[go: up one dir, main page]

KR100251768B1 - Method of making a laminated lithium-polymer rechargeable battery cell - Google Patents

Method of making a laminated lithium-polymer rechargeable battery cell Download PDF

Info

Publication number
KR100251768B1
KR100251768B1 KR1019970048523A KR19970048523A KR100251768B1 KR 100251768 B1 KR100251768 B1 KR 100251768B1 KR 1019970048523 A KR1019970048523 A KR 1019970048523A KR 19970048523 A KR19970048523 A KR 19970048523A KR 100251768 B1 KR100251768 B1 KR 100251768B1
Authority
KR
South Korea
Prior art keywords
active material
material film
battery cell
laminated
layering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1019970048523A
Other languages
Korean (ko)
Other versions
KR19990026417A (en
Inventor
김종진
Original Assignee
권호택
대우전자부품주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 권호택, 대우전자부품주식회사 filed Critical 권호택
Priority to KR1019970048523A priority Critical patent/KR100251768B1/en
Publication of KR19990026417A publication Critical patent/KR19990026417A/en
Application granted granted Critical
Publication of KR100251768B1 publication Critical patent/KR100251768B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: A method for layering of lithium polymer secondary electrode cell is provided to reduce interfacial resistance between an electrode and a separator and consequently to improve performance of an electrode. CONSTITUTION: The method for layering of lithium polymer secondary electrode cell comprises the steps of: layering a negative active material film on a copper foil and an upper portion of the copper foil, layering an electrolyte separating film on the top of the negative active material film, and layering aluminum foil on a positive active material film. Moreover, an active material film against the metal foils is impregnated to a corresponding metal foil, respectively, using a liquid state of solid electrolyte as a medium.

Description

리튬폴리머2차전지셀의 적층방법(Method of making a laminated lithum-polymer rechargeable battery cell)Method of making a laminated lithum-polymer rechargeable battery cell

본 발명은 리튬폴리머 2차전지셀의 적층방법에 관한 것으로 특히, 전극과 격리막 역할을 하는 고체 폴리머 사이의 계면저항을 최화하므로써 전지성능을 향상시키게 해주는 리튬폴리머 2차전지셀의 적층방법에 관한 것이다.The present invention relates to a method for laminating a lithium polymer secondary battery cell, and more particularly, to a method for laminating a lithium polymer secondary battery cell that improves battery performance by maximizing the interface resistance between an electrode and a solid polymer acting as a separator. .

일반적으로 리튬폴리머 2차전지는 양극과 음극 사이에 폴리머 전해질을 끼워넣고 그 외부를 집전체, 외장재 순으로 씌운 구조로 되어 있다.In general, a lithium polymer secondary battery has a structure in which a polymer electrolyte is sandwiched between a positive electrode and a negative electrode and the outside thereof is covered with a current collector and an exterior material.

이때 상기 폴리머전해질은 통상 모노마, 유기용제, 전해질염 등 3종류의 물질을 혼합해 사용하고, 양극에는 LiCoO2를 사용하고, 음극에는 탄소재료를 주로 사용하게 된다.In this case, the polymer electrolyte is usually used by mixing three kinds of materials such as monoma, an organic solvent, and an electrolyte salt, using LiCoO 2 for the positive electrode and mainly using a carbon material for the negative electrode.

리튬폴리머 2차전지의 장점은 우선 고체나 겔상태의 폴리머를 사용하기 때문에 두께를 1mm이하로 줄일 수 있는 등 제작할 수 있는 두께에서 리튬이온2차전지보다 크게 앞서고, 또한 안정성면에서도 전해질을 점성이 높은 겔상태의 고체폴리머를 사용하기 때문에 전지에 구멍이 나도 용액이 흘러나오지 않아 리튬이온 2차전지와 같은 발화위험이 거의 없는 것이다.The advantage of the lithium polymer secondary battery is that it uses a solid or gel polymer to reduce the thickness to 1 mm or less, so that the lithium polymer secondary battery is significantly ahead of the lithium ion secondary battery in terms of thickness, and also the viscosity of the electrolyte is excellent in terms of stability. Because of the use of high gel solid polymer, even if the battery has a hole, the solution does not flow out, so there is almost no risk of ignition like a lithium ion secondary battery.

이러한 리튬폴리머 전지셀의 구조는 도 1에 도시된 바와 같이 구리포일(11)과, 이 구리포일(11)의 상부에 음극활물질막(13)이 적층된다.As shown in FIG. 1, the lithium polymer battery cell has a copper foil 11 and a negative electrode active material layer 13 stacked on the copper foil 11.

또한, 상기 음극활물질막(13)위에 전해질격리막(15)을 적층한 후, 양극활물질막(17)이 적층되며, 이 양극활물질막(17)위에 알루미늄포일(19)이 적층되어져 있다.In addition, after the electrolyte isolation film 15 is laminated on the negative electrode active material film 13, the positive electrode active material film 17 is laminated, and the aluminum foil 19 is laminated on the positive electrode active material film 17.

이러한 리튬폴리머전지셀의 종래의 제조방법은 도 2에 도시된 바와 같이, 전지셀을 구성하는 구리포일(11), 음극활물질(13), 전해질격리막(15), 양극활물질막(17) 및 알루미늄포일(19)을 소정온도로 가열되는 오븐(20)내에서 두 개의 압축롤(21, 22) 사이로 동시에 주입하여 통과시키면서 압축하여 제조하고 있었다.As shown in FIG. 2, a conventional method of manufacturing a lithium polymer battery cell includes a copper foil 11, a negative electrode active material 13, an electrolyte isolation film 15, a positive electrode active material film 17, and aluminum constituting the battery cell. The foil 19 was manufactured by compressing the foil 19 while simultaneously injecting and passing between two compression rolls 21 and 22 in the oven 20 heated to a predetermined temperature.

또 다른 종래의 제조방법은 도 3에 도시된 바와 같이, 먼저 1단계로 구리포일(11)과 음극활물질(13)을 2개의 롤(23, 24)로 압축 합판하여 음극판을 제조하고, 알루미늄포일(19)과 양극활물질(17)을 2개의 롤(25, 26)으로 압축합판하여 양극판을 제조한다.In another conventional manufacturing method, as shown in FIG. 3, first, the copper foil 11 and the negative electrode active material 13 are compressed and laminated with two rolls 23 and 24 in one step to prepare a negative electrode plate, and an aluminum foil. (19) and the positive electrode active material 17 are compressed and laminated with two rolls 25 and 26 to produce a positive electrode plate.

그리고 이어서 상기 음극판과 양극판을 전해질격리막(15)을 사이에 두고 120℃의 온도로 가열하면서 다시 2개의 롤(27, 28)로 압축합판하여 제조하고 있었다.Subsequently, the negative electrode plate and the positive electrode plate were compressed and laminated with two rolls 27 and 28 while being heated at a temperature of 120 ° C. with an electrolyte isolation film 15 therebetween.

그러나 이러한 종래의 제조방법에 의하면 전지셀의 각 층을 모두 고체 상태에서 서로 압축합판시키기 때문에 각 층간의 긴밀한 결합이 이루어지지 않아 계면저항이 존재하기 때문에 전지성능이 열화되는 문제점이 있다.However, according to the conventional manufacturing method, since each layer of the battery cell is compressed and laminated to each other in a solid state, there is a problem in that battery performance is deteriorated due to the existence of interfacial resistance due to the intimate bonding between the layers.

이에 본 발명은 전극과 격리막사이의 계면저항을 최소화시켜주므로써 전지성능을 최대화시켜 주는 리튬폴리머2차전지셀의 제조방법을 제공하는 데 그 목적이 있다.Accordingly, an object of the present invention is to provide a method for manufacturing a lithium polymer secondary battery cell that maximizes battery performance by minimizing the interface resistance between the electrode and the separator.

상기한 목적을 달성하기 위한 본 발명의 리튬폴리머2차전지셀의 제조방법은, 알루미늄포일과 구리포일의 표면에 고체폴리머전해질을 졸상태로 코팅하는 졸코팅단계와, 상기 알루미늄포일 및 구리포일의 코팅층에 각각 양극활물질판과 음극활물질판을 함침하여 고체화시켜 양극판과 음극판을 만드는 함침단계, 상기 음극판과 양극판을 전해질격리막을 사이에 두고 소정온도로 가열하여 압축합판시키게 된 압축합판단계로 구성된 것을 특징으로 한다.Method for producing a lithium polymer secondary battery cell of the present invention for achieving the above object, a sol coating step of coating a solid polymer electrolyte in a sol state on the surface of the aluminum foil and copper foil, and the aluminum foil and the copper foil Impregnating the positive electrode active material plate and the negative electrode active material plate to solidify the coating layer, respectively, to impregnate the positive electrode plate and the negative electrode plate; It is done.

이와같은 본 발명의 방법에서는 양극물질과 음극물질을 각각 포일위에 액상의 전해질용액을 사용하여 졸코팅한 후 이 위에 활물질판을 함침하여 부착시키므로써 전지셀 각 층간의 계면저항을 줄어주게 되므로써 전지의 성능이 향상되는 효과가 있다.In the method of the present invention, the positive electrode material and the negative electrode material are each sol-coated with a liquid electrolyte solution on a foil and then impregnated with an active material plate thereon, thereby reducing the interfacial resistance between layers of the battery cell. The performance is improved.

도 1 은 일반적인 리튬폴리머 2차전지셀의 층상구조를 도시한 사시도,1 is a perspective view showing a layered structure of a typical lithium polymer secondary battery cell,

도 2 는 종래의 2차전지셀의 적층방법을 도시한 도면,2 is a view showing a stacking method of a conventional secondary battery cell,

도 3은 또다른 종래의 2차전지셀의 적층방법을 도시한 단면도,3 is a cross-sectional view showing another conventional secondary battery cell stacking method;

도 4는 본 발명에 따른 2차전지셀의 적층방법을 도시한 개략도이다.4 is a schematic diagram illustrating a method of stacking secondary battery cells according to the present invention.

이하, 본 발명의 실시예를 첨부한 예시도면을 참조하여 상세히 설명하면 다음과 같다.Hereinafter, described in detail with reference to the accompanying drawings, an embodiment of the present invention.

도 4은 본 발명의 제조공정을 도시한 개략적인 공정도를 도시한 것이다.Figure 4 shows a schematic process diagram showing the manufacturing process of the present invention.

먼저, 알루미늄포일(31)과 구리포일(32)의 표면에 전해질격리막에 사용되는 고체폴리머전해질과 동일한 고분자폴리머를 액상으로 준비하여 상기 알루미늄포일(31)과 구리포일(32)의 표면에 각각 졸상태로 코팅하여 액상의 졸코팅층(33, 34)을 각각 만들어 주게 된다.First, the same polymer polymer as the solid polymer electrolyte used for the electrolyte isolation film is prepared in the liquid phase on the surfaces of the aluminum foil 31 and the copper foil 32, and the sol is formed on the surfaces of the aluminum foil 31 and the copper foil 32, respectively. By coating in a state to form a liquid sol coating layers 33, 34, respectively.

그리고 상기 알루미늄포일(31)의 상부에 코팅된 액상의 졸코팅층(33) 위에 양극활물질판(35)을 함침시키고, 구리포일(32)에 형성된 졸코팅층(34)위에는 음극활물질판(36)을 함침시킨다.Then, the positive electrode active material plate 35 is impregnated on the liquid sol coating layer 33 coated on the aluminum foil 31, and the negative electrode active material plate 36 is disposed on the sol coating layer 34 formed on the copper foil 32. Impregnation

그리고, 각각의 활물질판(35, 36)을 함침시킨 상태에서 졸코팅층(33, 34)을 고체화시켜주게 되면, 활물질판(35, 36)이 각각 알루미늄포일(31)과 구리포일(32)에 부착되면서 최상부에는 잔류되는 전해질이 고체화되면서 고체전해질층(37, 38)이 형성된다.When the sol coating layers 33 and 34 are solidified in the state of impregnating the respective active material plates 35 and 36, the active material plates 35 and 36 are respectively coated on the aluminum foil 31 and the copper foil 32. As the electrolyte remains, the solid electrolyte layer 37 and 38 is formed at the top while being attached.

이렇게 하여 형성된 양극판(39)과 음극판(40)의 사이에 전해질격리막(41)을 두고 합판시키게 되면, 상기 양극판(39)과 음극판(40)에 잔류된 고체전해질층(37, 38)이 전해질격리막(41)과 접하게 된다.When the electrolyte isolation membrane 41 is laminated between the positive electrode plate 39 and the negative electrode plate 40 formed in this way, the solid electrolyte layers 37 and 38 remaining on the positive electrode plate 39 and the negative electrode plate 40 are electrolytically isolated membranes. It comes in contact with (41).

이렇게 적층된 전지셀을 소정온도로 가열하면서 롤(42, 43)을 사용하여 압축합판시키게 되므로써 원하는 리튬폴리머 2차전지셀을 만들 수 있게 되는 것이다.Thus, the laminated battery cells are compressed and laminated using the rolls 42 and 43 while heating to a predetermined temperature, thereby making it possible to make a desired lithium polymer secondary battery cell.

이와같이 본 발명에서는 양극판과 음극판을 각각 금속포일과 활물질을 바로 접착시키지 않고 졸상의 고체전해질을 매개로 함침하여 부착시키므로써 양극판과 음극판에 고체전해질막이 동시에 형성되어 이들을 전해질격리막과 압착시켜 합판하므로써 계면저항을 줄여줄 수 있게 되는 것이다.As described above, in the present invention, the positive electrode plate and the negative electrode plate are impregnated with the sol-like solid electrolyte without directly adhering the metal foil and the active material, respectively, so that the solid electrolyte membrane is formed on the positive electrode plate and the negative electrode plate at the same time. Will be able to reduce.

Claims (1)

구리포일(11)과, 이 구리포일(11)의 상부에 음극활물질막(13)이 적층되고, 상기 음극활물질막(13)위에 전해질격리막(15)을 적층한 후, 양극활물질막(17)이 적층되며, 이 양극활물질막(17)위에 알루미늄포일(19)이 적층된 구조의 리튬폴리머 2차전지셀의 적층방법에 있어서, 상기 금속포일(11, 19)에 대응되는 활물질막(13, 17)이 각각 액상의 고체전해질을 매개로 함침되어져 해당 금속포일(11, 19)에 부착시키게 된 것을 특징으로 하는 리튬폴리머 2차전지셀의 적층방법.After the copper foil 11 and the negative electrode active material film 13 are laminated on the copper foil 11 and the electrolyte isolation film 15 is laminated on the negative electrode active material film 13, the positive electrode active material film 17 is formed. Of the lithium polymer secondary battery cell in which the aluminum foil 19 is laminated on the cathode active material film 17, and the active material film 13 corresponding to the metal foils 11 and 19 is laminated. 17) is a method of laminating a lithium polymer secondary battery cell, characterized in that each impregnated through a liquid solid electrolyte to adhere to the metal foil (11, 19).
KR1019970048523A 1997-09-24 1997-09-24 Method of making a laminated lithium-polymer rechargeable battery cell Expired - Fee Related KR100251768B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970048523A KR100251768B1 (en) 1997-09-24 1997-09-24 Method of making a laminated lithium-polymer rechargeable battery cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970048523A KR100251768B1 (en) 1997-09-24 1997-09-24 Method of making a laminated lithium-polymer rechargeable battery cell

Publications (2)

Publication Number Publication Date
KR19990026417A KR19990026417A (en) 1999-04-15
KR100251768B1 true KR100251768B1 (en) 2000-04-15

Family

ID=19521601

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970048523A Expired - Fee Related KR100251768B1 (en) 1997-09-24 1997-09-24 Method of making a laminated lithium-polymer rechargeable battery cell

Country Status (1)

Country Link
KR (1) KR100251768B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100461450B1 (en) * 2001-10-26 2004-12-14 현대자동차주식회사 Fueling apparatus of fuel tank
KR101806679B1 (en) 2015-12-16 2017-12-07 현대자동차 인도기술연구소 Roll over valve for fuel tank

Also Published As

Publication number Publication date
KR19990026417A (en) 1999-04-15

Similar Documents

Publication Publication Date Title
KR100536431B1 (en) Nonaqueous electrolyte secondary battery, its producing method and battery aggregate
JP7046185B2 (en) Positive electrode for solid-state battery, method for manufacturing positive electrode for solid-state battery, and solid-state battery
TWI466365B (en) An insulating layer with heat-resistant insulation
KR20180082491A (en) Lithium batteries utilizing nanoporous separator layers
CN103069614A (en) Current collector having built-in sealing means, and bipolar battery including such a collector
JP3474853B2 (en) Manufacturing method of lithium ion secondary battery
JP2002015773A (en) Cell and its manufacturing method
JP7160753B2 (en) Solid-state battery manufacturing method and solid-state battery
EP4156385A1 (en) Electric vehicle, and lithium ion battery and manufacturing method therefor
US5654112A (en) Solid polyelectrolyte battery and its method of manufacture
WO1999031751A1 (en) Lithium ion secondary battery and its manufacture
US6235065B1 (en) Room temperature lamination of Li-ion polymer electrodes
KR101562345B1 (en) Electrode assembly for secondary battery and manufacturing method thereof
US6737196B2 (en) Method of making a lithium polymer battery and battery made by the method
KR100251768B1 (en) Method of making a laminated lithium-polymer rechargeable battery cell
CN116581482A (en) Electrode-separator composite for electrical energy storage and method for producing same, method for producing electrical energy storage
JP2004311351A (en) Plate type battery and method of manufacturing the same
CN218525646U (en) Large-size ultrathin square-shaped polymer power battery
KR19990031603A (en) Stacking method of lithium polymer secondary battery cell
US20220294018A1 (en) Solid-state battery
KR100194616B1 (en) Manufacturing method of lithium polymer secondary battery
KR100233842B1 (en) Structure of lithium polymer secondary battery and its manufacturing method
JPH09231999A (en) High molecular solid electrolyte battery and its manufacture
KR100462783B1 (en) Pole plate assembly for lithium ion cell, lithium ion polymer cell and manufacturing method thereof
CN115632200A (en) Large-size ultrathin square-shaped polymer power battery

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

St.27 status event code: A-0-1-A10-A12-nap-PA0109

PA0201 Request for examination

St.27 status event code: A-1-2-D10-D11-exm-PA0201

R17-X000 Change to representative recorded

St.27 status event code: A-3-3-R10-R17-oth-X000

R17-X000 Change to representative recorded

St.27 status event code: A-3-3-R10-R17-oth-X000

PG1501 Laying open of application

St.27 status event code: A-1-1-Q10-Q12-nap-PG1501

PN2301 Change of applicant

St.27 status event code: A-3-3-R10-R13-asn-PN2301

St.27 status event code: A-3-3-R10-R11-asn-PN2301

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

St.27 status event code: A-1-2-D10-D22-exm-PE0701

GRNT Written decision to grant
PR0701 Registration of establishment

St.27 status event code: A-2-4-F10-F11-exm-PR0701

PR1002 Payment of registration fee

St.27 status event code: A-2-2-U10-U11-oth-PR1002

Fee payment year number: 1

PG1601 Publication of registration

St.27 status event code: A-4-4-Q10-Q13-nap-PG1601

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

St.27 status event code: A-4-4-U10-U13-oth-PC1903

Not in force date: 20030115

Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

PC1903 Unpaid annual fee

St.27 status event code: N-4-6-H10-H13-oth-PC1903

Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

Not in force date: 20030115

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301