KR100256118B1 - Internal voltage descending circuit with temperature compensation - Google Patents
Internal voltage descending circuit with temperature compensation Download PDFInfo
- Publication number
- KR100256118B1 KR100256118B1 KR1019930027238A KR930027238A KR100256118B1 KR 100256118 B1 KR100256118 B1 KR 100256118B1 KR 1019930027238 A KR1019930027238 A KR 1019930027238A KR 930027238 A KR930027238 A KR 930027238A KR 100256118 B1 KR100256118 B1 KR 100256118B1
- Authority
- KR
- South Korea
- Prior art keywords
- voltage
- amplifier
- output
- internal
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C5/00—Details of stores covered by group G11C11/00
- G11C5/14—Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
- G11C5/147—Voltage reference generators, voltage or current regulators; Internally lowered supply levels; Compensation for voltage drops
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F3/00—Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
- G05F3/02—Regulating voltage or current
- G05F3/08—Regulating voltage or current wherein the variable is DC
- G05F3/10—Regulating voltage or current wherein the variable is DC using uncontrolled devices with non-linear characteristics
- G05F3/16—Regulating voltage or current wherein the variable is DC using uncontrolled devices with non-linear characteristics being semiconductor devices
- G05F3/20—Regulating voltage or current wherein the variable is DC using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
- G05F3/24—Regulating voltage or current wherein the variable is DC using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only
- G05F3/242—Regulating voltage or current wherein the variable is DC using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only with compensation for device parameters, e.g. channel width modulation, threshold voltage, processing, or external variations, e.g. temperature, loading, supply voltage
- G05F3/245—Regulating voltage or current wherein the variable is DC using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only with compensation for device parameters, e.g. channel width modulation, threshold voltage, processing, or external variations, e.g. temperature, loading, supply voltage producing a voltage or current as a predetermined function of the temperature
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Continuous-Control Power Sources That Use Transistors (AREA)
Abstract
Description
제1도는 종래의 내부전압 강하회로를 도시한 블럭도.1 is a block diagram showing a conventional internal voltage drop circuit.
제2도는 본 발명의 내부전압 강하회로를 도시한 블럭도.2 is a block diagram showing the internal voltage drop circuit of the present invention.
제3도는 본 발명의 내부전압 강하회로의 제 1 실시예를 도시한 회로도.3 is a circuit diagram showing a first embodiment of the internal voltage drop circuit of the present invention.
제4도는 본 발명의 내부전압 강하회로의 제 2 실시예를 도시한 회로도.4 is a circuit diagram showing a second embodiment of the internal voltage drop circuit of the present invention.
〈도면의 주요부분에 대한 부호의 설명〉<Explanation of symbols for main parts of drawing>
1 : 기준전압 발생기 2 : 전압 증폭기1: reference voltage generator 2: voltage amplifier
3 : 전류 구동기 4, 4' : 가변이득 전압 증폭기3: current driver 4, 4 ': variable gain voltage amplifier
본 발명은 반도체 소자의 내부전압 강하회로에 관한 것으로, 특히 외부 온도가 변하더라도 칩(chip)의 동작속도 및 전력소비가 일정하도록 하기 위하여, 온도의 변화에 따라 가변되는 내부전압을 출력하는 내부전압 강하회로에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internal voltage drop circuit of a semiconductor device. In particular, an internal voltage outputting an internal voltage that varies according to temperature changes in order to maintain a constant operating speed and power consumption even when an external temperature changes. It is about a descent circuit.
본 발명의 내부전압 강하회로는 내부전압 발생기를 사용하는 모든 종류의 반도체 회로의 설계에 사용될 수 있다.The internal voltage drop circuit of the present invention can be used in the design of all kinds of semiconductor circuits using the internal voltage generator.
제1도는 종래의 내부전압 강하회로를 도시한 블럭도로서, 외부전압(VDD) 및 외부온도 변화의 영향을 받지않는 일정한 크기의 기준전압(VREF)을 출력하는 기준전압 발생기(1)와, 기준전압 발생기(1)의 출력(VREF)을 일정한 크기로 증폭시키는 전압 증폭기(2)와, 부하에서 필요로 하는 전류를 공급하여 칩의 내부전압을 일정크기로 유지시키는 전류 구동기(3)로 이루어져 있다.1 is a block diagram showing a conventional internal voltage drop circuit, which includes a reference voltage generator 1 for outputting a reference voltage VREF of a constant magnitude which is not affected by an external voltage VDD and an external temperature change, and a reference. It consists of a voltage amplifier (2) for amplifying the output (VREF) of the voltage generator (1) to a constant size, and a current driver (3) for supplying the current required by the load to maintain the internal voltage of the chip to a constant size .
상기 전압 증폭기(2)의 전압이득은 외부전압 및 외부온도와 무관하게 일정한 값을 갖는다.The voltage gain of the voltage amplifier 2 has a constant value regardless of the external voltage and the external temperature.
외부온도가 증가하면 캐리어(carrier)의 이동도가 감소하기 때문에 칩의 동작속도는 온도가 증가함에 따라 점점 느려지고, 반대로 외부온도가 감소하면 캐리어의 이동도가 증가하여 칩의 동작속도는 빨라지지만 전력소비가 증가하는 문제가 발생한다.As the outside temperature increases, the mobility of the carrier decreases, so the operating speed of the chip is gradually slowed down as the temperature increases. On the contrary, when the outside temperature decreases, the mobility of the chip increases, which increases the operating speed of the chip. There is a problem of increased consumption.
따라서, 본 발명에서는 외부온도가 변화함에 따라 같이 변화하는 내부전압(VINT)을 출력함으로써, 외부온도가 변하더라도 칩의 동작속도 및 전력소비를 일정하게 유지시키는 내부전압 강하회로를 구현하는데에 그 목적이 있다.Accordingly, in the present invention, by outputting the internal voltage (VINT) that changes as the external temperature changes, the purpose of implementing an internal voltage drop circuit that maintains the operating speed and power consumption of the chip even if the external temperature changes. There is this.
본 발명에서는 외부온도가 증가하면 내부전압(VINT)도 증가하고 외부온도가 감소하면 내부전압도 감소하게 되므로, 외부온도의 증가에 의해 캐리어의 이동도가 감소하여 칩의 동작속도가 저하되더라도 내부전압이 증가하기 때문에 내부 동작전압의 증가에 의한 동작속도 증가가 이동도의 감소에 의한 동작속도 저하를 상쇄시킬 수 있게 되고, 외부온도가 감소하는 경우에는 내부 동작전압의 감소에 의한 전력소비의 감소가 이동도의 증가에 의한 전력소비의 증가를 상쇄시킬 수 있게 된다. 따라서, 칩의 동작속도와 전력 소비는 외부온도의 변화에 상관없이 항상 일정하게 유지된다.In the present invention, when the external temperature increases, the internal voltage (VINT) also increases, and when the external temperature decreases, the internal voltage also decreases. This increase increases the operating speed due to the increase in the internal operating voltage to compensate for the decrease in the operating speed due to the decrease in mobility. When the external temperature decreases, the power consumption decreases due to the decrease in the internal operating voltage. It is possible to offset the increase in power consumption by the increase in mobility. Therefore, the operating speed and power consumption of the chip are always kept constant regardless of the change in the external temperature.
제2도는 본 발명의 내부전압 강하회로를 도시한 블럭도로서, 종래의 내부전압 강하회로에 가변이득 전압 증폭기를 사용하여 전압 증폭기의 전압이득이 온도에 따라 변화되도록 한 것이다.2 is a block diagram showing an internal voltage drop circuit of the present invention, in which a variable gain voltage amplifier is used in a conventional internal voltage drop circuit so that the voltage gain of the voltage amplifier changes with temperature.
상기 전압 증폭기의 전압이득이 온도에 따라 변화하므로 기준전압(VREF)이 일정하더라도 내부전압(VINT)은 온도에 따라 변화하게 된다.Since the voltage gain of the voltage amplifier changes with temperature, the internal voltage VINT varies with temperature even if the reference voltage VREF is constant.
또한, 종래의 내부전압 강하회로의 기준전압 발생기의 출력인 기준전압이 온도에 따라 변화되도록 회로를 구현하고, 전압 증폭기와 전류 구동기는 종래와 동일한 것을 사용하면 온도에 따라 변화하는 내부전압(VINT)을 출력할 수 있다.In addition, the circuit is implemented so that the reference voltage, which is the output of the reference voltage generator of the conventional internal voltage drop circuit, changes with temperature, and the voltage amplifier and the current driver use the same thing as the conventional voltage (VINT). You can output
마찬가지로, 종래의 기준전압 발생기와 전압 증폭기는 그대로 사용하고, 전류 구동기의 출력을 온도에 따라 가변되도록 회로를 구현하면 온도에 따라 변화하는 내부전압(VINT)을 출력할 수 있다.Similarly, if the conventional reference voltage generator and the voltage amplifier are used as they are, and the circuit is implemented so that the output of the current driver varies with temperature, an internal voltage VINT that varies with temperature can be output.
제3도는 본 발명의 내부전압 강하회로의 제 1 실시예를 도시한 회로도로서, 차동 증폭기(differential amplifier) 구조의 트랜지스터(MP1, MP2, MN1, MN2, MN3)와, 외부 전원전압(VDD)과 출력단(VR) 사이에 접속되고 게이트가 상기 차동 증폭기의 출력노드인 트랜지스터(MP1, MN1)의 공통 드레인에 연결된 트랜지스터(MP3)와 출력단(VR)과 상기 트랜지스터(MN2)의 게이트 사이에 다이오드 구조로 접속된 트랜지스터(M1)과, 상기 트랜지스터 (MN2)의 게이트와 접지전압 사이에 접속되며 게이트가 기준전압 발생기(1)의 출력단(VREF)에 연결된 트랜지스터(M2)로 이루어져 있다.3 is a circuit diagram showing a first embodiment of the internal voltage drop circuit of the present invention, in which transistors MP1, MP2, MN1, MN2, and MN3 having a differential amplifier structure, an external power supply voltage VDD, A diode structure is connected between the output terminal VR and the output terminal VR and the gate of the transistor MN2 connected between the output terminal VR and the gate connected to the common drain of the transistors MP1 and MN1 which are gates as output nodes of the differential amplifier. It consists of a connected transistor M1 and a transistor M2 connected between the gate of the transistor MN2 and a ground voltage, the gate of which is connected to the output terminal VREF of the reference voltage generator 1.
상기 차동 증폭기의 두 입력으로는 트랜지스터(MN1 및 MN3)의 게이트로 인가되는 기준전압 발생기(1)의 출력전압(VREF), 출력단(VR)이 다이오드 구조의 트랜지스터(M1)에 의해 트랜지스터(M1)의 문턱전압(threshold voltage) 만큼 강하된 전압이 인가된다.Two inputs of the differential amplifier are the output voltage VREF of the reference voltage generator 1 applied to the gates of the transistors MN1 and MN3 and the output terminal VR of the diode structure by the transistor M1 of the diode structure. A voltage dropped by a threshold voltage of is applied.
제3도의 전압 증폭기(4)는 모스(MOS) 트랜지스터 만으로 구성되었으며, 도시된 트랜지스터(M1)과 트랜지스터(M2)의 등가저항을 각각 R11, R12라고 하면 전압 증폭기(4)의 전압이득 Av는 다음과 같이 표현된다.The voltage amplifier 4 of FIG. 3 is composed of only MOS transistors. When the equivalent resistances of the transistors M1 and M2 are R11 and R12, respectively, the voltage gain Av of the voltage amplifier 4 is It is expressed as
그런데, 등가저항 R11 과 R12는 온도가 변함에 따라 변화하므로 온도 변화에 대한 R11 과 R12의 변화율을 서로 다르게 하면 온도 변화에 따라 전압이득이 변하게 할 수 있다.However, since the equivalent resistances R11 and R12 change as the temperature changes, the voltage gain may change according to the temperature change by varying the rate of change of R11 and R12 with respect to the temperature change.
즉, 온도가 변화함에 따라 전압이득이 변화해야 하므로 R11/R12 이 변화되도록 트랜지스터(M1)과 트랜지스터(M2)의 크기를 조절하면 된다.That is, since the voltage gain should change as the temperature changes, the sizes of the transistors M1 and M2 may be adjusted to change R11 / R12.
상기 전류 구동기(3)의 전압이득은 1이며 이것은 외부온도 변화의 영향을 받지 않으므로 온도 변화에 따라 변화된 전압 증폭기(4)의 출력(VR)이 그대로 전류 구동기(3)를 거쳐 칩 내부회로의 전원전압(VINT)으로 사용된다.The voltage gain of the current driver 3 is 1, which is not affected by the external temperature change, so that the output VR of the voltage amplifier 4 changed according to the temperature change is passed through the current driver 3 as it is. Used as voltage VINT.
그러므로, 외부온도가 증가하면 내부회로의 동작전압(VINT)이 증가하고 외부온도가 감소하면 내부회로의 동작전압도 감소한다.Therefore, when the external temperature increases, the operating voltage VINT of the internal circuit increases, and when the external temperature decreases, the operating voltage of the internal circuit decreases.
제4도는 본 발명의 내부전압 강하회로의 제 2 실시예를 도시한 회로도로서, 제4도의 전압 증폭기(4')는 상기 제3도의 전압 증폭기(4) 구조에서 트랜지스터(M1)과 트랜지스터(M2) 대신에 저항소자(R1, R2)를 사용하였다.FIG. 4 is a circuit diagram showing a second embodiment of the internal voltage drop circuit of the present invention, in which the voltage amplifier 4 'of FIG. 4 has a transistor M1 and a transistor M2 in the structure of the voltage amplifier 4 of FIG. Instead, resistors R1 and R2 were used.
저항(R1)과 저항(R2)는 도전성을 가진 물질로서, 저항 (R1)과 저항(R2)의 온도 변화 특성이 각각 달라야한다.The resistor R1 and the resistor R2 are conductive materials, and the temperature change characteristics of the resistors R1 and R2 should be different.
제4도의 전압 증폭기(4')에서는 온도가 증가하면 R1/R2 값이 증가하여 전압 증폭기(4')의 전압이득 Av = (1 + R1/R2)을 증가시킴으로써, 출력(VR)을 증가시키게 된다.In the voltage amplifier 4 'of FIG. 4, as the temperature increases, the value of R1 / R2 increases to increase the voltage gain Av = (1 + R1 / R2) of the voltage amplifier 4', thereby increasing the output VR. do.
이상, 제2도 내지 제4도에서 설명한 본 발명의 내부전압 강하회로를 반도체 소자의 칩 내부에 구현하게 되면, 칩의 동작속도와 전력소비가 외부온도 변화의 영향을 받지 않기 때문에 외부온도에 대한 칩의 동작 마진이 증가하고, 또한 동작속도와 전력소비가 일정하게 유지되므로 칩의 동작이 안정되어 놓은 수율을 얻게 되는 효과가 있다.As described above, when the internal voltage drop circuit of the present invention described with reference to FIGS. 2 to 4 is implemented in the chip of the semiconductor device, the operating speed and power consumption of the chip are not affected by the change in the external temperature. Since the operating margin of the chip is increased and the operating speed and power consumption are kept constant, there is an effect of obtaining a stable yield of the chip operation.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019930027238A KR100256118B1 (en) | 1993-12-10 | 1993-12-10 | Internal voltage descending circuit with temperature compensation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019930027238A KR100256118B1 (en) | 1993-12-10 | 1993-12-10 | Internal voltage descending circuit with temperature compensation |
Publications (2)
Publication Number | Publication Date |
---|---|
KR950020717A KR950020717A (en) | 1995-07-24 |
KR100256118B1 true KR100256118B1 (en) | 2000-05-15 |
Family
ID=19370567
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019930027238A Expired - Fee Related KR100256118B1 (en) | 1993-12-10 | 1993-12-10 | Internal voltage descending circuit with temperature compensation |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100256118B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030045639A (en) * | 2001-12-03 | 2003-06-11 | 휴렛-팩커드 컴퍼니(델라웨어주법인) | Write current compensation for temperature variations in memory arrays |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100255160B1 (en) * | 1996-12-18 | 2000-05-01 | 김영환 | Low Power On-Chip Voltage Reference Circuit |
-
1993
- 1993-12-10 KR KR1019930027238A patent/KR100256118B1/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030045639A (en) * | 2001-12-03 | 2003-06-11 | 휴렛-팩커드 컴퍼니(델라웨어주법인) | Write current compensation for temperature variations in memory arrays |
Also Published As
Publication number | Publication date |
---|---|
KR950020717A (en) | 1995-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100393226B1 (en) | Internal reference voltage generator capable of controlling value of internal reference voltage according to temperature variation and internal power supply voltage generator including the same | |
KR100957228B1 (en) | Bandgap Voltage Reference Circuit for Semiconductor Devices | |
KR940003406B1 (en) | Circuit of internal source voltage generation | |
US6901022B2 (en) | Proportional to temperature voltage generator | |
JP2531104B2 (en) | Reference potential generation circuit | |
US7622906B2 (en) | Reference voltage generation circuit responsive to ambient temperature | |
JP3575453B2 (en) | Reference voltage generation circuit | |
EP0573240A2 (en) | Reference voltage generator | |
CN1959585B (en) | Parallel connection manostat, circuit for generating stable reference voltage and method thereof | |
US20060197581A1 (en) | Temperature detecting circuit | |
KR960019289A (en) | Voltage generator with compensation for changes in temperature | |
US5838191A (en) | Bias circuit for switched capacitor applications | |
KR0141157B1 (en) | The circuit for reference voltage generating | |
US8638162B2 (en) | Reference current generating circuit, reference voltage generating circuit, and temperature detection circuit | |
KR100256118B1 (en) | Internal voltage descending circuit with temperature compensation | |
US20050253570A1 (en) | Circuit for performing voltage regulation | |
JP2021125091A (en) | Reference voltage circuit | |
JP2550871B2 (en) | CMOS constant current source circuit | |
US10873305B2 (en) | Voltage follower circuit | |
KR0172436B1 (en) | Reference voltage generation circuit of semiconductor device | |
CN115202427B (en) | Voltage stabilizing circuit and power management chip | |
JPH10112614A (en) | Bias current supply method and circuit thereof | |
KR100554441B1 (en) | Current bias circuit of cascode current mirror | |
JP2798022B2 (en) | Reference voltage circuit | |
US20070069806A1 (en) | Operational amplifier and band gap reference voltage generation circuit including the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
St.27 status event code: A-0-1-A10-A12-nap-PA0109 |
|
R17-X000 | Change to representative recorded |
St.27 status event code: A-3-3-R10-R17-oth-X000 |
|
PG1501 | Laying open of application |
St.27 status event code: A-1-1-Q10-Q12-nap-PG1501 |
|
A201 | Request for examination | ||
PA0201 | Request for examination |
St.27 status event code: A-1-2-D10-D11-exm-PA0201 |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
St.27 status event code: A-1-2-D10-D22-exm-PE0701 |
|
R17-X000 | Change to representative recorded |
St.27 status event code: A-3-3-R10-R17-oth-X000 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
St.27 status event code: A-2-4-F10-F11-exm-PR0701 |
|
PR1002 | Payment of registration fee |
St.27 status event code: A-2-2-U10-U11-oth-PR1002 Fee payment year number: 1 |
|
PG1601 | Publication of registration |
St.27 status event code: A-4-4-Q10-Q13-nap-PG1601 |
|
PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 4 |
|
PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 5 |
|
PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 6 |
|
PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 7 |
|
PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 8 |
|
PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 9 |
|
PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 10 |
|
FPAY | Annual fee payment |
Payment date: 20100126 Year of fee payment: 11 |
|
PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 11 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |
St.27 status event code: A-4-4-U10-U13-oth-PC1903 Not in force date: 20110222 Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE |
|
PC1903 | Unpaid annual fee |
St.27 status event code: N-4-6-H10-H13-oth-PC1903 Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE Not in force date: 20110222 |
|
PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
P22-X000 | Classification modified |
St.27 status event code: A-4-4-P10-P22-nap-X000 |