KR100249452B1 - Two-phase anaerobic reactor with submerged microfiltration system - Google Patents
Two-phase anaerobic reactor with submerged microfiltration system Download PDFInfo
- Publication number
- KR100249452B1 KR100249452B1 KR1019980014205A KR19980014205A KR100249452B1 KR 100249452 B1 KR100249452 B1 KR 100249452B1 KR 1019980014205 A KR1019980014205 A KR 1019980014205A KR 19980014205 A KR19980014205 A KR 19980014205A KR 100249452 B1 KR100249452 B1 KR 100249452B1
- Authority
- KR
- South Korea
- Prior art keywords
- reactor
- methane
- acid
- membrane separation
- forming
- Prior art date
Links
- 238000001471 micro-filtration Methods 0.000 title claims abstract description 12
- 239000012528 membrane Substances 0.000 claims abstract description 54
- 238000000926 separation method Methods 0.000 claims abstract description 32
- 239000007787 solid Substances 0.000 claims abstract description 17
- 239000002351 wastewater Substances 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims description 22
- 230000008569 process Effects 0.000 claims description 13
- 238000004062 sedimentation Methods 0.000 claims description 10
- 238000011001 backwashing Methods 0.000 claims description 6
- 239000011148 porous material Substances 0.000 claims description 5
- 230000002051 biphasic effect Effects 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 claims 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract description 64
- 239000002253 acid Substances 0.000 abstract description 30
- 238000005755 formation reaction Methods 0.000 abstract description 15
- 230000015572 biosynthetic process Effects 0.000 abstract description 12
- 238000001914 filtration Methods 0.000 abstract description 9
- 244000005700 microbiome Species 0.000 abstract description 7
- 239000010802 sludge Substances 0.000 abstract description 7
- 239000005416 organic matter Substances 0.000 abstract description 6
- 238000006460 hydrolysis reaction Methods 0.000 abstract description 5
- 238000011109 contamination Methods 0.000 abstract description 3
- 239000007788 liquid Substances 0.000 abstract description 2
- 230000001939 inductive effect Effects 0.000 abstract 1
- 238000002791 soaking Methods 0.000 abstract 1
- 238000000855 fermentation Methods 0.000 description 6
- 230000004151 fermentation Effects 0.000 description 6
- 238000004065 wastewater treatment Methods 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 150000007524 organic acids Chemical class 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 241000894006 Bacteria Species 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000007654 immersion Methods 0.000 description 4
- 238000005191 phase separation Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000909 electrodialysis Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000004941 influx Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 239000010871 livestock manure Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000009285 membrane fouling Methods 0.000 description 1
- 244000000010 microbial pathogen Species 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000010801 sewage sludge Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/28—Anaerobic digestion processes
- C02F3/2853—Anaerobic digestion processes using anaerobic membrane bioreactors
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/444—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/28—Anaerobic digestion processes
- C02F3/2826—Anaerobic digestion processes using anaerobic filters
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Microbiology (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
고농도의 고형물질 및 유기물질을 함유하는 폐수를 처리하기 위해, 산 형성 반응기와 메탄 형성 반응기로 구성되는 이상 혐기성 반응기 시스템에 막분리 시스템을 도입하여 높은 유기물질 제거 및 메탄 에너지화를 가능하게 하였다. 종래의 산 형성 반응기는 우수한 가수분해 반응을 보이지만 메탄 형성 반응기로 다량의 부유성 고형물이 유입되어 반응기의 성능을 저하시킬 수 있기 때문에, 산 형성 반응기내 또는 침전지에 정밀여과 막분리 시스템을 침지시켜 여과액만을 유출시키고 미생물 및 부유성 고형물의 체류시간을 증가시켜 효율적인 산 형성 반응을 유도하고, 후속적으로 여과된 산 형성 반응기 유출수는 혐기성 여재법과 상향류식 슬러지상법을 조합한 메탄 형성 반응기로 유입되어 안정적이고 높은 유기물 제거 및 메탄 에너지화가 가능하였다. 이때, 막분리 시스템의 운전은 막분리 시스템내의 압력을 이용하여 여과 및 역세척을 자동적으로 수행하게 함으로써 막의 오염을 최소화할 수 있다.In order to treat wastewater containing high concentrations of solids and organics, a membrane separation system was introduced into an ideal anaerobic reactor system consisting of an acid forming reactor and a methane forming reactor to enable high organic matter removal and methane energyification. Conventional acid-forming reactors show good hydrolysis reactions, but because a large amount of suspended solids can be introduced into the methane-forming reactor, which can degrade the performance of the reactor, soaking the microfiltration membrane separation system in the acid-forming reactor or in the settling basin and filtering Efficient acid formation reaction by inducing only the liquid and increasing the residence time of the microorganisms and suspended solids, and subsequently filtered acid formation reactor effluent flows into the methane formation reactor combined with anaerobic media and upflow sludge phase And high organic removal and methane energization were possible. At this time, the operation of the membrane separation system can minimize the contamination of the membrane by automatically performing the filtration and backwash using the pressure in the membrane separation system.
Description
본 발명은 고농도의 부유성 고형물을 함유하는 유기 폐수를 처리하기 위한 시스템에 관한 것으로, 구체적으로는 산 형성조와 메탄 형성조로 구성되는 이상 혐기성 반응기에 침지형 정밀여과 막분리 시스템을 도입하여 유기물을 효율적으로 제거하고, 메탄 에너지화를 도모함으로써 유기 폐수를 처리하는 시스템에 관한 것이다.The present invention relates to a system for treating organic wastewater containing a high concentration of suspended solids. Specifically, an organic material is efficiently introduced into an ideal anaerobic reactor composed of an acid forming tank and a methane forming tank by introducing an immersion microfiltration membrane separation system. The present invention relates to a system for treating organic wastewater by removing and promoting methane energyification.
일반적으로, 부유성 고형물을 함유하는 유기 폐수의 처리 공정으로 이용되고 있는 메탄 발효 공정은 높은 유기물 분해율과 산소 공급의 불필요에 따른 에너지의 절약, 그리고 최종 슬러지의 감량화 및 안정화에 의한 탈수 성능의 향상, 병원성 미생물 또는 바이러스 등의 비활성화 등의 장점과 더불어 최종 생산물로 얻어지는 메탄 가스를 에너지로 활용할 수 있는 큰 장점을 지니고 있다. 그러나, 이 공법은 초기 투자 비용이 크고, 메탄 생성균의 증식 속도가 느려 반응조의 용량이 증대되고, 처리 효율이 낮으며, 운전 및 관리 등이 불안정해지는 등의 단점으로 인하여, 주로 도시 하수 슬러지, 분뇨 및 농축산 폐기물 등의 처리에 제한적으로 사용되어 왔다.In general, the methane fermentation process, which is used for the treatment of organic wastewater containing suspended solids, has high organic decomposition rate, energy saving due to the need for oxygen supply, and improved dewatering performance by reducing and stabilizing final sludge, In addition to the deactivation of pathogenic microorganisms or viruses, etc., it has the great advantage of utilizing the methane gas obtained as the final product as energy. However, this method is mainly used for urban sewage sludge and manure due to high initial investment cost, slow growth rate of methane producing bacteria, increased capacity of reactor, low treatment efficiency and unstable operation and management. And limited use in the treatment of concentrated livestock waste and the like.
또한, 이러한 메탄 발효 공정에 이용되는 메탄 생성균은 외부 환경의 변화에 민감하게 반응하는데, 특히 고부하, 온도 변화, 독성 물질의 유입 등으로 인해 짧은 시간내에 활성을 잃게되고, 더욱이 중간 생성물인 저급 지방산류가 축적하게 되면, 이로 인하여 pH가 떨어지면서 발효조 내의 분해 반응이 중지되어 버리는 문제점이 있다.In addition, methane-producing bacteria used in the methane fermentation process is sensitive to changes in the external environment, in particular, due to high loads, temperature changes, influx of toxic substances, etc. loses activity in a short time, and further, lower fatty acids, intermediate products. When accumulate, there is a problem that the decomposition reaction in the fermenter is stopped due to the drop in pH.
따라서, 당 분야에서는 상기 언급한 문제점들을 해결하기 위하여 많은 연구가 진행되고 있다. 예를 들면, 열이나 알카리 등을 사용하여 시료의 전처리를 행함으로써 고형성 유기물의 가수분해율을 높이는 연구, 산 생성과 메탄 생성을 분리시켜 반응의 안정성을 향상시키려고 하는 이상 소화법, 반응조내에 여재 (濾材)를 채워서 혐기성 미생물을 가능한 고농도로 반응기내에 체류시키려고 하는 혐기성 여재법 (대한민국 특허공개번호 제97-10674호), 혐기성 유동상법 (대한민국 특허공개번호 제97-65443호, 제97-17543호, 제97-24983호), 상향류식 슬러지상 (대한민국 특허공개번호 제97-10676호), 혐기성 여재법과 상향류식 슬러지상 반응기를 조합한 복합형 혐기성 반응기 (대한민국 특허공개번호 제97-42280호) 등이 대표적이다.Therefore, much research is being conducted in the art to solve the above-mentioned problems. For example, studies on increasing the hydrolysis rate of solid organic matter by pretreatment of samples using heat or alkali, abnormal digestion methods to separate the acid formation and methane production, and to improve the stability of the reaction, Iv) anaerobic filter method (Korean Patent Publication No. 97-10674), anaerobic fluidized bed method (Korean Patent Publication No. 97-65443, 97-17543), which is intended to fill anaerobic microorganisms in the reactor as high as possible by filling 97-24983), Upflow Sludge Phase (Korean Patent Publication No. 97-10676), Hybrid Anaerobic Reactor Combining Anaerobic Filtering Method and Upflow Sludge Phase Reactor (Korea Patent Publication No. 97-42280) This is representative.
그러나, 산 발효조의 경우, 유출수내의 슬러지의 침강성이 매우 나쁘기 때문에, 그 슬러지가 메탄 발효조내에 들어가서 반응성을 저하시킬 수 있는 등 아직까지 완전하게 상분리를 시키는데에는 많은 어려움이 따르고 있다.However, in the case of acid fermentation tanks, since the sedimentation property of sludge in the effluent is very bad, there are many difficulties in the complete phase separation so far, such that the sludge may enter the methane fermentation tank and decrease the reactivity.
또한, 이상 소화 공정의 성공 여부는 산 형성균과 메탄 형성균의 공간적인 분리, 즉 상분리 가능성에 의존하는데, 현재까지 이러한 상분리를 위하여 예를 들면 전기 투석을 이용한 방법, 클로로포름, 사염화탄소, 산소, 산화환원 전위 등을 이용하여 산 형성조내의 메탄 생성균을 선택적으로 제거하는 방법, 미생물의 성장률에 영향을 미치는 pH 및 온도와 같은 환경적 요소를 조절하는 방법, 및 수리학적 체류시간 및 미생물 체류시간을 조절하는 동력학적 제어 방법 등이 제안되었으나, 산 형성조내의 미생물 및 고형물이 메탄 형성조로 유입되는 것을 근본적으로 방지하기는 어려웠다.In addition, the success of the aberrant digestion process depends on the spatial separation of acid-forming and methane-forming bacteria, that is, the possibility of phase separation. To date, such a phase separation method using electrodialysis, for example, chloroform, carbon tetrachloride, oxygen, oxidation To selectively remove methane-producing bacteria in acid-forming tanks using reduction potentials, to control environmental factors such as pH and temperature affecting the growth rate of microorganisms, and to control hydraulic and microbial retention times Kinetic control methods have been proposed, but it was difficult to fundamentally prevent the inflow of microorganisms and solids in the acid forming tank into the methane forming tank.
이러한 문제점들을 해결하는 방법의 하나로써 막분리를 이용한 혐기성 처리법에 관한 연구가 특히 일본을 중심으로 활발히 진행중에 있다. 한편, 국내에서도 대한민국 특허공개번호 제95-17748호에 산 형성 반응기와 메탄 형성 반응기의 사이에 수직 여과형 막분리 장치를 설치하여 상분리하는 방법이 개시되어 있으나, 고농도의 고형물을 함유한 산 발효액의 순환률을 크게 함으로써 많은 동력비와 공정의 복잡성이 초래된다.In order to solve these problems, research on anaerobic treatment using membrane separation is being actively conducted, especially in Japan. Meanwhile, in Korea, Korean Patent Publication No. 95-17748 discloses a method of phase separation by installing a vertical filtration membrane separation device between an acid forming reactor and a methane forming reactor, but the acid fermentation broth containing a high concentration of solids is disclosed. Increasing the circulation rate results in a lot of power costs and process complexity.
본 발명의 목적은 상기 설명한 종래 기술의 문제점을 해결하면서 기존의 처리 공법에 비하여 장치가 간단하며, 건설 및 유지 관리가 용이하고, 메탄 회수율과 폐수 처리 효율이 우수한, 정밀 여과막을 이용한 막분리형 혐기성 시스템 및 그를 사용한 폐수 처리 방법을 제공하는 것이다.The object of the present invention is to solve the problems of the prior art described above, the device is simpler than the conventional treatment method, easy to construct and maintain, methane recovery and wastewater treatment efficiency, membrane separation type anaerobic system using a fine filtration membrane And a wastewater treatment method using the same.
상기 본 발명의 목적은, 완전 혼합형 반응기의 산 형성 반응기와 복합형 메탄 형성 반응기, 및 상기 산 형성 반응기내 또는 그의 침전지에 침지된 0.1 내지 1.0 ㎛의 막 공경을 갖는 정밀여과 막분리 시스템을 포함하는 막 분리형 이상 혐기성 반응기 시스템에 의하여 달성될 수 있다.The object of the present invention comprises an acid forming reactor and a combined methane forming reactor of a fully mixed reactor, and a microfiltration membrane separation system having a membrane pore size of 0.1 to 1.0 μm immersed in or in the settling basin of the acid forming reactor. Membrane separation can be achieved by an anaerobic reactor system.
도 1은 본 발명에 따른 일실시예로서 이상 혐기성 반응기에 정밀 여과 막분리 시스템을 침지시킨 정밀여과 막분리형 이상 반응 시스템의 개략도.1 is a schematic diagram of a microfiltration membrane separation type reaction system in which a microfiltration membrane separation system is immersed in an ideal anaerobic reactor as an embodiment according to the present invention.
<도면의 주요 부분에 대한 부호의 설명><Description of the code | symbol about the principal part of drawing>
11 : 산 형성조 유입 저류조 12 : 산 형성 반응기11: acid forming tank inlet storage tank 12: acid forming reactor
13 : 산 형성 반응기 침전조 14 : 메탄 형성조 유입 저류조13: acid formation reactor sedimentation tank 14 methane formation tank inlet storage tank
15 : 메탄 형성 반응기 16 : 역세척용 공기 발생기15: methane formation reactor 16: backwash air generator
17 : 막분리 시스템 제어장치 18 : 가스 저장조17 membrane control system control 18 gas storage tank
19 : 처리수 20 : 막분리 장치19: treated water 20: membrane separation device
21 : 산 형성조 유입 펌프 22 : 막분리용 펌프21: acid forming tank inlet pump 22: membrane separation pump
23 : 메탄 형성조 유입 펌프 31 : 수위 조절 센서23: methane forming tank inlet pump 31: water level control sensor
본 발명에 따른 막 분리형 혐기성 반응기 시스템은 완전 혼합형 반응기의 산 형성 반응기와 복합형 메탄 형성 반응기, 및 상기 산 형성 반응기내 또는 그의 침전지에 침지된 0.1 내지 1.0 ㎛의 막 공경을 갖는 정밀여과 막분리 시스템으로 이루어진다.The membrane-separated anaerobic reactor system according to the present invention is a microfiltration membrane separation system having an acid-forming reactor and a combined methane-forming reactor of a fully mixed reactor, and a membrane pore size of 0.1 to 1.0 μm immersed in or in the sedimentation basin thereof. Is done.
본 발명에 따라, 산 형성 반응기와 메탄 형성 반응기로 이루어지는 이상 혐기성 반응기에서, 산 형성 반응기에 막분리 시스템을 결합시켜 미생물 및 고형물의 체류 시간을 증대시킴으로써 가수분해를 촉진하고, 이어서 혐기성 여재공정과 상향류 슬러지상 공정을 조합하여 구성된 복합형 메탄 형성 반응기를 사용하여 유기물 제거율을 개선하고, 메탄 에너지화를 도모할 수 있다.According to the present invention, in an ideal anaerobic reactor consisting of an acid forming reactor and a methane forming reactor, a membrane separation system is combined with an acid forming reactor to increase the residence time of microorganisms and solids, thereby promoting hydrolysis, and then anaerobic mediating process and upwards. The combined methane formation reactor constructed by combining the rush sludge phase process can be used to improve the organic removal rate and promote methane energy.
하기에서, 도 1을 참고로 하여 본 발명을 더욱 자세하게 설명한다.In the following, the present invention is described in more detail with reference to FIG.
본 발명에 따른 반응기 시스템은 산 형성 반응기 (12)와 메탄 형성 반응기 (15)로 구성되어 있으며, 효과적인 고액 분리를 위하여 산 형성 반응기 (12)에서는 산 형성 반응기의 침전조 (13)에 막분리 장치 (20)을 침지시킨다. 또한, 바람직하게는 부유성 고형물에 의한 막 오염 방지를 위해, 일정 압력이 되면 작동되는 막분리 시스템 제어장치 (17)을 이용하여 고압의 공기 발생기 (16)으로 막 분리 장치를 역세척함으로써 오랜기간 동안 막의 교체없이 연속 운전을 가능하게 할 수 있다. 즉, 막 공정에서 흔히 일어날 수 있는 막 오염 현상을 최소화하기 위하여 막 내부에서 일정한 여과 압력 (0.1 내지 1 기압)이 걸리게 되면, 압축 공기로 적절한 시간 (약 1 초 내지 1 분) 동안 역세척을 수행함으로써 막 오염을 방지할 수 있다.The reactor system according to the present invention is composed of an acid forming reactor 12 and a methane forming reactor 15, and in the acid forming reactor 12, in the acid forming reactor 12, a membrane separation apparatus ( 20). Further, in order to prevent membrane contamination by suspended solids, the membrane separator may be backwashed with a high pressure air generator 16 using a membrane separation system controller 17 which is operated at a constant pressure for a long time. It is possible to enable continuous operation without changing the membrane during the process. That is, if a constant filtration pressure (0.1 to 1 atm) is applied inside the membrane to minimize membrane fouling that can occur frequently in the membrane process, backwashing with compressed air for an appropriate time (about 1 second to 1 minute) is performed. By doing so, membrane contamination can be prevented.
상기 막분리 시스템에는 산 형성 반응기에서의 처리 과정중 생성된 유기산 및 역세척에 대하여 우수한 내구성의 막 재질을 갖는 정밀 여과막이 사용될 수 있으며, 바람직하게는 셀룰로오스의 혼합 에스테르 계통의 카트리지형 여과막이 사용될 수 있다.In the membrane separation system, a microfiltration membrane having a membrane material having excellent durability against organic acids and backwashing generated during the treatment in an acid forming reactor may be used. Preferably, a cartridge type filtration membrane of a mixed ester system of cellulose may be used. have.
한편, 본 발명에 따른 반응기 시스템을 사용한 폐수처리 공정에 있어서, 고농도의 유기 폐수는 산 형성조 유입수 저류조 (11)에서 펌프 (21)에 의해 산 형성 반응기 (12)로 유입되며, 최고 수위에 도달하면 수위 조절 센서 (31)에 의해 산 형성조 침전지 (13)내에 있는 막분리 시스템 (17)과 막분리용 펌프 (22)가 작동하여 여과 및 역세척 공정이 자동적으로 수행된다. 여과된 산 형성조 유출수는 메탄 형성조 유입 저류조 (14)에서 펌프 (23)를 통하여 메탄 형성 반응기 (15)로 유입된다. 이때, 부산물로 생성된 메탄 가스는 가스 저장조 (18)에 축적되고 최종 처리수 (19)는 방류된다. 이러한 과정을 거쳐 부유성 고형물을 함유하는 고농도의 유기물 함유 폐수가 처리될 수 있다.On the other hand, in the wastewater treatment process using the reactor system according to the present invention, the high concentration of organic wastewater is introduced into the acid forming reactor 12 by the pump 21 from the acid forming tank influent storage tank 11 and reaches the highest water level. The lower surface level control sensor 31 operates the membrane separation system 17 and the membrane separation pump 22 in the acid-forming tank sedimentation basin 13 to automatically perform the filtration and backwashing process. The filtered acid forming tank effluent is introduced into the methane forming reactor 15 through the pump 23 in the methane forming tank inlet storage tank 14. At this time, methane gas produced as a by-product is accumulated in the gas storage tank 18 and the final treated water 19 is discharged. Through this process, wastewater containing a high concentration of organic matter containing suspended solids can be treated.
이하, 본 발명의 실시예를 기재한다. 그러나, 하기 실시예는 본 발명의 이해를 돕기 위한 본 발명의 바람직한 예일 뿐 본 발명이 이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the Example of this invention is described. However, the following examples are only preferred examples of the present invention for the purpose of understanding the present invention, and the present invention is not limited by these examples.
<실시예><Example>
본 발명에 따른 폐수 처리 시스템을 평가하기 위하여, 먼저 부유성 고형물과 고농도의 유기물을 함유하는 합성 폐수를 제조하였다.In order to evaluate the wastewater treatment system according to the present invention, first, a synthetic wastewater containing suspended solids and a high concentration of organic matter was prepared.
본 발명에 사용된 합성 폐수는 표 1에 나타낸 바와 같이 가용성 전분을 기질로 한 화학적 산소 요구량이 10,000-20,000 mg/l 및 부유성 고형물 10,000-15,000 mg/l가 되도록 제조하였으며, 반응기내의 pH 저하를 방지하기 위해 NaHCO3를 일정량 첨가하였고, 그 외 미생물의 성장에 필요한 질소, 인 및 미량의 영양물질을 첨가하였다.Synthetic wastewater used in the present invention was prepared to have a chemical oxygen demand of 10,000-20,000 mg / l based on soluble starch and 10,000-15,000 mg / l of suspended solids as shown in Table 1, and to reduce pH in the reactor. A certain amount of NaHCO 3 was added to prevent and other nitrogen, phosphorus and trace nutrients necessary for the growth of microorganisms were added.
상술한 장치를 이용한 폐수 처리에 있어서, 산 형성 반응기에서의 수리학적 체류시간을 4일에서 10일까지 변화시켰으며, 메탄 형성조의 수리학적 체류시간은 2일로 운전하였고, 유기물 부하 (volumetric organic loading rate)는 산 형성 반응조가 1.5 kg COD/m3·일, 유기산 발효조의 배출 농도를 기준으로 했을 경우 메탄 형성 반응기가 3.75 kg COD/m3·일이 되도록 하였다. 한편, 유기산 반응기는 상온으로, 그리고 메탄 반응기는 35 ℃로 일정하게 유지하였다.In the wastewater treatment using the above-described apparatus, the hydraulic retention time in the acid formation reactor was changed from 4 days to 10 days, the hydraulic retention time of the methane formation tank was operated for 2 days, and the organic loading rate (volumetric organic loading rate). ), The methane formation reactor was 3.75 kg COD / m 3 · day when the acid formation reactor was 1.5 kg COD / m 3 · day and based on the concentration of the organic acid fermentation tank. On the other hand, the organic acid reactor was kept constant at room temperature, and the methane reactor at 35 ℃.
본 실시예에서는 다양한 특성과 재질을 가진 정밀여과막을 사용하여 실험한 결과, 생성된 유기산 및 역세척에 대하여 우수한 내구성을 갖는 셀룰로오스의 혼합 에스테르 유형을 선정하였고, 막 모듈의 형태로는 침지형 카트릿지 타입의 막을 사용하였다.In this embodiment, as a result of experiment using a microfiltration membrane having various characteristics and materials, the mixed ester type of cellulose having excellent durability against the generated organic acid and backwashing was selected, the membrane module type of the immersion type cartridge type Membrane was used.
상술한 발명의 기초연구에서 여러 가지 막 공경과 재질중에, 생성된 유기산과 역세척에 강한 재질의 정밀여과막을 사용하여 효율적인 막분리 시스템의 운전장치를 개발한 결과 3달 이상의 장기간 사용이 가능하였고, 본 발명에 따른 폐수 처리 결과 여과액내에 부유성 고형물은 거의 나타나지 않았다.In the basic research of the above-mentioned invention, an efficient membrane separation system was developed by using a fine filtration membrane made of organic acid and backwash resistant material among various membrane pore sizes and materials. As a result of the wastewater treatment according to the present invention, there was almost no suspended solids in the filtrate.
연속 실험에서는 0.1-1.0 ㎛ 사이의 다양한 막 공경과 여러 가지 재질에 대한 실험을 수행하였다. 막분리 시스템에서의 고액 분리는 진공 펌프를 이용하여 감압/흡입하여 여과액을 분리하였으며, 막의 역세척은 막의 내압이 일정 기압이 되면 일정시간동안 공기를 주입함으로써 수행하였다. 그리고, 막 모듈은 반응조내에 침지시켜 설치함으로써, 유지 관리가 용이하고, 더불어 설치 면적을 최소화할 수 있도록 하였다.In a series of experiments, experiments were performed on various membrane pore sizes and materials. The solid-liquid separation in the membrane separation system was separated under reduced pressure / suction using a vacuum pump, and the backwashing of the membrane was performed by injecting air for a predetermined time when the internal pressure of the membrane became a constant atmospheric pressure. In addition, the membrane module is immersed in the reaction tank and installed, so that maintenance is easy and the installation area can be minimized.
한편, 상기 합성 폐수를 사용하여 기존의 침전조를 설치한 경우와 막분리 시스템을 산 형성 반응내에 침지시킨 본 발명의 시스템의 경우를 비교한 결과, 막분리 시스템을 조합한 반응기 시스템이 우수한 유기물 제거율 및 고형 물질 제거율을 나타내었다.On the other hand, as a result of comparing the case of the existing sedimentation tank using the synthetic wastewater and the system of the present invention in which the membrane separation system is immersed in the acid formation reaction, the reactor system combining the membrane separation system has excellent organic removal rate and Solid material removal rate is shown.
유입수의 부유성 고형물의 농도를 10,000-35,000 mg/L까지 변화시켰을 때, 재래식 침전지의 경우 산 형성조내의 미생물 농도가 4,000 mg/L 이하로 유지되었으나, 본 발명에 따른 막분리형 산 형성조의 경우 미생물 농도가 7,000 mg/L 이상으로 유지되었으며, 따라서 이러한 높은 미생물 농도에 따라 높은 산 전환율 및 가수분해 반응을 나타내었다. 총 화학적 산소요구량이 11,000-23,000 mg/L의 범위인 폐수를 유입수로 하였을 때, 최종 유출수의 화학적 산소요구량의 농도는 재래식 침전지를 사용한 경우 500-3,000 mg/L으로 나타났으나, 본 발명에 따른 막분리형 반응기를 사용한 경우에는 200 mg/L 이하로 나타나 98 % 이상의 우수한 유기물 제거율을 나타내었다. 상술한 바와 같이, 대부분 90 % 이하의 유기물 제거율을 나타내는 기존의 혐기성 처리 공정에 비해 본 발명에 따른 침지형 막분리형 이상 혐기성 반응기가 우수한 공정으로 나타났다.When the concentration of suspended solids in the influent was changed to 10,000-35,000 mg / L, the concentration of microorganisms in the acid formation tank was maintained at 4,000 mg / L or less in the conventional sedimentation basin. The concentration was maintained above 7,000 mg / L, thus showing high acid conversion and hydrolysis reaction according to this high microbial concentration. When wastewater with total chemical oxygen demand in the range of 11,000-23,000 mg / L was used as influent, the concentration of chemical oxygen demand in the final effluent was found to be 500-3,000 mg / L when using conventional sedimentation basin. In the case of using a membrane separation reactor, the reaction rate was 200 mg / L or less, indicating an excellent organic removal rate of 98% or more. As described above, the immersion type membrane separation type anaerobic reactor according to the present invention was found to be an excellent process compared to the existing anaerobic treatment process which shows the removal rate of organic matter of 90% or less.
본 발명에 따라, 침강성이 나쁜 산 형성 반응조내 또는 침전지에 침지형 정밀여과 막분리 시스템을 침지시켜 고형물 체류시간을 증가시키므로써 가수분해가 촉진되며, 후속 공정인 복합형 메탄 형성조의 성능을 향상시켜 폐수로부터 유기물을 우수한 효율로 제거할 수 있다.According to the present invention, the hydrolysis is promoted by increasing the solid residence time by immersing the immersion microfiltration membrane separation system in an acid formation reaction tank or in a sedimentation basin with poor sedimentation properties, and improves the performance of a subsequent methane forming tank, which is a subsequent process. Organic matter can be removed from the substrate with excellent efficiency.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019980014205A KR100249452B1 (en) | 1998-04-21 | 1998-04-21 | Two-phase anaerobic reactor with submerged microfiltration system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019980014205A KR100249452B1 (en) | 1998-04-21 | 1998-04-21 | Two-phase anaerobic reactor with submerged microfiltration system |
Publications (2)
Publication Number | Publication Date |
---|---|
KR19990080747A KR19990080747A (en) | 1999-11-15 |
KR100249452B1 true KR100249452B1 (en) | 2000-03-15 |
Family
ID=19536528
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019980014205A KR100249452B1 (en) | 1998-04-21 | 1998-04-21 | Two-phase anaerobic reactor with submerged microfiltration system |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100249452B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100390524B1 (en) * | 2000-10-20 | 2003-07-07 | 주식회사 세정하이테크 | Apparatus for treating wastewater by using submerged membrain saparation anaerobic digester |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100972232B1 (en) * | 2008-01-03 | 2010-07-23 | 주식회사 부강테크 | Wastewater treatment method and apparatus using turbulent generation membrane separation process |
CN118724403B (en) * | 2024-07-29 | 2025-02-25 | 陕西标远环保科技有限公司 | A sludge hydrolysis and acidification carbon source supplement device |
-
1998
- 1998-04-21 KR KR1019980014205A patent/KR100249452B1/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100390524B1 (en) * | 2000-10-20 | 2003-07-07 | 주식회사 세정하이테크 | Apparatus for treating wastewater by using submerged membrain saparation anaerobic digester |
Also Published As
Publication number | Publication date |
---|---|
KR19990080747A (en) | 1999-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100600636B1 (en) | Method and system for treating wastewater containing organic compounds | |
CN100545112C (en) | The process for reclaiming of chemical industrial plasticizer waste water | |
JP5208136B2 (en) | Outside-tank membrane separation activated sludge method | |
CN100509651C (en) | Combined technique for garbage filter liquor treatment | |
CN100532299C (en) | Garbage leachate processing process and system based on membrane bioreactor-nano filtering membrane technology | |
CN107405573B (en) | System and method for treating diluted wastewater | |
KR102100991B1 (en) | Liquefied fertilizer purification apparatus using porous ceramic membrane | |
CN101781056B (en) | Treatment method of waste papermaking water | |
WO2016027223A1 (en) | Anaerobic membrane bioreactor system | |
Shi et al. | Pilot study on ceramic flat membrane bioreactor in treatment of coal chemical wastewater | |
CN200988816Y (en) | Garbage percolating liquid treating system based on film biological reactor-filter film technology | |
KR100249452B1 (en) | Two-phase anaerobic reactor with submerged microfiltration system | |
KR102139744B1 (en) | An anaerobic sewage treatment apparatus comprising a dissolved methane recovery apparatus and anaerobic sewage treatment method | |
KR20200000056A (en) | The method and apparatus for treatment of livestock manure, livestock wastewater or livestock washing water using ceramic membrane | |
CN216106228U (en) | Decarbonization and denitrification reactor for removing microbial metabolites in sewage | |
KR20200101663A (en) | Equipment capable of filtering of livestock wastewater and cleaning of membrane | |
CN207227239U (en) | A kind of garbage percolation liquid treating system | |
CN105110582A (en) | Sewage treatment system based on bio-membrane reactor and photobioreactor | |
KR20190000157A (en) | The method and apparatus for treatment of livestock manure, livestock wastewater or livestock washing water using ceramic membrane | |
RU89518U1 (en) | SEWAGE TREATMENT PLANT | |
JPH0218918B2 (en) | ||
CN216039135U (en) | Urban garbage leachate treatment system | |
CN108328862A (en) | A kind of wastewater regenerating and recycling processing system and method | |
JPH0218919B2 (en) | ||
Sellamuthu et al. | A Comprehensive Analysis on Bio-Reactor Design and Assessment Biological Pre-Treatment of Industrial Wastewater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 19980421 |
|
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 19980421 Comment text: Request for Examination of Application |
|
PG1501 | Laying open of application | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 19991215 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 19991224 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 19991227 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20020813 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20030730 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20040910 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20040910 Start annual number: 6 End annual number: 6 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |