KR100265811B1 - Semiconductor laser diode and its manufacturing method - Google Patents
Semiconductor laser diode and its manufacturing method Download PDFInfo
- Publication number
- KR100265811B1 KR100265811B1 KR1019930022950A KR930022950A KR100265811B1 KR 100265811 B1 KR100265811 B1 KR 100265811B1 KR 1019930022950 A KR1019930022950 A KR 1019930022950A KR 930022950 A KR930022950 A KR 930022950A KR 100265811 B1 KR100265811 B1 KR 100265811B1
- Authority
- KR
- South Korea
- Prior art keywords
- layer
- gaas
- laser diode
- current limiting
- etching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/227—Buried mesa structure ; Striped active layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18344—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] characterized by the mesa, e.g. dimensions or shape of the mesa
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/2205—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
- H01S5/2206—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on III-V materials
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/12—Heads, e.g. forming of the optical beam spot or modulation of the optical beam
- G11B7/125—Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
- G11B7/127—Lasers; Multiple laser arrays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S2304/00—Special growth methods for semiconductor lasers
- H01S2304/02—MBE
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S2304/00—Special growth methods for semiconductor lasers
- H01S2304/04—MOCVD or MOVPE
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Geometry (AREA)
- Semiconductor Lasers (AREA)
Abstract
본 발명은 레이저 다이오드와 그 제조방법에 관한 것이다.The present invention relates to a laser diode and a method of manufacturing the same.
본 발명은 그 저면에 전극이 마련된 기판과, 상기 기판의 상부에 적층형성되는 것으로서 그 상, 하부에는 크래드층이 마련되어 있으며 레이저를 발진시키는 활성층과, 상기 활성층의 하부에 형성되어 전류를 제한적으로 차단하는 전류제한층과, 최상층에 형성되어 상기 하부전극과 대응하여 전극단을 이루는 상부전극을 구비하는 레이저 다이오드 소자에 있어서, 상기 전류제한층의 중앙부위에는역메사형의 리지 스트라이프가 형성되어 있는 것을 특징으로 하며, 이와 같은 소자를 제조하는데 있어 상기 전류제한층을 성장한 후, SiO2마스크를 제거하고 그 하부의 GaAs층 및 전류제한층의 상부를 식각한 다음, 결함부위를 제거한 후 제성장을 행하는 것에 또한 그 제조방법상의 특징이 있다.According to the present invention, a substrate having an electrode provided on its bottom surface, a laminate layer formed on an upper portion of the substrate, and a cladding layer formed on and below the active layer for oscillating a laser, and formed under the active layer to restrict current. A laser diode device comprising a current limiting layer for blocking and an upper electrode formed on an uppermost layer and forming an electrode end corresponding to the lower electrode, wherein a reverse mesa-type ridge stripe is formed at a central portion of the current limiting layer. In the fabrication of such a device, after the current limiting layer is grown, the SiO 2 mask is removed, the upper GaAs layer and the upper limit of the current limiting layer are etched, and then the defects are removed and then the growth is performed. In addition, there is a characteristic in the manufacturing method.
따라서, 전기적, 광학적 특성이 개선될 뿐만 아니라, 역메사구조의 리지형의 챈러구조를 가짐으로써 자연스러운 굴절단계가 이루어져 모드특성이 한층 더 향상될 수 있다.Therefore, not only the electrical and optical properties are improved, but also the natural measurable step is performed by having a ridge type carrier structure of inverse mesa structure, so that the mode characteristic can be further improved.
Description
제 1도는 종래 레이저 다이오드의 수직 단면 구조도.1 is a vertical cross-sectional structure diagram of a conventional laser diode.
제 2도는 (a), (b) 는 종래 레이저 다이오드의 제조공정도.2 is a manufacturing process diagram of a conventional laser diode (a) and (b).
제 3도는 본 발명에 따른 레이저 다이오드의 제조공정에 있어서, 1차 성장시의 수직 단면 구조도.3 is a vertical cross-sectional view of the structure of the laser diode according to the present invention during the first growth.
제 4도는 본 발명에 따른 레이저 다이오드의 3차 성장 후의 수직 단면구조도.4 is a vertical cross-sectional view after tertiary growth of a laser diode according to the present invention.
* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings
41 : p+-GaAs 기판 42 : p-GaInP 버퍼층41: p + -GaAs substrate 42: p-GaInP buffer layer
43 : p-AlGaInP 크래드층 44 : p-GaAs층43: p-AlGaInP clad layer 44: p-GaAs layer
45 : n-GaAs 전류제한층 46 : SiO2마스크45: n-GaAs current limiting layer 46: SiO 2 mask
47 : p-AlGaInP 크래드층 48 : GaInP 활성층47: p-AlGaInP clad layer 48: GaInP active layer
49 : n-AlGaInP 크래드층 50 : n-GaInP 버퍼층49: n-AlGaInP clad layer 50: n-GaInP buffer layer
51 : n+-GaAs 캡층 61 : p-전극51: n + -GaAs cap layer 61: p-electrode
62 : n-전극62: n-electrode
본 발명은 고밀도로 정보를 저장한 광디스크등의 광정보처리용으로 폭넓게 사용되는 레이저 다이오드에 관한 것으로서, 특히 소자의 모드 특성 미치 전기적, 광학적 특성이 개선된 레이저 다이오드와 그 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a laser diode widely used for optical information processing such as an optical disk storing information at high density, and more particularly, to a laser diode and a method of manufacturing the laser diode having improved mode and electrical characteristics.
일반적인 메사 구조의 레이저 다이오드 제조기술로는 보통 리지(ridge)를 형성하고 SiO2마스크에 의해 전류제한층을 형성하는 기술이 적용되어 왔다. 또한, 전면 에피택시(epitaxy)에 의해 다층 성장으로 VSIS(V-channelled Substrate Inner Stripe) 구조의 레이저 다이오드를 제조하는 기술이 사용되기도 했다.As a general mesa laser diode manufacturing technology, a technique of forming a ridge and forming a current limiting layer using a SiO 2 mask has been applied. In addition, a technique of manufacturing a laser diode having a V-channeled Substrate Inner Stripe (VSIS) structure by multilayer epitaxial growth has been used.
그런데, 종래의 이와 같은 기술들에 있어서, SiO2마스크를 이용한 선택적 에피택시 이후, SiO2하부의 AlGaInP 층에 스트레스(stress)로 인한 결정결함이 생겨 결국, 완성품 소자의 신뢰성이 저하되는 문제가 지적되었다.However, in the conventional techniques, after the selective epitaxy using the SiO 2 mask, the AlGaInP layer under the SiO 2 crystallization caused by stress (stress) occurs, the problem that the reliability of the finished device is finally pointed out It became.
또한, 채널이 순방향 메사형으로 형성되므로 ERIS(Effective Refractive Index Step) 가 급격히 변화하여 소자의 모드특성이 좋지 않다는 점등이 문제점으로 지적되고 있다.In addition, since the channel is formed in a forward mesa shape, the ERIS (Effective Refractive Index Step) is rapidly changed, and the lighting of poor mode characteristics of the device is pointed out as a problem.
제 1 도는 종래 레이저 다이오드의 수직 단면구조도이다. 이를 참조하면, p-GaAs 기판(11)의 저면에는 p-전극(20)이 마련되고, 그 상면에는 중심부에 P-GaInP층(12)이, 그 양측으로는 n-GaAs층(14)이 상호 맞대향하여 상부로 갈수록 입구가 좁아지는 순메사형 구조로써 소정의 두께로 적층형성되어 있다. 그리고 그 위로 즉, 순메사형 구조로 인해 생긴 홈부(13) 및 이 홈부와 상기 양측의 n-GaAs층(14)이 공동으로 이루는 수평면 위로는 p-(AlGa)InP층(15), n-GaInP층(16), n-(AlGa)InP층(17), n-GaAs층(18)이 순차적으로 적층형성되어 있고, 최상부에는 n-전극(19)이 마련되어 있다.1 is a vertical cross-sectional structure diagram of a conventional laser diode. Referring to this, a p-electrode 20 is provided on a bottom surface of the p-GaAs substrate 11, a P-GaInP layer 12 is provided at a central portion thereof, and an n-GaAs layer 14 is formed at both sides thereof. It is a pure mesa-type structure in which the inlet is narrowed toward the upper side facing each other, and is laminated to a predetermined thickness. Above it, that is, the p- (AlGa) InP layer 15 and n-GaInP above the groove 13 formed by the pure mesa structure and the horizontal plane formed by the groove and the n-GaAs layer 14 on both sides. The layer 16, the n- (AlGa) InP layer 17, and the n-GaAs layer 18 are sequentially stacked, and an n-electrode 19 is provided at the top.
제 2도는 (a), (b)는 제 1도의 종래 레이저 다이오드를 제조하는 공정중의 소정 단계를 나타낸 제조공정도이다. (a)도를 참조하면, p-GaAs기판(11)을 형성한 후, 기판(11)의 중심부위에 소정의 높이 및 폭을 가지는 p-GaInP층(12)을 형성하게 된다. 그리고 그 위로 p-(AlGa)InP층 (13)을 상부로 올라갈수록 폭이 좁아지는 형태로 적층형성하고, 그 위에는 SiO2마스크(21)를 형성한다. 그런 후, (b)도에서와 같이, 상기 p-GaInP층(12) 및 p-(AlGa)InP층(13)으로 적층형성된 사다리꼴 형상의 순메사구조체의 양측 공간부에는 GaAs 화합물이 상기 p-(AlGa)InP층(13)과 동일 높이로 적층성장되어 n-GaAs층(14)을 이룬다.2A and 2B are manufacturing process diagrams showing predetermined steps in the process of manufacturing the conventional laser diode of FIG. Referring to FIG. 7A, after the p-GaAs substrate 11 is formed, a p-GaInP layer 12 having a predetermined height and width is formed on the center of the substrate 11. Then, the p- (AlGa) InP layer 13 is stacked on top of each other so that the width thereof becomes narrower, and the SiO 2 mask 21 is formed thereon. Then, as shown in (b), GaAs compounds are formed in both space portions of the trapezoidal pure mesa structure formed by laminating the p-GaInP layer 12 and the p- (AlGa) InP layer 13. The n-GaAs layer 14 is formed by laminating and growing at the same height as the (AlGa) InP layer 13.
그런데, 이와 같은 제조공정을 거치는 종래 레이저 다이오드의 제조방법에 있어서, 전술한 바와 같이, 상기 SiO2마스크(21)를 이용한 선택적 에피택시를 행하게 되는데, 이때 SiO2마스크 하부의 AlGaInP층은 고온으로 인해 스트레스(stress)를 받게 되며, 이로 인해 결정결함이 생기게 된다. 또한, 채널이 순메사형으로 형성되어 있으므로 굴절률 단계가 급격히 변화하여 소자의 모드특성이 좋지 않다는 문제점이 있다.However, in the method of manufacturing a conventional laser diode that undergoes such a manufacturing process, as described above, selective epitaxy using the SiO 2 mask 21 is performed, wherein the AlGaInP layer under the SiO 2 mask is caused by high temperature. You will be stressed, and this will lead to crystal defects. In addition, since the channel is formed in a pure mesa shape, there is a problem that the mode characteristic of the device is not good because the refractive index step changes rapidly.
본 발명은 상기와 같은 문제점을 개선하기 위하여 창출된 것으로서, 선택적 식각방법의 개선에 의해 결정결함이 제거되고, 메사의 구조를 개선하여 모드특성이 향상된 레이저 다이오드를 제공함에 그 목적이 있다.The present invention has been made to solve the above problems, and an object thereof is to provide a laser diode in which crystal defects are removed by an improvement in a selective etching method, and a mesa structure is improved by improving a structure of mesa.
상기의 목적을 달성하기 위하여 본 발명에 따른 레이저 다이오드는, 그 저면에 하부전극이 마련된 기판과, 상기 기판의 상부에 적층형성되는 것으로서 그 상, 하부에는 크래드층이 마련되어 있으며 레이저를 발진시키는 활성층과, 상기 활성층의 하부에 형성되어 전류를 제한적으로 차단하는 전류제한층과, 최상층에 형성되어 상기 하부전극과 대응하여 전극단을 이루는 상부전극을 구비하는 레이저 다이오드 소자에 있어서,In order to achieve the above object, a laser diode according to the present invention includes a substrate having a lower electrode disposed on a bottom thereof, and a laminate layer formed on an upper portion of the substrate, on which a clad layer is provided, and an active layer for oscillating a laser. And a current limiting layer formed under the active layer to restrict current, and an upper electrode formed on an uppermost layer and forming an electrode end corresponding to the lower electrode.
상기 전류제한층의 중앙부위에는 역메사형의 리지 스트라이프(ridge stripe)가 형성되어 있으며, 이에 의해 전류통과영역이 형성되는 점에 그 특징이 있다.An inverted mesa type ridge stripe is formed at the central portion of the current limiting layer, which is characterized in that a current passing region is formed.
또한, 상기의 목적을 달성하기 위하여 본 발명에 따른 레이저 다이오드 제조방법은,In addition, the laser diode manufacturing method according to the present invention in order to achieve the above object,
1) 기판의 상부에 p-버퍼층, p-크래드층 및 p-GaAs 층을 형성하는 단계 ;1) forming a p-buffer layer, a p-clad layer and a p-GaAs layer on top of the substrate;
2) 포토에칭과정을 통해 역메사형의 리지 스트라이프를 형성하는 단계 ;2) forming an inverted mesa type ridge stripe through a photo etching process;
3) 마스크를 이용한 선택적 에피택시에 의해 n-GaAs전류제한층을 형성하는 단계 ;3) forming an n-GaAs current limiting layer by selective epitaxy using a mask;
4) 상기 마스크를 제거한 후, 마스크 하부의 p-GaAs층 및 n-GaAs전류제한층의 일부를 식각하는 단계 ; 및4) etching the portions of the p-GaAs layer and the n-GaAs current limiting layer under the mask after removing the mask; And
5) 식각에 의해 평탄화를 이룩하고, 3차 성장에 의해 p-크래드층, 활성층, n-크래드층, n-버퍼층, n+-GaAs 캡층을 순차적으로 형성하는 단계 : 를 포함한다.5) flattening by etching, and sequentially forming a p-clad layer, an active layer, an n-clad layer, an n-buffer layer, and an n + -GaAs cap layer by tertiary growth.
그리고, 상기 기판의 저면과 n+-GaAs 캡층의 상면에 전극을 각각 형성하는 단계를 더 포함한다.The method may further include forming electrodes on the bottom surface of the substrate and the top surface of the n + -GaAs cap layer.
이하 첨부된 도면을 참조하면서 본 발명의 실시예를 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명의 레이저 다이오드는 기판과, 레이저 발진층과, 레이저 발진을 위한 전류를 주입하는 주입층부를 갖는다. 상기 전류주입층부는 본 발명을 특징지우는 것으로서 p-크래드층과 n-전류제한층의 접촉구조가 종래의 레이저 다이오드와 다르게 되어 있으며, 그 제조공정 또한 좀더 개선된 식각법등을 사용한다. 이에 대해서는 제조공정을 설명하면서 다시 상세히 설명한다.The laser diode of the present invention has a substrate, a laser oscillation layer, and an injection layer portion for injecting a current for laser oscillation. The current injection layer is characterized by the present invention, the contact structure of the p- clad layer and the n-current limiting layer is different from the conventional laser diode, the manufacturing process also uses a more improved etching method. This will be described in detail again while explaining the manufacturing process.
제 3도를 참조하면, 이는 본 발명에 따른 레이저 다이오드의 제조공정에 있어서, 1차성장 후의 수직 단면구조를 보여준다. 도시된 바와 같이, 최하부에는 p+-GaAs기판(41)이 위치하고, 그 위로는 p-GaInP버퍼층(42)이 적층형성된다. 그리고, 다시 그 위로는 p-AlGaInP크래드층(43) 및 p-GaAs층(44)이 적층형성된다. 이 상태에서 통상의 포토에칭 과정을 통해 SiO2마스크(46)를 이용한 에칭으로 역메사형의 리지 스트라이프를 형성한다. 그런 후, SiO2마스크(46)를 이용한 선택적 에피택시에 의해 상기 p-AlGaInP크래드층(43)과 P-GaAs층(44)으로 형성된 리지 스트라이프의 양측 공간부에는 n-GaAs전류 제한층(45)이 성장된다. 이 때, 고온에서 결정성장을 수행하므로 SiO2마스크의 하부의 p-GaAs층(44)에는 열적 응력에 의해 결정결함이 많이 발생하게 된다.Referring to FIG. 3, this shows the vertical cross-sectional structure after the first growth in the manufacturing process of the laser diode according to the present invention. As shown, the p + -GaAs substrate 41 is positioned at the bottom, and the p-GaInP buffer layer 42 is stacked thereon. Then, the p-AlGaInP cladding layer 43 and the p-GaAs layer 44 are stacked on top of each other. In this state, an inverse mesa-type ridge stripe is formed by etching using the SiO 2 mask 46 through a normal photoetching process. Then, an n-GaAs current limiting layer is formed in both space portions of the ridge stripe formed of the p-AlGaInP cladding layer 43 and the P-GaAs layer 44 by selective epitaxy using the SiO 2 mask 46. 45) is grown. At this time, since crystal growth is performed at a high temperature, many crystal defects are generated in the p-GaAs layer 44 under the SiO 2 mask due to thermal stress.
따라서, 이 단계에서 본 발명의 특징에 따라 SiO2마스크(46)를 제거한 후, 그 하부의 p-GaAs층(44)과 n-GaAs 전류제한층(45)의 표면 일부를 식각한다. 이때의 식각공정은 일반적인 습식식각은 물론, MBE(Molecular Beam Epitaxy)법을 통한 As4TC(Thermal Cleaning)이나 MOCVD(Metal Organic Chemical Vapor Deposition)법을 통한 염소(HCl) 가스의 기상(vapor phase) 식각을 통해 이루어진다. 이로써, 상기 SiO2마스크 하부의 결정결함은 제거된다. 여기서, 또한 n-GaAs 전류제한층(45)과 p-AlGaInP 크래드층(43) 사이에는 에칭 선택성이 존재하므로 에칭을 통해 평탄화를 행할 수 있게 된다. 이와 같이 TC등에 의해 식각표면이 깨끗해지고, 또한 평탄호가 이루어진 표면위에 다시 재성장을 하게 되므로 소자의 특성은 한층 향상된다. 이후의 3차성장은 제 4도를 참조하면서 설명한다.Therefore, in this step, after removing the SiO 2 mask 46 in accordance with the features of the present invention, a portion of the surface of the lower p-GaAs layer 44 and the n-GaAs current limiting layer 45 is etched. The etching process is not only general wet etching but also vapor phase of chlorine (HCl) gas through As 4 TC (Thermal Cleaning) through MBE (Molecular Beam Epitaxy) or MOCVD (Metal Organic Chemical Vapor Deposition). It is done by etching. As a result, crystal defects under the SiO 2 mask are removed. Here, since the etching selectivity exists between the n-GaAs current limiting layer 45 and the p-AlGaInP cladding layer 43, planarization can be performed by etching. In this way, the etching surface is cleaned by TC and the like, and the growth of the etching surface is re-grown again on the flat arc surface, thereby improving the characteristics of the device. Subsequent tertiary growth will be explained with reference to FIG.
제 4도는 본 발명에 따른 레이저 다이오드의 3차성장 후의 수직 단면구조도이다. 상기 제 3도에서 선택적 식각 이후에 n-GaAs 전류제한층(45)의 2차성장공정이 완료된 후, 이 제 4도에 도시된 바와 같이, 그 위로 p-AlGaInP크래드층(47)을 적층형성한다. 이때, 이 새로이 성장한 p-AlGaInP크래드층(47)과 1차성장에 의한 p-AlGaInP크래드층(43)은 동일 화합물로서 중심부의 채널부에서 상호접착되어 전체적으로 하나의 하부 크래드층을 형성한다. 이와 같은 하부 크래드층(47) 상면에는 다시 GaInP활성층(48)이 적층형성되고, 그 위로는 n-AlGaInP크래드층(49)이 형성된다. 또한, 상기 n-AlGaInP크래드층(49)의 상부에는 n-GaInP버퍼층(50)이 형성되고, 그 위로는 n+-GaAs층(51)이 적층 형성된다. 그리고, 최상층에는 n-전극(62)이 최하층에는 p-전극(61)이 각각 마련되어 레이저 발진을 위한 전류주입의 전극단을 형성함으로써 레이저 다이오드는 완성된다.4 is a vertical cross-sectional structure diagram after tertiary growth of a laser diode according to the present invention. After the secondary growth process of the n-GaAs current limiting layer 45 is completed after the selective etching in FIG. 3, the p-AlGaInP cladding layer 47 is deposited thereon, as shown in FIG. Form. At this time, the newly grown p-AlGaInP cladding layer 47 and the p-AlGaInP cladding layer 43 by primary growth are bonded to each other in the channel portion of the center as the same compound to form one lower cladding layer as a whole. do. The GaInP active layer 48 is stacked on the upper surface of the lower cladding layer 47, and the n-AlGaInP cladding layer 49 is formed thereon. In addition, an n-GaInP buffer layer 50 is formed on the n-AlGaInP cladding layer 49, and an n + -GaAs layer 51 is formed thereon. Then, the n-electrode 62 is provided on the uppermost layer and the p-electrode 61 is provided on the lowermost layer to form an electrode end of current injection for laser oscillation, thereby completing the laser diode.
이상의 설명에서와 같이, 본 발명에 따른 레이저 다이오드의 제조방법은 SiO2마스크에 의한 선택적 식각 및 성장에 의해 생기는 마지막의 결정결함을 용이하게 제거하고 재성장을 행하게 되므로 소자의 전기적, 광학적 특성이 개선될 뿐만 아니라, 역메사구조의 리지 스트라이프가 형성되어 있으므로 자연스로운 굴절단계가 이루어져 소자의 모드특성을 한층 더 향상시키게 된다.As described above, the method of manufacturing a laser diode according to the present invention can easily remove the last crystal defect caused by selective etching and growth by SiO 2 mask and perform regrowth, thereby improving the electrical and optical characteristics of the device. In addition, since the ridge stripe of the inverted mesa structure is formed, a natural refraction step is performed to further improve the mode characteristics of the device.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019930022950A KR100265811B1 (en) | 1993-10-30 | 1993-10-30 | Semiconductor laser diode and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019930022950A KR100265811B1 (en) | 1993-10-30 | 1993-10-30 | Semiconductor laser diode and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
KR950012939A KR950012939A (en) | 1995-05-17 |
KR100265811B1 true KR100265811B1 (en) | 2000-09-15 |
Family
ID=19367076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019930022950A Expired - Fee Related KR100265811B1 (en) | 1993-10-30 | 1993-10-30 | Semiconductor laser diode and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100265811B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100634517B1 (en) | 2004-10-09 | 2006-10-16 | 삼성전기주식회사 | Laser diode and manufacturing method thereof |
-
1993
- 1993-10-30 KR KR1019930022950A patent/KR100265811B1/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100634517B1 (en) | 2004-10-09 | 2006-10-16 | 삼성전기주식회사 | Laser diode and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR950012939A (en) | 1995-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000106473A (en) | Semiconductor device, semiconductor light emitting device and manufacture thereof, and forming method of nitride semiconductor layer | |
KR100773677B1 (en) | Semiconductor laser device and manufacturing method thereof | |
JPH1070338A (en) | Manufacture of semiconductor laser element | |
KR100277561B1 (en) | Semiconductor laser device | |
KR100265811B1 (en) | Semiconductor laser diode and its manufacturing method | |
JPH11204882A (en) | Nitride semiconductor laser element and its manufacture | |
JP4118025B2 (en) | Gallium nitride semiconductor laser device | |
JP3878707B2 (en) | Nitride semiconductor laser device manufacturing method | |
JP2003163418A (en) | Nitride gallium system compound semiconductor laser | |
KR100363240B1 (en) | Semiconductor laser diode and its manufacturing method | |
KR100255697B1 (en) | Laser diode | |
JP2000294877A (en) | High output semiconductor laser and manufacture of the same | |
KR100322689B1 (en) | Laser diode and its manufacturing method | |
KR100304658B1 (en) | Semiconductor laser device and manufacturing method thereof | |
JP3820826B2 (en) | Semiconductor light emitting device and method for manufacturing semiconductor device | |
KR100718123B1 (en) | Manufacturing method of laser diode | |
JP3449546B2 (en) | Semiconductor laser and manufacturing method thereof | |
JP4027126B2 (en) | Semiconductor laser device and manufacturing method thereof | |
EP1026799B1 (en) | Semiconductor laser and fabricating method therefor | |
JPH02119285A (en) | Manufacture of semiconductor laser | |
JP3349506B2 (en) | Method of forming nitride-based semiconductor layer | |
JP2000244073A (en) | Multi-wavelength integrated semiconductor laser device | |
JPH084174B2 (en) | Semiconductor laser and manufacturing method thereof | |
JP2003124571A (en) | Semiconductor laser element and its fabricating method | |
JPH07321402A (en) | Semiconductor laser device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
St.27 status event code: A-0-1-A10-A12-nap-PA0109 |
|
R17-X000 | Change to representative recorded |
St.27 status event code: A-3-3-R10-R17-oth-X000 |
|
PG1501 | Laying open of application |
St.27 status event code: A-1-1-Q10-Q12-nap-PG1501 |
|
A201 | Request for examination | ||
PA0201 | Request for examination |
St.27 status event code: A-1-2-D10-D11-exm-PA0201 |
|
R17-X000 | Change to representative recorded |
St.27 status event code: A-3-3-R10-R17-oth-X000 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-3-3-R10-R18-oth-X000 |
|
PN2301 | Change of applicant |
St.27 status event code: A-3-3-R10-R13-asn-PN2301 St.27 status event code: A-3-3-R10-R11-asn-PN2301 |
|
PN2301 | Change of applicant |
St.27 status event code: A-3-3-R10-R13-asn-PN2301 St.27 status event code: A-3-3-R10-R11-asn-PN2301 |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
St.27 status event code: A-1-2-D10-D22-exm-PE0701 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
St.27 status event code: A-2-4-F10-F11-exm-PR0701 |
|
PR1002 | Payment of registration fee |
St.27 status event code: A-2-2-U10-U11-oth-PR1002 Fee payment year number: 1 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
PG1601 | Publication of registration |
St.27 status event code: A-4-4-Q10-Q13-nap-PG1601 |
|
PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |
St.27 status event code: A-4-4-U10-U13-oth-PC1903 Not in force date: 20030618 Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
PC1903 | Unpaid annual fee |
St.27 status event code: N-4-6-H10-H13-oth-PC1903 Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE Not in force date: 20030618 |
|
PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
P22-X000 | Classification modified |
St.27 status event code: A-4-4-P10-P22-nap-X000 |