[go: up one dir, main page]

KR100269630B1 - A method of fabricating semiconductor device - Google Patents

A method of fabricating semiconductor device Download PDF

Info

Publication number
KR100269630B1
KR100269630B1 KR1019980040427A KR19980040427A KR100269630B1 KR 100269630 B1 KR100269630 B1 KR 100269630B1 KR 1019980040427 A KR1019980040427 A KR 1019980040427A KR 19980040427 A KR19980040427 A KR 19980040427A KR 100269630 B1 KR100269630 B1 KR 100269630B1
Authority
KR
South Korea
Prior art keywords
gate
forming
insulating film
layer
interval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1019980040427A
Other languages
Korean (ko)
Other versions
KR20000021389A (en
Inventor
이기민
손동균
Original Assignee
김영환
현대반도체주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대반도체주식회사 filed Critical 김영환
Priority to KR1019980040427A priority Critical patent/KR100269630B1/en
Publication of KR20000021389A publication Critical patent/KR20000021389A/en
Application granted granted Critical
Publication of KR100269630B1 publication Critical patent/KR100269630B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/0212Manufacture or treatment of FETs having insulated gates [IGFET] using self-aligned silicidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28518Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising silicides

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

본 발명은 반도체장치의 제조방법에 관한 것으로서, 특히, 코발트 살리사이드 형성시 발생하는 스파이킹 현상을 정합 산화막(conformal oxide)을 형성하므로서 방지하는데 적합하도록 한 반도체장치의 살리사이드 형성공정에 관한 것이다. 본 발명의 반도체장치의 제조방법은 게이트절연막이 형성된 제 1 도전형의 반도체기판 상에 게이트절연막을 개재시켜 제 1 간격과 제 1 간격보다 큰 제 2 간격으로 이격된 복수의 게이트를 형성하는 공정과, 게이트를 마스크로 사용하여 반도체기판에 제 2 도전형의 저농도불순물 매몰층을 형성하는 공정과, 게이트 및 게이트절연막 측면에 절연물질로 측벽을 형성하는 단계와, 게이트 및 측벽을 마스크로 사용하여 반도체기판에 제 2 도전형의 고농도 불순물 매몰층을 형성하는 단계와, 제 1 간격으로 이격된 게이트 사이의 기판 표면에 정합절연막을 형성하는 단계와, 게이트 상부 표면과 측벽 그리고 정합절연막 표면을 포함하는 기판 표면에 금속층을 형성하는 단계와, 금속층을 열처리하여 게이트 상부 표면과 제 2 간격에 있는 고농도 불순물 매몰층 표면에 실리사이드층을 형성하는 단계를 포함하여 이루어진다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a process for forming a salicide of a semiconductor device, which is suitable for preventing spiking phenomena generated during formation of cobalt salicide by forming a conformal oxide. A method of manufacturing a semiconductor device of the present invention comprises the steps of forming a plurality of gates spaced apart from a first interval and a second interval larger than the first interval by interposing a gate insulating layer on a first conductive semiconductor substrate having a gate insulating layer formed thereon; Forming a low-concentration impurity buried layer of a second conductivity type on the semiconductor substrate using the gate as a mask; forming a sidewall of an insulating material on the side of the gate and the gate insulating film; and using the gate and the sidewall as a mask. Forming a second conductivity type impurity buried layer in the substrate, forming a matched insulating film on the surface of the substrate between the gates spaced at a first interval, and a substrate including a gate upper surface, sidewalls, and a matched insulating film surface Forming a metal layer on the surface, and heat treating the metal layer to form a high concentration impurity buried layer at a second distance from the gate upper surface. It comprises the step of forming a silicide layer on a surface.

Description

반도체장치의 제조방법Manufacturing Method of Semiconductor Device

본 발명은 반도체장치의 제조방법에 관한 것으로서, 특히, 코발트 살리사이드 형성시 발생하는 스파이킹 현상을 정합 산화막(conformal oxide)을 형성하므로서 방지하는데 적합하도록 한 반도체장치의 살리사이드 형성공정에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a process for forming a salicide of a semiconductor device, which is suitable for preventing spiking phenomena generated during formation of cobalt salicide by forming a conformal oxide.

반도체장치가 고집적화됨에 따라 소오스 및 드레인영역으로 이용되는 불순물영역과 게이트의 폭이 감소되고 있다. 이에 따라, 반도체장치는 불순물영역의 접촉 저항 및 게이트의 시트 저항이 증가하여 동작 속도가 저하되는 문제점이 발생되었다.As semiconductor devices are highly integrated, the widths of impurity regions and gates used as source and drain regions are reduced. As a result, the semiconductor device has a problem in that an operating speed decreases due to an increase in contact resistance of an impurity region and sheet resistance of a gate.

그러므로, 반도체장치 내의 소자들의 배선을 알루미늄 합금 및 텅스텐 등의 저저항 물질로 형성하거나, 또는, 게이트와 같이 다결정실리콘으로 형성하는 경우에 실리사이드층을 형성하여 저항을 감소시킨다. 상기에서 다결정실리콘으로 형성된 게이트에 실리사이드층을 형성할 때 불순물영역의 표면에도 실리사이드층을 형성하여 접촉 저항을 감소시킨다.Therefore, when the wirings of the elements in the semiconductor device are formed of low-resistance materials such as aluminum alloy and tungsten, or formed of polycrystalline silicon such as a gate, a silicide layer is formed to reduce the resistance. When the silicide layer is formed on the gate formed of polycrystalline silicon, a silicide layer is also formed on the surface of the impurity region to reduce the contact resistance.

도 1a 내지 도 1c는 종래 기술에 따른 반도체장치의 제조공정도이다.1A to 1C are manufacturing process diagrams of a semiconductor device according to the prior art.

도 1a를 참조하면, P형의 반도체기판(1)의 소정 부분에 LOCOS(Local Oxidation of Silicon) 방법 등의 소자격리방법에 의해 필드산화막(도시안함)을 형성하여 소자의 활성영역과 소자격리영역을 형성한다.Referring to FIG. 1A, a field oxide film (not shown) is formed on a predetermined portion of a P-type semiconductor substrate 1 by a device isolation method such as LOCOS (Local Oxidation of Silicon) method to form an active region and a device isolation region of the device. To form.

그리고 반도체기판(1)의 표면을 열산화하여 게이트산화막(2)을 형성한다. 그리고, 게이트산화막(2)의 상부에 불순물이 도핑된 다결정실리콘을 증착하고 패터닝하여 게이트(3)를 한정한다. 게이트(3)를 마스크로 사용하여 반도체기판(1)에 아세닉(As) 또는 인(P) 등의 N형 불순물을 저농도로 이온 주입하여 LDD(Lightly Doped Drain) 구조를 형성하기 위한 저농도영역(도시안함)을 형성한다.The surface of the semiconductor substrate 1 is thermally oxidized to form a gate oxide film 2. The gate 3 is defined by depositing and patterning polycrystalline silicon doped with impurities on the gate oxide film 2. Low concentration region for forming LDD (Lightly Doped Drain) structure by ion implanting N-type impurities such as asic (As) or phosphorus (P) into the semiconductor substrate 1 at low concentration using the gate 3 as a mask ( Not shown).

그다음, 게이트(3)와 게이트산화막(2)의 측면에 측벽(4)을 형성한다. 상기에서 측벽(4)은 반도체기판(1) 상에 게이트(3)를 덮도록 산화실리콘을 증착하고 반응성이온식각(Reactive Ion Etching : 이하, RIE라 칭함) 방법 등으로 에치백(etchback)하므로써 형성된다. 그리고, 게이트(3)와 측벽(4)을 마스크로 사용하여 반도체기판(1)에 아세닉(As) 또는 인(P) 등의 N형 불순물을 고농도로 이온 주입하여 소오스 및 드레인영역으로 이용되는 고농도영역을 저농도영역과 중첩되게 형성한다.Next, sidewalls 4 are formed on the side surfaces of the gate 3 and the gate oxide film 2. The side wall 4 is formed by depositing silicon oxide on the semiconductor substrate 1 so as to cover the gate 3 and etching back by a reactive ion etching (hereinafter referred to as RIE) method. do. Then, using the gate 3 and the sidewall 4 as a mask, the semiconductor substrate 1 is ion-implanted with high concentration of N-type impurities such as an asic (As) or phosphorus (P) to serve as a source and a drain region. The high concentration region is formed to overlap with the low concentration region.

이와 같이 형성된 게이트간의 간격은 그 사이가 0.2 ㎛ 이하의 좁은 부위(50)와 넓은 부위(51)로 구분된다.The spacing between the gates thus formed is divided into a narrow portion 50 and a wide portion 51 having a thickness of 0.2 μm or less therebetween.

도 1b를 참조하면, 반도체기판(1) 게이트(3) 및 측벽(4)를 덮도록 Co 등의 고융점 금속(6)을 증착한다.Referring to FIG. 1B, a high melting point metal 6 such as Co is deposited to cover the gate 3 and the sidewall 4 of the semiconductor substrate 1.

도 1c를 참조하면, 반도체 기판을 RTA(Rapid Thermal Annealing) 방법으로 2번의 열처리하여 게이트(3) 및 고농도영역의 표면에만 자기 정렬된 실리사이드층(6)을 형성한다. 이때, 스파이킹부위(7)가 형성된다.Referring to FIG. 1C, the semiconductor substrate is heat treated twice using a rapid thermal annealing (RTA) method to form a silicide layer 6 self-aligned only on the surface of the gate 3 and the high concentration region. At this time, the spiking portion 7 is formed.

상기에서, 실리사이드층(6)은 750℃ 이하의 온도에서 1차 열처리하고 게이트(3) 및 고농도영역의 표면에만 잔류하도록 필드산화막 및 측벽(4) 상에 반응하지 않은 고융점금속을 에치 백하여 제거한 후, 다시, 게이트(3) 및 고농도영역 상에 잔류하는 것을 850∼950℃의 온도에서 2차 열처리하므로써 형성된다. 이때, 좁은 부위(50)와 넓은 부위(51)에서의 살리시데이션(salicidation)시 특히 좁은 부위(50)에서는 Co 특성상 다량의 실리콘이 반응에 참여하므로 Co의 Si에 대한 상대적인 양의 차이에 기인하여 활성영역에서 스파이킹(spiking) 현상이 일어나게 되며 그 깊이는 약 600Å 정도 된다.In the above, the silicide layer 6 is subjected to a first heat treatment at a temperature of 750 ° C. or lower and etched back unreacted high melting point metal on the field oxide film and the sidewall 4 so as to remain only on the surface of the gate 3 and the high concentration region. After removal, the residue remaining on the gate 3 and the high concentration region is formed by secondary heat treatment at a temperature of 850 to 950 ° C. At this time, in the case of salicidation in the narrow region 50 and the wide region 51, particularly in the narrow region 50, a large amount of silicon participates in the reaction due to the difference in the relative amount of Co to Si. Spikes occur in the active region and are about 600 microns deep.

상술한 바와 같이 종래 기술에서 Co-살리사이드층은 소자가 고집적화됨에 따라 후속 열공정에서 전술한 스파이킹 현상이 일어나는 깊이보다 깊어지게 되어 졍션 누설전류의 특성을 저하시키는 문제점이 있다.As described above, in the prior art, the Co-salicide layer is deeper than the depth at which the above-described spiking occurs in a subsequent thermal process as the device is highly integrated, thereby degrading the characteristic of the leakage leakage current.

따라서, 본 발명의 목적은 코발트 살리사이드 형성시 발생하는 스파이킹 현상을 정합 산화막(conformal oxide)을 형성하므로서 방지하는데 적합하도록 한 반도체장치의 살리사이드 형성공정을 제공하는데 있다.Accordingly, an object of the present invention is to provide a salicide forming process of a semiconductor device, which is suitable for preventing the spiking phenomenon occurring during cobalt salicide formation by forming a conformal oxide.

상기 목적들을 달성하기 위한 본 발명의 반도체장치의 제조방법은 게이트절연막이 형성된 제 1 도전형의 반도체기판 상에 게이트절연막을 개재시켜 제 1 간격과 제 1 간격보다 큰 제 2 간격으로 이격된 복수의 게이트를 형성하는 공정과, 게이트를 마스크로 사용하여 반도체기판에 제 2 도전형의 저농도불순물 매몰층을 형성하는 공정과, 게이트 및 게이트절연막 측면에 절연물질로 측벽을 형성하는 단계와, 게이트 및 측벽을 마스크로 사용하여 반도체기판에 제 2 도전형의 고농도 불순물 매몰층을 형성하는 단계와, 제 1 간격으로 이격된 게이트 사이의 기판 표면에 정합절연막을 형성하는 단계와, 게이트 상부 표면과 측벽 그리고 정합절연막 표면을 포함하는 기판 표면에 금속층을 형성하는 단계와, 금속층을 열처리하여 게이트 상부 표면과 제 2 간격에 있는 고농도 불순물 매몰층 표면에 실리사이드층을 형성하는 단계를 포함하여 이루어진다.A semiconductor device manufacturing method of the present invention for achieving the above object is a plurality of spaced apart at a first interval and a second interval larger than the first interval by interposing a gate insulating film on a first conductive semiconductor substrate having a gate insulating film formed; Forming a gate, forming a low-concentration impurity buried layer of a second conductivity type on a semiconductor substrate using the gate as a mask, forming a sidewall of an insulating material on the side of the gate and the gate insulating film, and forming the gate and the sidewall. Forming a second conductivity type impurity buried layer in a semiconductor substrate using a mask as a mask, and forming a matched insulating film on the surface of the substrate between the gates spaced at a first interval, the gate upper surface, sidewalls, and matching Forming a metal layer on the surface of the substrate including the insulating film surface, and heat treating the metal layer to form a second gap with the gate upper surface. A high concentration impurity buried layer surface, which comprises the step of forming a silicide layer.

도 1a 내지 도 1c는 종래 기술에 따른 반도체장치의 살리사이드 형성공정 단면도1A to 1C are cross-sectional views of a salicide forming process of a semiconductor device according to the related art.

도 2a 내지 도 2d는 본 발명의 일 실시예에 따른 반도체장치의 살리사이드 형성공정 단면도2A to 2D are cross-sectional views of a salicide forming process of a semiconductor device according to an embodiment of the present invention.

본 발명은 코발트 살리사이드 형성전에 정합산화막을 증착한 후 이를 비등방성 식각으로 소정 부위를 제거하므로서 게이트패턴 사이의 넓은 부위의 활성영역을 개방시키고 좁은 부위는 정합산화막으로 매립하므로서 이후 증착되는 코발트층에 의해 살리사이드가 선택적으로 증착되게 한다.The present invention deposits a matched oxide film before forming cobalt salicide and then removes a predetermined region by anisotropic etching, thereby opening the active region of the wide region between the gate patterns and filling the narrow region with the matched oxide layer, thereby depositing the covalent layer. Thereby allowing salicide to be selectively deposited.

이하, 첨부한 도면을 참조하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 2a 내지 도 2d는 본 발명의 일 실시예에 따른 반도체장치의 살리사이드 형성공정 단면도이다.2A to 2D are cross-sectional views of a salicide forming process of a semiconductor device according to an embodiment of the present invention.

도 2a를 참조하면, P형의 반도체기판(21)의 소정 부분에 LOCOS(Local Oxidation of Silicon) 방법 등의 소자격리방법에 의해 필드산화막(도시안함)을 형성하여 소자의 활성영역과 소자격리영역을 형성한다.Referring to FIG. 2A, a field oxide film (not shown) is formed on a predetermined portion of a P-type semiconductor substrate 21 by a device isolation method such as LOCOS (Local Oxidation of Silicon) method to form an active region and an isolation region of a device. To form.

그리고 반도체기판(21)의 표면을 열산화하여 게이트산화막(22)을 형성한다. 그리고, 게이트산화막(22)의 상부에 불순물이 도핑된 다결정실리콘을 증착하고 패터닝하여 게이트(23)를 한정한다. 게이트(23)를 마스크로 사용하여 반도체기판(21)에 아세닉(As) 또는 인(P) 등의 N형 불순물을 저농도로 이온 주입하여 LDD(Lightly Doped Drain) 구조를 형성하기 위한 저농도영역(도시안함)을 형성한다.The surface of the semiconductor substrate 21 is thermally oxidized to form a gate oxide film 22. The gate 23 is defined by depositing and patterning polycrystalline silicon doped with impurities on the gate oxide layer 22. Low concentration region for forming LDD (Lightly Doped Drain) structure by ion implantation of N-type impurities such as asic (As) or phosphorus (P) into the semiconductor substrate 21 at low concentration using the gate 23 as a mask ( Not shown).

그다음, 게이트(23)와 게이트산화막(22)의 측면에 측벽(24)을 형성한다. 상기에서 측벽(24)은 반도체기판(21) 상에 게이트(23)를 덮도록 산화실리콘을 증착하고 반응성이온식각(Reactive Ion Etching : 이하, RIE라 칭함) 방법 등으로 에치백(etchback)하므로써 형성된다. 그리고, 게이트(23)와 측벽(24)을 마스크로 사용하여 반도체기판(21)에 아세닉(As) 또는 인(P) 등의 N형 불순물을 고농도로 이온 주입하여 소오스 및 드레인영역으로 이용되는 고농도영역을 저농도영역과 중첩되게 형성한다.Next, sidewalls 24 are formed on the side surfaces of the gate 23 and the gate oxide film 22. The side wall 24 is formed by depositing silicon oxide on the semiconductor substrate 21 to cover the gate 23 and etching back by a reactive ion etching (hereinafter referred to as RIE) method. do. Then, using the gate 23 and the sidewall 24 as a mask, ion implantation of high concentrations of N-type impurities such as an asic (As) or phosphorus (P) into the semiconductor substrate 21 is used as a source and a drain region. The high concentration region is formed to overlap with the low concentration region.

이와 같이 형성된 게이트간의 간격은 그 사이가 0.2 ㎛ 이하의 좁은 부위(250)와 넓은 부위(251)로 구분된다.The gap between the gates formed as described above is divided into a narrow portion 250 and a wide portion 251 having a thickness of 0.2 μm or less therebetween.

도 2b를 참조하면, 게이트(23) 등을 포함하는 기판(21)의 표면에 정합산화막(conformal oxide layer, 26)을 에이치디피(HDP) 또는 에이치엘디(HLD)를 증착하여 형성한다. 이때, 정합산화막(26)은 게이트(23) 패턴 사이의 좁은 부위(250)를 매립하여 이후 증착되는 코발트층이 선택적으로 증착되게 한다.Referring to FIG. 2B, a conformal oxide layer 26 is formed on the surface of the substrate 21 including the gate 23 by depositing HDP or HLD. In this case, the matching oxide layer 26 fills the narrow portion 250 between the gate 23 patterns to selectively deposit the cobalt layer to be deposited.

도 2c를 참조하면, 좁은부위(250)를 덮는 식각보호마스크를 정합산화막(26) 위에 형성한 다음, 이로 부터 보호되지 아니하는 부위의 정합산화막을 비등방성식각 또는 에치백하여 제거한다. 그리고 식각보호마스크를 제거한다. 따라서, 좁은 부위(250)의 기판(21) 표면은 잔류한 정합산화막(26)으로 덮혀있기 때문에 이후, 코발트층이 기판 표면에 형성되는 것을 방지하여 이 부위에(250) 살리사이드층의 형성을 방해하므로서 스파이킹 현상이 발생하는 것을 방지한다.Referring to FIG. 2C, an etch protection mask covering the narrow portion 250 is formed on the matched oxide layer 26, and then the matched oxide layer is removed by anisotropic etching or etch back. Then remove the etch protection mask. Therefore, since the surface of the substrate 21 of the narrow portion 250 is covered with the remaining matched oxide film 26, the cobalt layer is prevented from being formed on the surface of the substrate, thereby forming the salicide layer 250 at this portion. This prevents spiking from occurring.

도 2d를 참조하면, 정합산화막(26) 표면을 포함하는 게이트(23) 및 측벽(24)를 덮도록 Co 등의 고융점 금속(6)을 기판(21) 위에 증착한다.Referring to FIG. 2D, a high melting point metal 6 such as Co is deposited on the substrate 21 to cover the gate 23 and the sidewalls 24 including the surface of the matching oxide film 26.

그리고, 반도체 기판(21)을 RTA(Rapid Thermal Annealing) 방법으로 2번의 열처리하여 게이트(23) 상부 표면 및 고농도영역의 표면에만 자기 정렬된 실리사이드층(26)을 형성한다. 이때, 정합산화막(26)이 형성된 기판 표면에는 살리사이드가 형성되지 아니하므로 스파이킹부위의 생성이 방지된다.The semiconductor substrate 21 is heat treated twice using a rapid thermal annealing (RTA) method to form a silicide layer 26 self-aligned only on the upper surface of the gate 23 and the surface of the high concentration region. In this case, since no salicide is formed on the surface of the substrate on which the matching oxide film 26 is formed, the generation of the spiking portion is prevented.

따라서, 본 발명은 게이트 사이의 상대적으로 좁은 부위의 활성층 표면에 코발트 살리사이드층의 형성을 방지하므로서 코발트 살라시데이션에 의한 스파이킹 문제를 해결하고 좁은 부위의 매립을 위한 정합산화막 식각공정시 게이트 측벽을 선택적으로 식각하므로서 살리사이드가 형성되는 게이트 표면적을 크게하여 게이트 저항을 감소시키는 장점이 있다.Accordingly, the present invention solves the problem of cobalt salicide formation by preventing the formation of a cobalt salicide layer on the surface of the active layer of the relatively narrow region between the gates and gate sidewalls during the matching oxide etching process for embedding the narrow region. By selectively etching to increase the gate surface area on which the salicide is formed to reduce the gate resistance.

Claims (6)

게이트절연막이 형성된 제 1 도전형의 반도체기판 상에 상기 게이트절연막을 개재시켜 제 1 간격과 상기 제 1 간격보다 큰 제 2 간격으로 이격된 복수의 게이트를 형성하는 공정과,Forming a plurality of gates spaced at a first interval and a second interval greater than the first interval by interposing the gate insulating layer on a first conductive semiconductor substrate having a gate insulating layer formed thereon; 상기 게이트를 마스크로 사용하여 상기 반도체기판에 제 2 도전형의 저농도불순물 매몰층을 형성하는 공정과,Forming a low-concentration impurity buried layer of a second conductivity type on the semiconductor substrate using the gate as a mask; 상기 게이트 및 상기 게이트절연막 측면에 절연물질로 측벽을 형성하는 단계와,Forming sidewalls of an insulating material on side surfaces of the gate and the gate insulating film; 상기 게이트 및 상기 측벽을 마스크로 사용하여 상기 반도체기판에 제 2 도전형의 고농도 불순물 매몰층을 형성하는 단계와,Forming a high concentration impurity buried layer of a second conductivity type on the semiconductor substrate using the gate and the sidewall as a mask; 상기 제 1 간격으로 이격된 상기 게이트 사이의 상기 기판 표면에 정합절연막을 형성하는 단계와,Forming a matched insulating film on a surface of the substrate between the gates spaced at the first interval; 상기 게이트 상부 표면과 상기 측벽 그리고 상기 정합절연막 표면을 포함하는 상기 기판 표면에 금속층을 형성하는 단계와,Forming a metal layer on a surface of the substrate including the gate upper surface, the sidewall, and the matched insulating film surface; 상기 금속층을 열처리하여 상기 게이트 상부 표면과 상기 제 2 간격에 있는 상기 고농도 불순물 매몰층 표면에 실리사이드층을 형성하는 단계로 이루어진 반도체장치의 제조방법.Heat-treating the metal layer to form a silicide layer on the gate upper surface and the surface of the high concentration impurity buried layer in the second gap. 청구항 1에 있어서, 상기 제 1 간격은 0.2 ㎛ 이하인 것이 특징인 반도체장치의 제조방법.The method of manufacturing a semiconductor device according to claim 1, wherein the first interval is 0.2 μm or less. 청구항 1에 있어서, 상기 금속층을 Ti, W, Mo, Co, Ta 또는 Pt의 고융점 금속으로 형성하는 반도체장치의 제조방법.The method of manufacturing a semiconductor device according to claim 1, wherein the metal layer is formed of a high melting point metal of Ti, W, Mo, Co, Ta, or Pt. 청구항 1에 있어서, 상기 게이트는 불순물이 도핑된 실리콘으로 형성하는 것이 특징인 반도체장치의 제조방법.The method of claim 1, wherein the gate is formed of silicon doped with impurities. 청구항 1에 있어서, 상기 정합절연막은,The method of claim 1, wherein the matching insulating film, 절연막을 상기 제 1 간격 표면을 포함하는 상기 기판의 전면에 증착하는 단계와,Depositing an insulating film over the entire surface of the substrate including the first spacing surface; 상기 제 1 간격 표면에 증착된 상기 절연막을 제외한 나머지 부위의 상기 절연막을 제거하는 단계를 더 포함하여 이루어진 것이 특징인 반도체장치의 제조방법.And removing the insulating film in portions other than the insulating film deposited on the first gap surface. 청구항 5에 있어서, 상기 절연막은 에이치엘디 또는 에이치디피로 형성하는 것이 특징인 반도체장치의 제조방법.The method of manufacturing a semiconductor device according to claim 5, wherein the insulating film is formed of HDL or HDD.
KR1019980040427A 1998-09-29 1998-09-29 A method of fabricating semiconductor device Expired - Fee Related KR100269630B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980040427A KR100269630B1 (en) 1998-09-29 1998-09-29 A method of fabricating semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980040427A KR100269630B1 (en) 1998-09-29 1998-09-29 A method of fabricating semiconductor device

Publications (2)

Publication Number Publication Date
KR20000021389A KR20000021389A (en) 2000-04-25
KR100269630B1 true KR100269630B1 (en) 2000-10-16

Family

ID=19552304

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980040427A Expired - Fee Related KR100269630B1 (en) 1998-09-29 1998-09-29 A method of fabricating semiconductor device

Country Status (1)

Country Link
KR (1) KR100269630B1 (en)

Also Published As

Publication number Publication date
KR20000021389A (en) 2000-04-25

Similar Documents

Publication Publication Date Title
JP2806477B2 (en) Method of manufacturing shallow silicide junction
US6248637B1 (en) Process for manufacturing MOS Transistors having elevated source and drain regions
US6479350B1 (en) Reduced masking step CMOS transistor formation using removable amorphous silicon sidewall spacers
US20020127791A1 (en) Semiconductor device and its manufacture method
KR100736301B1 (en) A semiconductor integrated circuit device and a method of manufacturing the same
US5780348A (en) Method of making a self-aligned silicide component
US20050151203A1 (en) Temporary self-aligned stop layer is applied on silicon sidewall
US5989965A (en) Nitride overhang structures for the silicidation of transistor electrodes with shallow junction
KR100568077B1 (en) Manufacturing Method of Semiconductor Device
JP4424887B2 (en) Manufacturing method of semiconductor device
KR100271265B1 (en) Self-aligned pocl3 process flow for submicron microelectronics applications using amorphized polysilicon
JP3028114B2 (en) Method for manufacturing semiconductor device
KR100749373B1 (en) Method for manufacturing shallow junction semiconductor device
US6130121A (en) Method for fabricating a transistor
JP5060002B2 (en) Manufacturing method of semiconductor device
US20020132413A1 (en) Method of fabricating a MOS transistor
KR100269630B1 (en) A method of fabricating semiconductor device
JPH07283400A (en) Semiconductor device and manufacturing method thereof
KR20020007866A (en) Method for manufacturing of semiconductor device
US6194298B1 (en) Method of fabricating semiconductor device
KR100247811B1 (en) Method for manufacturing semiconductor device
KR100705233B1 (en) Method of manufacturing semiconductor device
KR20000000869A (en) Method for manufacturing semiconductor device
KR101102775B1 (en) Manufacturing Method of Semiconductor Device
KR100301249B1 (en) Method of manufacturing a semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 19980929

PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 19980929

Comment text: Request for Examination of Application

PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20000711

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20000721

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20000722

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20030620

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20040618

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20050621

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20060619

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20070622

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20080619

Start annual number: 9

End annual number: 9

FPAY Annual fee payment

Payment date: 20090624

Year of fee payment: 10

PR1001 Payment of annual fee

Payment date: 20090624

Start annual number: 10

End annual number: 10

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee