[go: up one dir, main page]

KR100269263B1 - Microhole straightness measurement system with 3 precision moving stage - Google Patents

Microhole straightness measurement system with 3 precision moving stage Download PDF

Info

Publication number
KR100269263B1
KR100269263B1 KR1019970070322A KR19970070322A KR100269263B1 KR 100269263 B1 KR100269263 B1 KR 100269263B1 KR 1019970070322 A KR1019970070322 A KR 1019970070322A KR 19970070322 A KR19970070322 A KR 19970070322A KR 100269263 B1 KR100269263 B1 KR 100269263B1
Authority
KR
South Korea
Prior art keywords
straightness
ccd camera
stage
axis
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1019970070322A
Other languages
Korean (ko)
Other versions
KR19990051083A (en
Inventor
안승호
전오곤
정명영
최태구
Original Assignee
이계철
한국전기통신공사
정선종
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이계철, 한국전기통신공사, 정선종, 한국전자통신연구원 filed Critical 이계철
Priority to KR1019970070322A priority Critical patent/KR100269263B1/en
Publication of KR19990051083A publication Critical patent/KR19990051083A/en
Application granted granted Critical
Publication of KR100269263B1 publication Critical patent/KR100269263B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/26Stages; Adjusting means therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE: An apparatus for measuring straightness of minute holes is provided to widen a geometric measurement field of a ferrule for an optical connector by allowing the straightness within holes having a micro capillary structure to be measured. CONSTITUTION: An apparatus for measuring straightness of minute holes includes a micromirror lens(1) for measuring the straightness of micromirror holes and a CCD camera(2) to which numerous unit cells are attached. A 3-axis fine driving stage includes a Z axis driving stage(3) for controlling the focus of the micromirror lens(1) included in the CCD camera(2). A computer has an A/D converter for converting analog signals generated by the unit cells of the CCD camera(2) in proportion to the intensity of light into digital signals. A back illumination device is installed below a stage to which a measurement sample is mounted.

Description

비접촉 광학계를 이용한 미세 홀의 진직도 측정장치 및 방법Apparatus and method for measuring straightness of micro holes using non-contact optical system

본 발명은 광섬유를 유지. 정렬하기 위해 사용하는 단심 및 다심 광커넥터용 페룰 내부의 원통형 미세 홀의 진직도의 측정법으로 하는 비접촉 광학계를 이용한 미세 홀의 진직도 측정장치 및 방법에 관한 것이다.The present invention maintains the optical fiber. The present invention relates to an apparatus and a method for measuring the straightness of a fine hole using a non-contact optical system, which measures the straightness of the cylindrical fine hole inside the ferrule for single-core and multi-core optical connectors used for alignment.

종래의 방법에 있어 직경의 크기가 매우 작은 마이크로 홀에 대한 측정 연구는 많이 이루어져 왔으나 홀의 내부, 즉 홀 진직도에 대해서는 거의 측정법이 알려져 있지 않다.In the conventional method, a lot of researches have been made on micro holes having a very small diameter, but little is known about the inside of the hole, that is, the hole straightness.

광섬유의 지지를 위한 광커넥터 페룰은 통상 단락 된 광섬유를 유지키 위해 구조물 내에 125∼127㎛의 미세 구멍이 짧게는 8㎜에서 13㎜에 이르게 관통돼 있다.Optical connector ferrules for the support of optical fibers are typically penetrated from 8 mm to 13 mm, with a short hole of 125 to 127 μm in the structure to maintain the shorted optical fiber.

이 미세 홀은 광섬유를 곧게 유지 정렬 해야 할 필요성으로 관통된 원통형 미세 홀의 진직도가 보장되어야 한다.This micro hole must ensure the straightness of the penetrated cylindrical micro hole because of the necessity of keeping the fiber straight.

만약 미세관의 진직도가 보장되지 못하면 광섬유의 마이크로 벤딩 손실 등이 발생할 소지가 높다.If the straightness of the microtube is not guaranteed, there is a high possibility of micro bending loss of the optical fiber.

통상 홀의 진직도는 센서를 관 내부에 삽입하여 내부 벽면의 기하학적 면을 찾아 이를 이상적인 직선과 비교해 볼 때 얼마나 벗어나는가를 계산하여 이를 확보하나 광커넥터용 미세 홀의 경우 직경이 불과 0.127㎜정도이므로 이를 확인할 방법이 실제적으로 없는 형편이다.Normally, the straightness of the hole is obtained by inserting the sensor into the tube to find the geometric surface of the inner wall and comparing it with the ideal straight line to calculate the deviation.However, in the case of the optical hole, the diameter of the optical connector is only about 0.127mm. This is practically absent.

이를 해결하기 위해 측정 대상을 평편한 스테이지 상에 세운 뒤 배사조명을 이용하여 일정한 빛의 세기로 미세 홀에 입사한 상태에서 홀 반대편에 위치한 고 배율 현미경 렌즈가 장착된 CCD 카메라를 이용해 원통형 미세관을 지나온 이미지를 해석하면 만약 측정물의 진직도가 우수하다면 CCD소자의 빛의 세기에 대응하는 전기의 값은 일정한 분포를 가질 것이나 그렇지 못하다면 음영이 생겨 CCD내 소자의 전기값이 불균일한 상태가 될 것이다.To solve this problem, the measurement target is placed on a flat stage, and then a cylindrical microtube is mounted using a CCD camera equipped with a high magnification microscope lens located opposite the hole while being incident on the microhole at a constant light intensity using an illuminant illumination. When interpreting the past image, if the straightness of the workpiece is excellent, the electric value corresponding to the light intensity of the CCD element will have a constant distribution, otherwise it will be shaded and the electric value of the element in the CCD will be uneven. .

이러한 미세 홀의 진직도를 측정하기가 어려운 점은 길이에 비해 직경이 너무 작아(길이 대비 직경 = 98.4배) 기존의 방법으로 이를 측정하기가 곤란하다.It is difficult to measure the straightness of such micro holes because the diameter is too small for the length (diameter = 98.4 times the length), and it is difficult to measure the conventional method.

기존의 방법에서는 원통형 홀 내부에 접촉식 센서를 삽입하여 피 측정물 내부의 구조를 알아내는 방법이나 직경 0.127㎜내부에 삽입할 만한 센서가 지금까지 개발되지 못한 실정이다.In the existing method, the contact sensor is inserted into the cylindrical hole to find the structure inside the object to be measured or the sensor that can be inserted into the diameter of 0.127 mm has not been developed until now.

이를 위해 비접촉형 광학계를 이용한 측정기 및 방법을 제안코자 한다.To this end, we propose a measuring device and method using a non-contact optical system.

본 발명은 광섬유를 유지. 정렬하기 위해 사용하는 광커넥터용 페룰 내부의 원통형 미세 홀의 진직도의 측정법으로 비접촉 광학계를 이용한 미세 홀의 진직도 측정장치 및 방법을 제공하는데 그 목적이 있다.The present invention maintains the optical fiber. It is an object of the present invention to provide an apparatus and method for measuring the straightness of a microhole using a non-contact optical system as a method of measuring the straightness of a cylindrical microhole in an ferrule for an optical connector used for alignment.

도 1은 본 발명에 의한 시편을 평편하게 고정시킬 수 있는 정밀 3차원 구동스테이지로 구성된 비접촉 광학 측정 시스템.1 is a non-contact optical measurement system composed of a precision three-dimensional drive stage capable of flatly fixing the specimen according to the present invention.

도 2는 본 발명 시스템의 개략 구성도임.2 is a schematic diagram of a system of the present invention.

도 3는 편평한 스테이지 상에 놓여진 시편과 홀 내부로 빛을 보내기 위한 배사조명장치의 구성도.Figure 3 is a configuration of the illumination device for sending light into the specimen and the hole placed on a flat stage.

도 4는 홀 직진도 계산 순서도4 is a flow chart for calculating hole straightness

* 도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings

1: 현미경 렌즈 2: CCD 카메라1: microscope lens 2: CCD camera

3: Z축 구동 스테이지 4: Y축 구동 스테이지3: Z-axis drive stage 4: Y-axis drive stage

5: X축 구동 스테이지 6: 동축 케이블5: X axis drive stage 6: coaxial cable

7: A/D 컨버터 8: 컴퓨터7: A / D converter 8: computer

9: 측정시편 10: 스테이지9: Test Specimen 10: Stage

11: 배사조명장치11: luminaire lighting system

상기의 목적을 달성하기 위하여 본 발명에서는 시편을 놓을 수 있는 평탄도가 우수한 면을 가진 3차원 정밀 이송 스테이지와 배사조명장치가 장착된 시스템으로서, 마이크로 홀의 진직도를 측정키 위해 현미경 렌즈와 수많은 단위셀이 부착된 CCD 카메라와; 상기 CCD 카메라에 구비된 현미경 렌즈의 초점을 조절하도록 하는 Z축 구동 스테이지를 포함하는 3축 정밀 이동 스테이지와; 빛의 세기에 비례하여 상기 CCD 카메라의 단위셀에 의해 발생되는 아나로그 신호를 디지털 신호화 하는 A/D 컨버터가 장착된 컴퓨터와; 시편이 장착된 스테이지의 하부에 설치된 배사조명장치로 구성되며, 상기 3축 정밀 이동 스테이지는 현미경렌즈의 초점을 조절하도록 하는 Z축 구동 스테이지와; 측정시편에 대한 X축 변위 및 Y축 변위를 정밀하게 조절하도록 하는 X축 구동 스테이지 및 Y축 구동 스테이지로 구성됨을 특징으로 한다.In order to achieve the above object, in the present invention, the system is equipped with a three-dimensional precision transfer stage having an excellent flatness for placing the specimen and the illumination illuminator, a microscope lens and a number of units to measure the straightness of the micro holes A CCD camera with a cell attached thereto; A three-axis precision moving stage including a Z-axis driving stage for adjusting a focus of a microscope lens provided in the CCD camera; A computer equipped with an A / D converter for digitally converting an analog signal generated by a unit cell of the CCD camera in proportion to light intensity; Comprising an emission illumination device installed on the lower side of the stage on which the specimen is mounted, the three-axis precision moving stage and the Z-axis driving stage for adjusting the focus of the microscope lens; An X-axis drive stage and a Y-axis drive stage for precisely adjusting the X-axis displacement and the Y-axis displacement with respect to the measurement specimen is characterized in that the configuration.

또한 본 발명은 정밀 이동 스테이지가 구동 되는 비접촉 광학 측정 시스템과 고해상도 CCD 카메라를 적용하여 배사조명에서 출사된 빛이 현미경 렌즈를 통해 화소(픽셀) 수가 고집적화된 CCD 카메라에 도달하도록 하고, 상기 CCD 카메라는 수 십만 내지 수백만개의 단위 셀에 의해 빛의 세기에 비례하게 전압을 나타내는 아나로그 전기적 신호를 A/D Converter에 의해 디지털 신호화하는 컴퓨터로 전송하여 상단 홀에서 출사되는 이미지를 해석할 수 있도록 하므로서 시편 내부의 굴곡에 따른 상단 홀의 화상 음영과 이들 음영에 대응하는 전하의 세기의 편차값에 의해 측정물의 진직도를 계산하므로서 진직도를 측정하도록 함을 특징으로 한다.In addition, the present invention by applying a non-contact optical measurement system and a high-resolution CCD camera driven by a precision moving stage to the light emitted from the irradiation light to reach the CCD camera with a high number of pixels (pixels) through the microscope lens, the CCD camera Specimens are transmitted by transmitting analog electrical signals representing voltages proportional to the light intensity by hundreds of thousands to millions of unit cells to a computer that digitalizes them by the A / D converter to interpret the image emitted from the upper hole. The straightness is measured by calculating the straightness of the workpiece based on the image shade of the upper hole due to the internal curvature and the deviation value of the intensity of the electric charge corresponding to these shades.

이하 첨부된 도면에 의거하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

일반적으로 상하가 관통된 구조물의 진직도는 기준선(피 측정물의 상하면과 직각으로 된 선분)을 설정하고 실제 구조물의 내부를 측정하여 기준선과의 비교로 진직도를 얻는다.In general, the straightness of the structure penetrating the top and bottom sets the baseline (line segment perpendicular to the top and bottom of the workpiece) and measures the inside of the actual structure to obtain the straightness by comparison with the baseline.

즉, 피측정물 내부에 접촉식 센서를 삽입하여 내부의 현상, 굴곡된 정도를 알아내어 이를 기준선과 비교하는 방법을 이용하고 있다.That is, the contact sensor is inserted into the object to be measured to find out the internal phenomenon and the degree of bending and to compare it with the reference line.

도 1은 시편을 평편하게 고정시킬 수 있는 정밀 3차원 구동 스테이지로 구성된 비접촉 광학 측정 시스템을 나타내며, 도 2는 본 발명 시스템의 개략 구성도이다.FIG. 1 shows a non-contact optical measurement system composed of a precision three-dimensional driving stage capable of flatly holding a specimen, and FIG. 2 is a schematic configuration diagram of the system of the present invention.

Z축 구동 스테이지(3) 끝에는 CCD 카메라(2)가 부착되어 배사조명장치(11)에서 출사된 빛을 이용해 원통형의 미세 홀을 관측하고 관측된 영상 아날로그 자료는 해석을 위해 컴퓨터(8)내의 Grabber Board로 연결되고 이곳에서 아날로그 데이터가 디지털화 되어 전체적인 홀의 음영 영역을 계산하게 된다.At the end of the Z-axis drive stage 3, a CCD camera 2 is attached to observe the cylindrical micro-holes using the light emitted from the illumination illuminator 11, and the observed analog image data is grabber in the computer 8 for analysis. It is connected to the board where the analog data is digitized to calculate the shadow area of the whole hole.

도 3은 편평한 스테이지(10) 상에 놓여진 측정시편(9)과 홀 내부로 빛을 보내기 위한 배사조명장치(11)를 나타내며, 도 4는 본 발명에 따른 홀 직진도 계산 순서도를 도시한 것이다.FIG. 3 shows a measuring specimen 9 placed on a flat stage 10 and an illumination illuminating device 11 for sending light into the hole. FIG. 4 shows a hole straightness calculation flowchart according to the present invention.

측정 대상이 길이에 비해 직경이 매우 협소하여 위치 변화 감지용 센서를 삽입 운용할 공간이 확보되지 못하는 어려운 점이 있으므로 이를 위해 정밀 이동 스테이지가 구동 되는 비접촉 광학 측정 시스템과 고해상도 CCD 카메라(2)를 적용하였다.Since the measurement target has a very small diameter compared to the length, it is difficult to secure a space for inserting and operating a position change detection sensor. Therefore, a non-contact optical measuring system and a high resolution CCD camera (2) driven by a precision moving stage are used for this purpose. .

즉, 배사조명장치(11)에서 출사된 빛을 현미경 렌즈(1)가 장착된 화소(픽셀) 수가 고집적화된 CCD 카메라(2)에 도달하게 된다.That is, the light emitted from the illuminating illuminator 11 reaches the CCD camera 2 having a high number of pixels (pixels) on which the microscope lens 1 is mounted.

물론 현미경 렌즈(1)의 초점 조절을 위해 Z축 구동 스테이지(3)가 요구된다.Of course, the Z-axis driving stage 3 is required for focusing the microscope lens 1.

CCD 카메라(2)는 수 십만 내지 수백만개의 단위 셀를 갖고 있는데 이 셀은 빛의 세기에 비례하게 전압을 나타내게 하는 소자로 이러한 전기적 신호는 아나로그 신호로 이를 디지털 신호화를 위해 A/D Converter가 장착된 컴퓨터(8)로 전송된다.The CCD camera (2) has hundreds of thousands to millions of unit cells, which represent voltage in proportion to the intensity of light. These electrical signals are analog signals and are equipped with A / D converters for digital signalization. Is transferred to the computer 8.

디지털로 전환 신호는 상단 홀에서 출사되는 이미지를 해석할 수 있게 된다.The conversion signal to digital will be able to interpret the image emitted from the top hole.

만약 초기 시편을 1000배(렌즈 배율×CCD배율) 확대된 결과는 직경이 12.7㎝의 원형이 될 것이다.If the initial specimen was enlarged 1000 times (lens magnification × CCD magnification), the result would be a circular 12.7 cm diameter.

이때 내부의 굴곡이 존재 한다면 상단 홀의 화상이 음영이 생길 것이며 이들 음영에 대응하는 전하의 세기는 낮아 전체 셀에 대응한 전하의 세기는 편차가 큰(최대-최소)값을 나타낼 것이며 이를 수학적으로 적절하게 표현 한다면 측정물의 진직도를 계산할 수 있을 것이다.If there is an internal curvature, the image of the upper hole will be shaded, and the charge intensity corresponding to these shades will be low, and the charge intensity corresponding to the entire cell will show a large deviation (max-min) value. In other words, the straightness of the workpiece can be calculated.

계산 가능한 측도로는The calculable measure is

Maximum value - Minimum ValueMaximum value-Minimum Value

각 셀의 표준편차, 표준화된 셀의 편차 등을 고려할 수 있다.The standard deviation of each cell, the deviation of the standardized cell, and the like can be considered.

이상적으로는 만약 진직도가 완벽하다면 편차가 제로가 될 것이다.Ideally, if straightness is perfect, the deviation will be zero.

이와 같은 본 발명을 통하여 마이크로 Capillary구조를 갖는 홀 내부의 진직도를 측정 가능하게 됨으로 인해 대부분의 마이크로 Capillary구조를 갖는 광커넥터용 페룰의 기하학적 측정 분야를 넓일 수 있는 기술을 확보함과 동시에 광커넥터 페룰 내부에서 발생하는 Micro Bending Loss를 줄일 수 있게 되었다.Through the present invention, since it is possible to measure the straightness inside the hole having the microcapillary structure, the optical connector ferrule can be secured while at the same time securing the technology for expanding the geometric measurement field of the ferrule for the optical connector having the most microcapillary structure. Internal micro-bending loss can be reduced.

Claims (3)

마이크로 홀의 진직도를 측정키 위해 현미경 렌즈(1)와 수많은 단위셀이 부착된 CCD 카메라(2)와;A microscope camera 1 and a CCD camera 2 to which a number of unit cells are attached to measure the straightness of the micro holes; 상기 CCD 카메라(2)에 구비된 현미경렌즈(1)의 초점을 조절하도록 하는 Z축 구동 스테이지(3)를 포함하는 3축 정밀 구동 스테이지와;A three-axis precision drive stage including a Z-axis drive stage (3) for adjusting the focus of the microscope lens (1) provided in the CCD camera (2); 빛의 세기에 비례하여 상기 CCD 카메라(2)의 단위셀에 의해 발생되는 아나로그 신호를 디지털 신호화 하는 A/D컨버터가 장착된 컴퓨터(8)와;A computer (8) equipped with an A / D converter for digitally converting an analog signal generated by a unit cell of the CCD camera (2) in proportion to light intensity; 측정시편(9)이 장착된 스테이지(10)의 하부에 설치된 배사조명장치(11)로 구성된 비접촉 광학계를 이용한 미세홀의 진직도 측정장치.A device for measuring the straightness of a fine hole using a non-contact optical system composed of an illumination illuminator 11 installed below the stage 10 on which the measurement specimen 9 is mounted. 제 1 항에 있어서,The method of claim 1, 상기 3축 정밀 이동 스테이지는 현미경 렌즈(1)의 초점을 조절하도록 하는 Z축 구동 스테이지(3)와; 측정시편(9)에 대한 X축 변위 및 Y축 변위를 정밀하게 조절하도록 하는 X축 구동 스테이지(5) 및 Y축 구동 스테이지(4)로 구성됨을 특징으로 하는 비접촉 광학계를 이용한 미세홀의 진직도 측정장치.The three-axis precision moving stage includes a Z-axis driving stage (3) for adjusting the focus of the microscope lens (1); Straightness measurement of microholes using a non-contact optical system, characterized in that it consists of an X-axis drive stage 5 and a Y-axis drive stage 4 for precisely adjusting the X-axis displacement and the Y-axis displacement with respect to the measurement specimen (9) Device. 정밀 이동 스테이지가 구동 되는 비접촉 광학 측정 시스템과 고해상도 CCD 카메라를 적용하여 배사조명에서 출사된 빛을 현미경 렌즈를 통해 화소(픽셀) 수가 고집적화된 CCD 카메라에 도달하도록 하고,By applying a non-contact optical measuring system and a high-resolution CCD camera driven by a precision moving stage, the light emitted from the illumination light reaches the CCD camera having a high pixel count through the microscope lens. 상기 CCD 카메라는 수 십만 내지 수백만개의 단위 셀에 의해 빛의 세기에 비례하게 전압을 나타내는 아나로그 전기적 신호를 A/D Converter에 의해 디지털 신호화하는 컴퓨터로 전송하여 상단 홀에서 출사되는 이미지를 해석할 수 있도록 하므로서 시편 내부의 굴곡에 따른 상단 홀의 화상 음영과 이들 음영에 대응하는 전하의 세기의 편차값에 의해 측정물의 진직도를 계산하므로서 CCD 소자 단위 픽셀에 대응한 전하 값에 따른 편차로 진직도를 측정하도록 함을 특징으로 하는 비접촉 광학계를 이용한 미세 홀의 진직도 측정방법.The CCD camera transmits an analog electrical signal representing a voltage in proportion to the light intensity by hundreds to millions of unit cells to a computer that digitalizes the signal by an A / D converter to interpret an image emitted from the upper hole. The straightness of the workpiece is calculated from the image shade of the top hole due to the curvature inside the specimen and the deviation value of the intensity of the charge corresponding to these shades. Straight hole measurement method using a non-contact optical system, characterized in that for measuring.
KR1019970070322A 1997-12-19 1997-12-19 Microhole straightness measurement system with 3 precision moving stage Expired - Fee Related KR100269263B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970070322A KR100269263B1 (en) 1997-12-19 1997-12-19 Microhole straightness measurement system with 3 precision moving stage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970070322A KR100269263B1 (en) 1997-12-19 1997-12-19 Microhole straightness measurement system with 3 precision moving stage

Publications (2)

Publication Number Publication Date
KR19990051083A KR19990051083A (en) 1999-07-05
KR100269263B1 true KR100269263B1 (en) 2000-10-16

Family

ID=19527779

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970070322A Expired - Fee Related KR100269263B1 (en) 1997-12-19 1997-12-19 Microhole straightness measurement system with 3 precision moving stage

Country Status (1)

Country Link
KR (1) KR100269263B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7113273B2 (en) 2002-01-17 2006-09-26 Heui-Jae Pahk Machine and method for inspecting ferrule of optical connector
KR20190012361A (en) 2017-07-27 2019-02-11 에프엔엔(주) apparatus for ferrule and face inspection of applying the real time imaging technology

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100866048B1 (en) * 2005-10-24 2008-10-30 주식회사 케이엔제이 3-axis controlled plane compensating auto-focus system and method thereby
KR101808262B1 (en) * 2016-02-25 2017-12-12 주식회사 이오테크닉스 Apparatus and method for measuring straightness

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7113273B2 (en) 2002-01-17 2006-09-26 Heui-Jae Pahk Machine and method for inspecting ferrule of optical connector
KR20190012361A (en) 2017-07-27 2019-02-11 에프엔엔(주) apparatus for ferrule and face inspection of applying the real time imaging technology

Also Published As

Publication number Publication date
KR19990051083A (en) 1999-07-05

Similar Documents

Publication Publication Date Title
JP2593938B2 (en) Apparatus for optically inspecting the inner wall of a pipe.
CA2249908C (en) Optical measurement system for detecting luminescence or fluorescence signals
CN101361015A (en) Confocal imaging methods and apparatus
US20090059225A1 (en) Instrument for making optical measurements on multiple samples retained by surface tension
EP0757227A2 (en) Alignment and lighting system and method for aligning and lighting an object for an inspection system that contactlessly measures an offset of a central feature of the object
KR100269263B1 (en) Microhole straightness measurement system with 3 precision moving stage
EP1486810B1 (en) High-stability optical microscope
US3617759A (en) Electrooptical measuring system
US6842258B1 (en) Method of measuring the geometry of grooves in an elongated element
Gillingham et al. The fiber multi-object spectrograph (fmos) project: the anglo-australian observatory role
EP0189538B1 (en) Apparatus for inspection of the walls of deep holes of minute diameter
CN111007044A (en) Optical fiber module for fluorescence detection and fluorescence detector
CN116989673A (en) Astronomical telescope reference optical fiber position scanning measurement device and method
US20240337586A1 (en) Capillary array window holder and related systems and methods
JPH03142301A (en) Scanning tunnel microscope
SU1366876A1 (en) Method and device for contactless check of relative position of adjacent surfaces of two objects
CN220188367U (en) Light transmittance detection device
CN222337053U (en) A laser calibration platform for Fourier transform infrared spectrometer
KR100256668B1 (en) Ferrule automatic measuring device and method for multi-core optical connector
CN108759614A (en) A kind of engineering cracks sensor
RU2270416C2 (en) Device for controlling internal surfaces of bodies
KR20040103884A (en) Concrete Crack Meter for Supervision
CN211652596U (en) Cylinder inner wall check out test set
RU1792523C (en) Method for measuring misalignment of optical fiber in tag
Parry et al. Autofib--2: an automated fiber positioner for the prime focus of the William Herschel Telescope

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

St.27 status event code: A-0-1-A10-A12-nap-PA0109

PA0201 Request for examination

St.27 status event code: A-1-2-D10-D11-exm-PA0201

R17-X000 Change to representative recorded

St.27 status event code: A-3-3-R10-R17-oth-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-3-3-R10-R18-oth-X000

PG1501 Laying open of application

St.27 status event code: A-1-1-Q10-Q12-nap-PG1501

PN2301 Change of applicant

St.27 status event code: A-3-3-R10-R11-asn-PN2301

St.27 status event code: A-3-3-R10-R13-asn-PN2301

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

St.27 status event code: A-1-2-D10-D22-exm-PE0701

GRNT Written decision to grant
PR0701 Registration of establishment

St.27 status event code: A-2-4-F10-F11-exm-PR0701

PR1002 Payment of registration fee

Fee payment year number: 1

St.27 status event code: A-2-2-U10-U11-oth-PR1002

PG1601 Publication of registration

St.27 status event code: A-4-4-Q10-Q13-nap-PG1601

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R11-asn-PN2301

St.27 status event code: A-5-5-R10-R13-asn-PN2301

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R11-asn-PN2301

St.27 status event code: A-5-5-R10-R13-asn-PN2301

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R11-asn-PN2301

St.27 status event code: A-5-5-R10-R13-asn-PN2301

PR1001 Payment of annual fee

Fee payment year number: 4

St.27 status event code: A-4-4-U10-U11-oth-PR1001

PR1001 Payment of annual fee

Fee payment year number: 5

St.27 status event code: A-4-4-U10-U11-oth-PR1001

PR1001 Payment of annual fee

Fee payment year number: 6

St.27 status event code: A-4-4-U10-U11-oth-PR1001

PR1001 Payment of annual fee

Fee payment year number: 7

St.27 status event code: A-4-4-U10-U11-oth-PR1001

FPAY Annual fee payment

Payment date: 20070702

Year of fee payment: 8

PR1001 Payment of annual fee

Fee payment year number: 8

St.27 status event code: A-4-4-U10-U11-oth-PR1001

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

Not in force date: 20080721

Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

St.27 status event code: A-4-4-U10-U13-oth-PC1903

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

PC1903 Unpaid annual fee

Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

Not in force date: 20080721

St.27 status event code: N-4-6-H10-H13-oth-PC1903

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R11-asn-PN2301

St.27 status event code: A-5-5-R10-R13-asn-PN2301

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R11-asn-PN2301

St.27 status event code: A-5-5-R10-R13-asn-PN2301

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R11-asn-PN2301

St.27 status event code: A-5-5-R10-R13-asn-PN2301

P22-X000 Classification modified

St.27 status event code: A-4-4-P10-P22-nap-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000