[go: up one dir, main page]

KR100265333B1 - Manufacturing method of high dielectric capacitor of semiconductor device - Google Patents

Manufacturing method of high dielectric capacitor of semiconductor device Download PDF

Info

Publication number
KR100265333B1
KR100265333B1 KR1019970077926A KR19970077926A KR100265333B1 KR 100265333 B1 KR100265333 B1 KR 100265333B1 KR 1019970077926 A KR1019970077926 A KR 1019970077926A KR 19970077926 A KR19970077926 A KR 19970077926A KR 100265333 B1 KR100265333 B1 KR 100265333B1
Authority
KR
South Korea
Prior art keywords
film
manufacturing
high dielectric
semiconductor device
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1019970077926A
Other languages
Korean (ko)
Other versions
KR19990057847A (en
Inventor
홍권
Original Assignee
김영환
현대전자산업주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대전자산업주식회사 filed Critical 김영환
Priority to KR1019970077926A priority Critical patent/KR100265333B1/en
Publication of KR19990057847A publication Critical patent/KR19990057847A/en
Application granted granted Critical
Publication of KR100265333B1 publication Critical patent/KR100265333B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D1/00Resistors, capacitors or inductors
    • H10D1/60Capacitors
    • H10D1/68Capacitors having no potential barriers
    • H10D1/692Electrodes
    • H10D1/696Electrodes comprising multiple layers, e.g. comprising a barrier layer and a metal layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor
    • H10B12/0335Making a connection between the transistor and the capacitor, e.g. plug
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D1/00Resistors, capacitors or inductors
    • H10D1/60Capacitors
    • H10D1/68Capacitors having no potential barriers
    • H10D1/682Capacitors having no potential barriers having dielectrics comprising perovskite structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D1/00Resistors, capacitors or inductors
    • H10D1/60Capacitors
    • H10D1/68Capacitors having no potential barriers
    • H10D1/692Electrodes
    • H10D1/694Electrodes comprising noble metals or noble metal oxides

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Abstract

본 발명은 반도체 제조 분야에 관한 것으로, 특히 차세대 초고집적 DRAM 및 FeRAM에 적용되는 고유전체 캐패시터 및 그 제조방법에 관한 것이며, 확산 방지막을 포함한 하부 전극의 열적 안정성 및 내산화성을 확보하는 반도체 장치의 고유전체 캐패시터 제조방법을 제공하는데 그 목적이 있다. 본 발명은 반도체 소자의 고유전체 캐패시터 공정중 하부전극으로서 백금(Pt)막을 증착한 후 플라즈마 처리를 통하여 원형 구조의 결정질을 비정질화시키면, 고유전체 박막의 고온 증착 및 후속 열처리시의 산소 분위기에서도 산소의 확산 경로를 차단할 수 있는 기술이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the field of semiconductor manufacturing, and more particularly, to a high dielectric capacitor and a method of manufacturing the same, which are applied to next-generation ultra-high density DRAM and FeRAM, and inherent in semiconductor devices to secure thermal stability and oxidation resistance of a lower electrode including a diffusion barrier. It is an object of the present invention to provide a whole capacitor manufacturing method. According to the present invention, when a platinum (Pt) film is deposited as a lower electrode during a high-k dielectric capacitor process of a semiconductor device and the crystallization of a crystalline structure of a circular structure is performed through a plasma treatment, the oxygen may be removed even in an oxygen atmosphere during high temperature deposition and subsequent heat treatment of a high-k dielectric thin film. It is a technology that can block the diffusion path of.

Description

반도체 장치의 고유전체 캐패시터 제조방법Manufacturing method of high dielectric capacitor of semiconductor device

본 발명은 반도체 제조 분야에 관한 것으로, 특히 차세대 초고집적 DRAM 및 FeRAM에 적용되는 고유전체 캐패시터 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the field of semiconductor manufacturing, and more particularly, to a method of manufacturing a high dielectric capacitor applied to next generation ultra high density DRAM and FeRAM.

DRAM을 비롯한 반도체 메모리 장치의 고집적화에 따라 반도체 장치의 리프레시(refresh) 특성 등의 동작 특성이 큰 문제로 부각되고 있다. 이에 따라 동작 특성을 확보하기 위하여 충분한 캐패시터의 정전용량을 확보하는 기술에 대한 많은 연구·개발이 진행되고 있다.Background Art With the high integration of semiconductor memory devices including DRAM, operating characteristics such as refresh characteristics of semiconductor devices have become a big problem. Accordingly, many researches and developments have been made on a technology for securing a capacitance of a capacitor sufficient to secure operating characteristics.

종래의 일반적인 캐패시터는 그의 동작 특성 확보에 충분한 정전용량을 제공하기 위하여 하부전극을 3차원 구조화하거나, 유전체 두께를 감소시키는 방법을 사용하여 왔다. 그러나, 반도체 장치의 고집적화에 따라 그 적용 한계에 직면하게 되었다.Conventional general capacitors have used a method of three-dimensional structuring the lower electrode or reducing the dielectric thickness to provide sufficient capacitance to secure its operating characteristics. However, high integration of semiconductor devices has led to application limitations.

이에 따라, FeRAM 및 향후 차세대 반도체 메모리 장치의 캐패시터의 유전막으로서 SrTiO3(이하, STO), (Ba,Sr)TiO3(이하, BST라 함), Pb(Zr,Ti)O3(이하, PZT라 함) 등의 고유전체 박막을 사용하는 고유전체 캐패시터에 대한 연구·개발이 진행되고 있다.As a result, SrTiO 3 (hereinafter referred to as STO), (Ba, Sr) TiO 3 (hereinafter referred to as BST), and Pb (Zr, Ti) O 3 (hereinafter referred to as PZT) as dielectric films for capacitors in FeRAM and next-generation semiconductor memory devices. Research and development of high-k dielectric capacitors using high-k dielectric thin films are being conducted.

이러한 고유전체 캐패시터의 하부전극 재료로서 백금(Pt)이 유력시되고 있다. 이 경우 백금 하부전극과 기판(예를 들어, 폴리실리콘 콘택 플러그)간의 상호 확산을 방지하기 위하여 확산 방지막을 사용하는데, 하부전극 확산 방지막으로는 티타늄질화막(TiN막)이 주로 사용되고 있다. 그러나, TiN막이 고온의 고유전체 박막 증착 공정 및 결정화를 위한 열처리 공정시의 산소 분위기에서 쉽게 산화되어 TiO2막을 형성함으로써 고유전체 캐패시터의 물성을 크게 저하시키는 문제점이 있었다. 이는 Pt막의 결정립계(grain boundary) 또는 원주형 계면(columnar boundary)을 통하여 유입되는 산소에 그 원인이 있다.Platinum (Pt) is a predominant force as a lower electrode material of such a high dielectric capacitor. In this case, a diffusion barrier layer is used to prevent mutual diffusion between the platinum lower electrode and the substrate (for example, polysilicon contact plug). A titanium nitride layer (TiN layer) is mainly used as the diffusion barrier for the lower electrode. However, there is a problem that the TiN film is easily oxidized in an oxygen atmosphere during the high temperature high dielectric film deposition process and the heat treatment process for crystallization to form a TiO 2 film, thereby greatly deteriorating the physical properties of the high dielectric capacitor. This is due to the oxygen introduced through the grain boundary or columnar boundary of the Pt film.

따라서, 기가(giga) DRAM급 반도체 소자에서 요구되는 캐패시터의 유전체 특성 및 전기적 특성을 얻기 위해서는 고유전체 박막의 고온 증착 및 열처리 공정이 필수적이기 때문에 확산 방지막을 포함한 하부전극의 열적 안정성 및 내산화성을 확보하는 기술의 개발이 시급한 실정이다.Therefore, in order to obtain dielectric and electrical characteristics of a capacitor required for a giga DRAM-class semiconductor device, high temperature deposition and heat treatment of a high-k dielectric thin film are essential, thereby securing thermal stability and oxidation resistance of a lower electrode including a diffusion barrier. The development of technology is urgently needed.

본 발명은 확산 방지막을 포함한 하부전극의 열적 안정성 및 내산화성을 확보하는 반도체 장치의 고유전체 캐패시터 제조방법을 제공하는데 그 목적이 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a high dielectric capacitor of a semiconductor device which secures thermal stability and oxidation resistance of a lower electrode including a diffusion barrier.

도 1 내지 도 7은 본 발명의 바람직한 일실시예에 따른 캐패시터 제조 공정 단면도.1 to 7 is a cross-sectional view of a capacitor manufacturing process according to an embodiment of the present invention.

* 도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings

1 : 실리콘 기판 2 : 층간절연막1 silicon substrate 2 interlayer insulating film

3 : 콘택 플러그 4 : 티타늄막(Ti막)3: contact plug 4: titanium film (Ti film)

5 : 티타늄질화막(TiN막) 6 : 티타늄실리사이드막(TiSix막)5: titanium nitride film (TiN film) 6: titanium silicide film (TiSi x film)

7 : 티타늄산화질화막(TiNO막) 8 : 백금막(Pt막)7: titanium oxide nitride film (TiNO film) 8: platinum film (Pt film)

8a : 비정질화된 백금막 9 : BST8a: amorphous platinum film 9: BST

10 : 이산화이리듐막(IrO2)10: iridium dioxide film (IrO 2 )

본 발명은 반도체 소자의 고유전체 캐패시터 공정중 하부전극으로서 백금(Pt)막을 증착한 후 플라즈마 처리를 통하여 원형 구조의 결정질을 비정질화시키면, 고유전체 박막의 고온 증착 및 후속 열처리시의 산소 분위기에서도 산소의 확산 경로를 차단할 수 있는 기술이다.According to the present invention, when a platinum (Pt) film is deposited as a lower electrode during a high-k dielectric capacitor process of a semiconductor device and the crystallization of a crystalline structure of a circular structure is performed through a plasma treatment, the oxygen may be removed even in an oxygen atmosphere during high temperature deposition and subsequent heat treatment of a high-k dielectric thin film. It is a technology that can block the diffusion path of.

상술한 본 발명의 기술적 원리로부터 제공되는 반도체 장치의 고유전체 캐패시터 제조방법은 소정의 하부 구조가 형성된 반도체 기판 상에 전기적으로 콘택되는 장벽 금속막을 형성하는 제1 단계; 상기 장벽 금속막 상부에 하부전극으로서 백금막을 형성하는 제2 단계; 상기 백금막에 Ar 가스 또는 N2가스를 사용하여 플라즈마 처리를 실시하여 상기 백금막의 표면 부분에 비정질층을 형성하는 제3 단계; 상기 백금막 상부에 고유전체 박막을 형성하는 제4 단계; 및 상기 고유전체 박막 상부에 상부전극을 형성하는 제5 단계를 포함하여 이루어진다.A method of manufacturing a high dielectric capacitor of a semiconductor device provided from the above-described technical principles of the present invention includes: a first step of forming a barrier metal film electrically contacted on a semiconductor substrate on which a predetermined substructure is formed; Forming a platinum film as a lower electrode on the barrier metal film; Performing a plasma treatment on the platinum film using Ar gas or N 2 gas to form an amorphous layer on a surface portion of the platinum film; Forming a high dielectric thin film on the platinum film; And a fifth step of forming an upper electrode on the high dielectric thin film.

이하, 첨부된 도면을 참조하여 본 발명의 실시예를 소개한다.Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

첨부된 도면 도 1 내지 도 7은 본 발명의 바람직한 일실시예에 따른 강유전체 캐패시터 제조 공정도를 도시한 것으로, 이하 그 공정을 살펴본다.1 to 7 illustrate a process diagram of manufacturing a ferroelectric capacitor according to an exemplary embodiment of the present invention. Hereinafter, the process will be described.

우선, 도 1에 도시된 바와 같이 소정의 하부층 공정을 마친 실리콘 기판(1) 상에 층간절연막(2)을 형성하고, 이를 선택 식각하여 콘택홀을 형성한다. 계속하여, 화학기상증착법을 사용하여 500Å 내지 3000Å 두께의 폴리실리콘막을 증착하고, 이를 에치백하여 콘택 플러그(3)를 형성한다.First, as shown in FIG. 1, an interlayer insulating film 2 is formed on a silicon substrate 1 that has undergone a predetermined lower layer process, and then selectively etched to form a contact hole. Subsequently, a polysilicon film having a thickness of 500 kPa to 3000 kPa is deposited using chemical vapor deposition and etched back to form the contact plug 3.

다음으로, 도 2에 도시된 바와 같이 전체구조 상부에 100Å 내지 1000Å 두께의 티타늄막(Ti막)(4) 및 200Å내지 2000Å 두께의 티타늄질화막(TiN막)(5)을 차례로 증착한다. 이때, 티타늄막(4) 및 티타늄질화막(5)은 각각 접합층(glue layer) 및 확산 방지막으로서 증착된 것이다.Next, as shown in FIG. 2, a titanium film (Ti film) 4 having a thickness of 100 kPa to 1000 kPa and a titanium nitride film (TiN film) 5 having a thickness of 200 kPa to 2000 kPa are sequentially deposited on the entire structure. At this time, the titanium film 4 and the titanium nitride film 5 are deposited as a glue layer and a diffusion barrier film, respectively.

이어서, 도 3에 도시된 바와 같이 티타늄질화막(5)의 확산 방지 특성을 향상시키기 위하여 산소 분위기의 고온에서 급속 열처리(RTA)를 실시하여 티타늄질화막(5) 표면에 티타늄산화질화막(TiNO막)(7)을 형성한다. 이러한 고온 열처리시 콘택 플러그(3)의 실리콘(Si)과 티타늄막(4)의 티타늄(Ti)이 반응하여 그 계면에서 티타늄실리사이드막(TiSix막)(6)이 형성된다.Next, as shown in FIG. 3, rapid thermal annealing (RTA) is performed at a high temperature in an oxygen atmosphere in order to improve the diffusion preventing property of the titanium nitride film 5, and a titanium oxynitride film (TiNO film) on the surface of the titanium nitride film 5 ( 7) form. During such high temperature heat treatment, silicon (Si) of the contact plug 3 and titanium (Ti) of the titanium film 4 react to form a titanium silicide film (TiSi x film) 6 at the interface thereof.

계속하여, 도 4에 도시된 바와 같이 전체구조 상부에 하부전극으로서 백금막(Pt막)(8)을 500Å 내지 5000Å 두께로 증착한다.Subsequently, as shown in FIG. 4, a platinum film (Pt film) 8 is deposited to a thickness of 500 kV to 5000 kV as a lower electrode on the entire structure.

이어서, 도 5에 도시된 바와 같이 Ar 가스 및 N2가스 분위기에서 1 내지 3㎾의 고주파(RF) 전원을 사용하여 1분 내지 5분 동안 플라즈마(plasma) 처리를 실시하여 원주형 구조의 백금막(8) 표면 부분의 결정 구조를 파괴하여 비정질 구조를 가지는 백금막(8a)으로 상전이 시킨다.Subsequently, as shown in FIG. 5, the plasma film is subjected to plasma treatment for 1 to 5 minutes by using a high frequency (RF) power source of 1 to 3 GHz in an Ar gas and an N 2 gas atmosphere. (8) The crystal structure of the surface portion is destroyed and transferred to the platinum film 8a having an amorphous structure.

다음으로, 도 6에 도시된 바와 같이 사진 및 식각 공정을 진행하여 하부전극을 디파인한다. 이때, 티타늄막(4)까지 패터닝 되도록 한다.Next, as shown in FIG. 6, the lower electrode is defined by performing a photo and etching process. At this time, the titanium film 4 is patterned.

이후, 도 7에 도시된 바와 같이 하부전극이 형성된 전체구조 상에 300Å 내지 2000Å 두께의 BST(9)를 형성하고, 그 상부에 500Å 내지 2000Å 두께의 이산화이리듐막(IrO2막)(10)을 화학기상증착법으로 증착한다. 이후, 캐패시터 패터닝 공정을 수행할 수 있다.Subsequently, as shown in FIG. 7, a BST 9 having a thickness of 300 mW to 2000 mW is formed on the entire structure in which the lower electrode is formed, and an iridium dioxide film (IrO 2 film) 10 having a thickness of 500 mW to 2000 mW is formed thereon. It is deposited by chemical vapor deposition. Thereafter, a capacitor patterning process may be performed.

상술한 일실시예에 따라 형성된 캐패시터는 표면처리를 거친 그 하부전극이 향상된 열적 안정성 및 내산화성을 가지게 되어 고온 산화 분위기에서의 BST 증착 및 열처리 공정이 가능하므로, 전기적으로 신뢰도가 높은 캐패시터를 제조할 수 있다.The capacitor formed according to the above-described embodiment has a thermally treated lower electrode that has improved thermal stability and oxidation resistance, so that the BST deposition and heat treatment process in a high temperature oxidizing atmosphere is possible, thereby producing a highly reliable capacitor. Can be.

상기한 일실시예에서는 고유전체 박막 및 상부전극을 각각 BST 및 이산화이리듐막으로 사용하고, 장벽 금속으로 Ti/TiN을 사용하는 것을 예로 하여 설명하였으나, 본 발명은 다른 물질을 적용할 수 있다.In the above-described embodiment, the high dielectric thin film and the upper electrode are used as the BST and the iridium dioxide film, respectively, and Ti / TiN is used as the barrier metal. However, the present invention can be applied to other materials.

이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.The present invention described above is not limited to the above-described embodiments and the accompanying drawings, and various substitutions, modifications, and changes can be made in the art without departing from the technical spirit of the present invention. It will be apparent to those of ordinary knowledge.

이상에서와 같이 본 발명을 실시하면 고유전체 캐패시터의 하부전극의 열적 안정성 및 내산화성이 증가하여 고온 산소 분위기에서의 고유전체 증착 공정이 가능해져 기가 DRAM급 반도체 장치에서 요구되는 캐패시터의 유전 특성 및 전기적 특성을 조기에 확보할 수 있으며, 전기적으로 우수한 특성을 갖는 캐패시터의 제조가 가능하다.As described above, according to the present invention, the thermal stability and the oxidation resistance of the lower electrode of the high dielectric capacitor are increased to enable the deposition of the high dielectric material in a high temperature oxygen atmosphere, and thus the dielectric characteristics and electrical characteristics of the capacitor required in a giga DRAM-class semiconductor device. It is possible to secure the characteristics early, and to manufacture a capacitor having excellent electrical characteristics.

Claims (6)

소정의 하부 구조가 형성된 반도체 기판 상에 전기적으로 콘택되는 장벽 금속막을 형성하는 제1 단계;A first step of forming a barrier metal film that is electrically contacted on a semiconductor substrate on which a predetermined substructure is formed; 상기 장벽 금속막 상부에 하부전극으로서 백금막을 형성하는 제2 단계;Forming a platinum film as a lower electrode on the barrier metal film; 상기 백금막에 Ar 가스 또는 N2가스를 사용하여 플라즈마 처리를 실시하여 상기 백금막의 표면 부분에 비정질층을 형성하는 제3 단계;Performing a plasma treatment on the platinum film using Ar gas or N 2 gas to form an amorphous layer on a surface portion of the platinum film; 상기 백금막 상부에 고유전체 박막을 형성하는 제4 단계; 및Forming a high dielectric thin film on the platinum film; And 상기 고유전체 박막 상부에 상부전극을 형성하는 제5 단계A fifth step of forming an upper electrode on the high dielectric film 를 포함하여 이루어진 반도체 장치의 고유전체 캐패시터 제조방법.A method of manufacturing a high dielectric capacitor of a semiconductor device comprising a. 제 1 항에 있어서,The method of claim 1, 상기 제1 단계가The first step is 상기 반도체 기판 전체구조 상부에 티타늄막을 형성하는 제6 단계와,A sixth step of forming a titanium film on the entire semiconductor substrate structure; 상기 티타늄막 상부에 티타늄질화막을 형성하는 제7 단계를 포함하여 이루어진 반도체 장치의 고유전체 캐패시터 제조방법.And a seventh step of forming a titanium nitride film on the titanium film. 제 2 항에 있어서,The method of claim 2, 상기 제7 단계 수행후After performing the seventh step 열처리를 실시하여 상기 티타늄질화막의 표면 부분에 티타늄산화질화막을 형성하고, 상기 티타늄막 하부에 티타늄실리사이드막을 형성하는 제8 단계를 더 포함하여 이루어진 반도체 장치의 고유전체 캐패시터 제조방법.And heat treating to form a titanium oxynitride film on a surface portion of the titanium nitride film, and forming a titanium silicide film on the lower portion of the titanium film. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3, 상기 플라즈마 처리가The plasma treatment 1 내지 3㎾의 고주파 전원을 사용하여 1분 내지 5분 동안 이루어진 반도체 장치의 고유전체 캐패시터 제조방법.A method of manufacturing a high dielectric capacitor of a semiconductor device made for 1 to 5 minutes by using a high frequency power source of 1 to 3 GHz. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3, 상기 백금막이The platinum film 500Å 내지 5000Å 두께인 반도체 장치의 고유전체 캐패시터 제조방법.A high dielectric capacitor manufacturing method for a semiconductor device having a thickness of 500 kV to 5000 kV. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3, 상기 고유전체 박막이The high dielectric thin film SrTiO3, (Ba,Sr)TiO3, Pb(Zr,Ti)O3중 어느 하나의 물질로 구성되는 반도체 장치의 고유전체 캐패시터 제조방법.A method of manufacturing a high dielectric capacitor in a semiconductor device, which is composed of any one of SrTiO 3 , (Ba, Sr) TiO 3 , and Pb (Zr, Ti) O 3 .
KR1019970077926A 1997-12-30 1997-12-30 Manufacturing method of high dielectric capacitor of semiconductor device Expired - Fee Related KR100265333B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970077926A KR100265333B1 (en) 1997-12-30 1997-12-30 Manufacturing method of high dielectric capacitor of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970077926A KR100265333B1 (en) 1997-12-30 1997-12-30 Manufacturing method of high dielectric capacitor of semiconductor device

Publications (2)

Publication Number Publication Date
KR19990057847A KR19990057847A (en) 1999-07-15
KR100265333B1 true KR100265333B1 (en) 2000-10-02

Family

ID=19529713

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970077926A Expired - Fee Related KR100265333B1 (en) 1997-12-30 1997-12-30 Manufacturing method of high dielectric capacitor of semiconductor device

Country Status (1)

Country Link
KR (1) KR100265333B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022211354A1 (en) 2022-10-26 2024-05-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Device with improved ferroelectric polarization switching and reliability and method for producing this device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100801200B1 (en) * 2005-08-17 2008-02-05 후지쯔 가부시끼가이샤 Semiconductor device, manufacturing method thereof, and thin film device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022211354A1 (en) 2022-10-26 2024-05-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Device with improved ferroelectric polarization switching and reliability and method for producing this device

Also Published As

Publication number Publication date
KR19990057847A (en) 1999-07-15

Similar Documents

Publication Publication Date Title
KR100235949B1 (en) Capacitor Manufacturing Method of Semiconductor Device
US20030059959A1 (en) Method for fabricating capacitor
KR100458084B1 (en) Ferroelectric Capacitor Formation Method with Lower Electrode with Reduced Leakage Current
KR20000007684A (en) Fabricating method of capacitor having ferroelectric film
KR100265333B1 (en) Manufacturing method of high dielectric capacitor of semiconductor device
KR100425827B1 (en) Capacitor Manufacturing Method for Semiconductor Devices
KR100275113B1 (en) A method for fabricating ferroelectric capacitor in semiconductor device
KR100318453B1 (en) METHOD FOR FORMING CAPACITOR HAVING BOTTOM ELECTRODE FORMED BY Ir/Pt DOUBLE LAYER
US6232131B1 (en) Method for manufacturing semiconductor device with ferroelectric capacitors including multiple annealing steps
KR100474589B1 (en) Capacitor Manufacturing Method
KR100464938B1 (en) A method for forming capacitor using polysilicon plug structure in semiconductor device
KR100533991B1 (en) Manufacturing method of high dielectric capacitor of semiconductor device
KR19990018070A (en) Capacitor of semiconductor memory device and manufacturing method thereof
KR100875663B1 (en) Capacitor Manufacturing Method of Semiconductor Device
KR100231597B1 (en) Capacitor fabrication method of semiconductor device
KR100436057B1 (en) Manufacturing method of high dielectric capacitor of semiconductor device
KR100235955B1 (en) Capacitor Manufacturing Method of Semiconductor Device
KR20030039893A (en) Capacitor in semiconductor device and the method for fabricating thereof
KR20010027082A (en) Method of manufacturing a capacitor in a semiconductor device
KR100209377B1 (en) Capacitor Manufacturing Method of Semiconductor Device
KR0180786B1 (en) Capacitor Formation Method of Semiconductor Device
KR100321691B1 (en) A method for forming capacitor having platinum electrode in semiconductor device
KR19990055209A (en) Method of forming diffusion barrier in semiconductor device
KR100293716B1 (en) Capacitor Formation Method in Semiconductor Device_
KR19980060624A (en) Capacitor Manufacturing Method of Semiconductor Device

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 19971230

A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 19980304

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 19971230

Comment text: Patent Application

PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20000331

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20000613

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20000614

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20030520

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20040331

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20050523

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20060522

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20070518

Start annual number: 8

End annual number: 8

FPAY Annual fee payment

Payment date: 20080527

Year of fee payment: 9

PR1001 Payment of annual fee

Payment date: 20080527

Start annual number: 9

End annual number: 9

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee