water and tar, naphthalene and fine tar particles are sequentially removed is sent to the hydrogen cyanide absorption tower 20 to react hydrogen cyanide in the coke gas with ammonium polysulfide in the liquid. Absorption is carried out by thiocyanic ammonium, and the hydrogen cyanide-free gas is sent to the hydrogen sulfide absorption tower (7) to absorb and remove hydrogen sulfide, which is then sent to the ammonia absorption tower (8) to absorb and remove the ammonia, and then cooled, It is sent to the absorption tower (10) to remove benzene, toluene and xylene to be discharged to the outside, the hydrogen cyanide absorption tower 20 The evaporation of the absorbing solution is in the crystallizer (21) ammonium thiocyanate and which is separating the crystals was formed, and then a decision cycle the absorbent to the hydrogen cyanide absorption column 20; The absorbed liquid discharged from the hydrogen sulfide absorption tower 7 is sent to the oxidation tower 22 through which oxygen is circulated to oxidize hydrogen sulfide, and then solid-liquid separation is carried out in the solid-liquid separator 23, and then an insoluble solid is separated from the sulfur evaporator 24. After heating, the sulfur is evaporated and discharged into slag, and a part of the liquid is sent to the ammonia saturator 25 to saturate with ammonia, and sulfur is supplied. Then, the sulfur cyanide absorption tower 20 is sent to the hydrogen cyanide absorption liquid. Replenish and send the remainder of the liquid to the slurry replenishment tower 26 to replenish the hydrated lime slurry and then to the hydrogen sulfide absorption tower 7; And distilling the absorbent liquid discharged from the ammonia absorption tower (8) to separate ammonia, and to send a portion of the ammonia to the ammonia saturator (25). 제1항에 있어서, 상기 암모니아 포화기(25)에서 시안화수소 흡수탑(20)으로 공급되는 흡수액의 유량이 시안화수소 1g당 1.2L 이상인 것을 특징으로 하는 소석회를 이용한 코크스가스 정제방법.The method of claim 1, wherein the flow rate of the absorption liquid supplied from the ammonia saturator (25) to the hydrogen cyanide absorption tower (20) is 1.2L or more per 1 g of hydrogen cyanide.
KR1019960070051A 1996-12-23 1996-12-23 Coke gas purification method using slaked lime Expired - Fee Related KR100270088B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960070051A KR100270088B1 (en) 1996-12-23 1996-12-23 Coke gas purification method using slaked lime

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960070051A KR100270088B1 (en) 1996-12-23 1996-12-23 Coke gas purification method using slaked lime

Publications (2)

Publication Number Publication Date
KR19980051177A KR19980051177A (en) 1998-09-15
KR100270088B1 true KR100270088B1 (en) 2000-10-16

Family

ID=19490219

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960070051A Expired - Fee Related KR100270088B1 (en) 1996-12-23 1996-12-23 Coke gas purification method using slaked lime

Country Status (1)

Country Link
KR (1) KR100270088B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108543416A (en) * 2018-03-05 2018-09-18 攀枝花市蓝鼎环保科技有限公司 Processing system and its construction technology for being mixed into raw coke oven gas in coking flue gas

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100342696B1 (en) * 1999-08-14 2002-07-04 정종현 Ca-based absorbent for acid gas treatment and method for preparing the same
KR100398421B1 (en) * 1999-12-23 2003-09-19 주식회사 포스코 A method for purification cog using chilling method
KR100613253B1 (en) * 2001-08-31 2006-08-18 주식회사 포스코 Hydrogen Sulfide Removal Device from Water Stack
KR101676134B1 (en) * 2014-12-22 2016-11-15 주식회사 포스코 Apparatus of coke oven gas purification and method coke oven gas purification
KR101981457B1 (en) * 2017-11-22 2019-05-24 주식회사 포스코 Gas processing apparatus and method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108543416A (en) * 2018-03-05 2018-09-18 攀枝花市蓝鼎环保科技有限公司 Processing system and its construction technology for being mixed into raw coke oven gas in coking flue gas
CN108543416B (en) * 2018-03-05 2021-05-04 攀枝花市蓝鼎环保科技有限公司 Treatment system for coking flue gas mixed with raw coke oven gas and construction process thereof

Also Published As

Publication number Publication date
KR19980051177A (en) 1998-09-15

Similar Documents

Publication Publication Date Title
US7799297B2 (en) Device and method for processing combustion exhaust gas
US7998446B2 (en) Flue gas desulfurization process utilizing hydrogen peroxide
US6066304A (en) Process for removing sulfur dioxide out of a gas
AU2013257463B2 (en) A method of recovering sulfur dioxide and heavy metals from metallurgical flue gas
US4133650A (en) Removing sulfur dioxide from exhaust air
JPH1060449A (en) Purification method of coke oven gas
JP3985052B2 (en) Waste treatment method in gasification reforming system
US4141961A (en) Production of H2 S from SO2 obtained from flue gas
KR100270088B1 (en) Coke gas purification method using slaked lime
CN111603915B (en) Flue gas purification process
CN1206735A (en) Fine preparation method for gas
KR20020051011A (en) Apparatus and method for purifying Coke oven gas
KR100446648B1 (en) Method for purifying coke oven gas by cooling down to freezing point of water
KR20000017239A (en) Method for cleaning of flue gas
US3927178A (en) Sulfur dioxide removal from stack gases
KR100398421B1 (en) A method for purification cog using chilling method
KR100276332B1 (en) Method for refining coke gas using high pressure oxygen
KR100314846B1 (en) Method for Purifying Ammonia, Hydrogen Sulfide and Hydrogen Cyanide in Coke Gas
US3932586A (en) Removal of oxides of sulfur from gases
CN1206038A (en) Method of purifying gas
JP6149821B2 (en) Coke oven gas purification method
KR100418986B1 (en) Recovery of ammonium thiocyanate and stripping ammonia and hydrogen sulfide from coke oven gas
KR100516462B1 (en) Method for collecting nh4scn from cog purification process
DK1493481T3 (en) Process and plant for the purification of flue gases combining two separation units and a catalytic purification
KR20010045636A (en) an eleminating method of hydrogen sulfate, hydrogen cyanide and ammonia in cokes' gases

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 19961223

A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 19980729

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 19961223

Comment text: Patent Application

PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20000707

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20000727

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20000728

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20030701

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20030701

Start annual number: 4

End annual number: 4

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

Termination category: Default of registration fee

Termination date: 20050409