KR100238012B1 - The manufacturing method for extruding container cold rolling steel sheet with excellent weldability and formative - Google Patents
The manufacturing method for extruding container cold rolling steel sheet with excellent weldability and formative Download PDFInfo
- Publication number
- KR100238012B1 KR100238012B1 KR1019950023566A KR19950023566A KR100238012B1 KR 100238012 B1 KR100238012 B1 KR 100238012B1 KR 1019950023566 A KR1019950023566 A KR 1019950023566A KR 19950023566 A KR19950023566 A KR 19950023566A KR 100238012 B1 KR100238012 B1 KR 100238012B1
- Authority
- KR
- South Korea
- Prior art keywords
- less
- boron
- steel
- titanium
- steel sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 54
- 239000010959 steel Substances 0.000 title claims abstract description 54
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 238000005097 cold rolling Methods 0.000 title abstract description 4
- 239000010936 titanium Substances 0.000 claims abstract description 51
- 229910052796 boron Inorganic materials 0.000 claims abstract description 37
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 36
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 24
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 23
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 23
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 12
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 12
- 239000011593 sulfur Substances 0.000 claims abstract description 12
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 12
- 238000000137 annealing Methods 0.000 claims abstract description 11
- 239000011572 manganese Substances 0.000 claims abstract description 10
- 238000005096 rolling process Methods 0.000 claims abstract description 9
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 5
- 239000011574 phosphorus Substances 0.000 claims abstract description 5
- 239000012535 impurity Substances 0.000 claims abstract description 4
- 239000007787 solid Substances 0.000 claims abstract description 4
- 238000004804 winding Methods 0.000 claims description 6
- 239000000463 material Substances 0.000 abstract description 13
- 239000010960 cold rolled steel Substances 0.000 abstract description 6
- 238000000034 method Methods 0.000 abstract description 4
- 229910052742 iron Inorganic materials 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 17
- 230000032683 aging Effects 0.000 description 13
- 239000006104 solid solution Substances 0.000 description 13
- 239000000203 mixture Substances 0.000 description 9
- 238000003466 welding Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 6
- 238000005728 strengthening Methods 0.000 description 6
- 230000002159 abnormal effect Effects 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 238000005098 hot rolling Methods 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 238000000265 homogenisation Methods 0.000 description 3
- 238000001000 micrograph Methods 0.000 description 3
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 2
- 229910000655 Killed steel Inorganic materials 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000012611 container material Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000008157 edible vegetable oil Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910002066 substitutional alloy Inorganic materials 0.000 description 1
- CADICXFYUNYKGD-UHFFFAOYSA-N sulfanylidenemanganese Chemical compound [Mn]=S CADICXFYUNYKGD-UHFFFAOYSA-N 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- OCDVSJMWGCXRKO-UHFFFAOYSA-N titanium(4+);disulfide Chemical compound [S-2].[S-2].[Ti+4] OCDVSJMWGCXRKO-UHFFFAOYSA-N 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
본 발명은 확관 가공하는 용기용 소재로 제관 용접 후 확관 시 용접 부위에 크랙이 발생하지 않으며, 용접성 및 포밍성이 우수한 확관 용기용 냉연 강판의 제조 방법에 관한 것으로, 중량 비로, 탄소 : 0.005% 이하, 망간 : 0.1∼0.4%, 인 : 0.03% 이하, 황 : 0.015%, 알루미늄 : 0.06% 이하, 질소 : 0.004% 이하, 티타늄 : 0.03 ∼ 0.05%, 고용 보론 : 0.0005 ∼ 0.0015%를 함유할 수 있도록 “[Ti] - 1.5[S] ≥ 3.43”일 경우 보론(B) : (0.77{[N] - ([Ti]- 1.5[S]) / 3.43) = 0.0005) ≤ [B] ≤ (0.77{[N] - ([Ti] - 1.5[S]) / 3.43} =0.0015) 범위 내에서 관리하고 잔부 철 및 불가피하게 함유되는 불순물로 조성한 알루미늄 킬드강을 1200 ∼ 1250℃의 온도 범위에서 균질화 처리한 후, 910℃부근에서 마무리 압연하고, 600 ∼ 750℃부근 온도에서 권취한 다음, 압하율 80% 이상으로 냉간 압연하고, 720℃ 이상에서 연속 소둔 한 후, 조질 압연을 행하여 제조하는 것을 특징으로 하는 용접성 및 성형성이 우수한 확관 용기용 냉연 강판의 제조 방법을 제공한다.The present invention relates to a method for manufacturing a cold rolled steel sheet for expansion vessels having excellent weldability and formability, wherein cracks do not occur in the welded portion after expansion of the steel pipe as a material for expansion vessel processing, and the carbon ratio is 0.005% or less. , Manganese: 0.1 to 0.4%, phosphorus: 0.03% or less, sulfur: 0.015%, aluminum: 0.06% or less, nitrogen: 0.004% or less, titanium: 0.03 to 0.05%, solid boron: 0.0005 to 0.0015% When “[Ti]-1.5 [S] ≥ 3.43” Boron (B): (0.77 {[N]-([Ti]-1.5 [S]) / 3.43) = 0.0005) ≤ [B] ≤ (0.77 { [N]-([Ti]-1.5 [S]) / 3.43} = 0.0015), and the aluminum-kilted steel, which is composed of residual iron and inevitably contained impurities, is homogenized at a temperature range of 1200 to 1250 ° C. After that, finish rolling at 910 DEG C, wound at 600 to 750 DEG C, cold rolling at a reduction ratio of 80% or higher, and continuous annealing at 720 DEG C or higher Thereafter, a method for producing a cold rolled steel sheet for expansion vessel having excellent weldability and formability, which is produced by temper rolling, is provided.
Description
제1도는 비교강의 용접 부위를 확대한 현미경 사진.1 is an enlarged micrograph of a welded portion of a comparative steel.
제2도는 본 발명에 따른 발명강의 용접 부위를 확대한 현미경 사진이다.2 is an enlarged photomicrograph of a welded portion of the inventive steel according to the present invention.
본 발명은 용접성 및 성형성이 우수한 확관 용기용 냉연 강판의 제로 방법에 관한 것으로, 특히 확관 가공하는 용기(Pail can) 용 소재로 제관 용접 후 확관 시 용접 부위에 크랙(Crack)이 발생하지 않으며, 용접성 및 포밍(Forming)성이 우수한 확관 용기용 냉연 강판의 제조 방법에 관한 것이다.The present invention relates to a zero method of a cold rolled steel sheet for expansion vessels having excellent weldability and formability, and in particular, cracks do not occur in the welded portion when expanding after pipe-welding as a material for a pail can. It is related with the manufacturing method of the cold rolled sheet steel for expansion container which is excellent in weldability and forming property.
일반적으로, 용기용 소재를 사용하여 원형으로 가공된 캔은 확관(Expanding)이라는 가공 공정에 의해 2차 가공을 받게 된다. 통상 사용되는 소형 음료 캔과 같은 경우는 원형으로 가공한 다음 용접을 하여 사용되지만, 식용유, 페인트 등을 저장하는 용기는 저장 및 운송에 편리하도록 용접 후에 원주 방향으로 확관 가공을 행하고 있다.In general, cans processed in a circle using a container material are subjected to secondary processing by a processing process called expanding. In the case of commonly used small beverage cans, they are rounded and then welded, but containers for storing edible oil, paint, and the like are expanded in the circumferential direction after welding to facilitate storage and transportation.
이때, 용접 부위에 결함이 발생하는 경우 확관 가공 시 용접 부위에 크랙(Crack)이 발생하고 시효가 발생하는 경우 스트레처 스트레인(Stretcher strain)이 발생하여 외관이 불량해진다.In this case, when a defect occurs in the welded part, cracks are generated in the welded part during expansion, and when the aging occurs, a stretcher strain occurs to deteriorate the appearance.
따라서, 확관 용기용 소재는 시효가 없고 용접성이 우수하여야 하는데, 시효를 제거하려면 고용 원소인 탄소(C), 질소(N), 황(S)을 안정화 시켜서 스트레처 스트레인이 없어야 하고, 용접성이 우수하려면 용접부근(HAZ, Heat Affected Zone)의 조직과 모재부의 조직 사이에 조직의 차이가 없는 균일한 조직을 만들어야 한다.Therefore, the material for expansion vessel should have no aging and excellent weldability. To remove aging, there should be no stretcher strain by stabilizing carbon (C), nitrogen (N), and sulfur (S) as solid solution elements. To do this, it is necessary to create a uniform structure with no difference between the tissues in the heat affected zone (HAZ) and the base metal.
즉, 시효가 발생하면 포밍(Forming)성이 불량하여 작업성이 떨어지고, 용접성이 불량하면 확관시 모재부 대비 용접 HAZ부의 입자 이상 조대립에 의한 강도 저하로 크랙이 발생하게 된다. 참고로 비교강의 확대 현미경 사진인 제1도는 확관 가공 시 용접 HAZ부에서 크랙이 발생하는 소재의 용접 부위에 대한 조직 사진으로써 용접 HAZ부의 입자 이상 조대립이 발달되어 있다.That is, when aging occurs, workability is poor due to poor formability, and when weldability is poor, cracks occur due to a decrease in strength due to coarse grains in the welded HAZ portion relative to the base material portion when expanding. For reference, FIG. 1, which is an enlarged micrograph of a comparative steel, is a structure photograph of a welded portion of a material in which cracks occur in a welded HAZ portion at the time of expansion, and the grain abnormal coarse grains of the welded HAZ portion are developed.
한편, 공지된 종래의 기술로써, 배치(Batch) 소둔을 이용하는 저탄소 알루미늄-킬드강은 시효 현상이 없는 강종으로써, 확관 용기용 소재로 적용되고 있으나, 배치 소둔을 적용함으로써 소둔 시간이 2 ∼ 3일 정도로 매우 길며, 재질이 불균일하고, 용접 HAZ부의 조대립 발생으로 크랙이 발생할 염려가 제기되는 문제점들이 있었다.On the other hand, according to the known conventional technology, low carbon aluminum-kilted steel using batch annealing is a steel grade without aging phenomenon, and is applied as a material for expansion vessels, but annealing time is 2-3 days by applying batch annealing. Too long, there is a problem that the material is non-uniform, there is a concern that the crack occurs due to the coarse generation of the welding HAZ portion.
따라서, 본 발명은 상기한 종래의 문제점을 해결하기 위하여 시효로 인한 포밍성의 불량을 개선하고, 용접 HAZ부의 이상 조대립의 발달을 억제시킬 수 있는 용접성 및 성형성이 우수한 확관 용기용 냉연 강판 제조 방법을 제공하는데 있다.Accordingly, the present invention is to improve the defect of the formability due to aging in order to solve the above-mentioned conventional problems, the method of manufacturing cold rolled steel sheet for expansion vessel excellent in weldability and formability that can suppress the development of abnormal coarse grains of the weld HAZ portion To provide.
상기한 목적을 달성하기 위하여 본 발명은 중량 비로, 탄소(C) : 0.005%이하, 망간(Mn) : 0.1 ∼0.4%, 인(P) : 0.03% 이하, 황(S) : 0.015%, 알루미늄 (Sol-Al) : 0.06% 이하, 질소(N) : 0.004% 이하, 티타늄(Ti) : 0.03 ∼ 0.05%, 고용 보론(B) : 0.0005 ∼ 0.0015%, “[Ti] - 1.5{S] ≥ 3.43”일 경우 보론(B) : (0.77{[N] - ([Ti] - 1.5[S]) / 3.43} = 0.0005) ≤ [B] ≤ (0.77{[N] - ([Ti] -1.5[S]) / 3.43} = 0.0015) 범위 내에서 관리하고 잔부 철(Fe) 및 불가피하게 함유되는 불순물로 조성되는 알루미늄-킬드(Al-Killed)강을 제공한다.In order to achieve the above object, the present invention is a weight ratio of carbon (C): 0.005% or less, manganese (Mn): 0.1 to 0.4%, phosphorus (P): 0.03% or less, sulfur (S): 0.015%, aluminum (Sol-Al): 0.06% or less, nitrogen (N): 0.004% or less, titanium (Ti): 0.03 to 0.05%, solid solution boron (B): 0.0005 to 0.0015%, “[Ti]-1.5 μS] ≥ 3.43 ”Boron (B): (0.77 {[N]-([Ti]-1.5 [S]) / 3.43} = 0.0005) ≤ [B] ≤ (0.77 {[N]-([Ti] -1.5 [S]) / 3.43} = 0.0015) and provide Al-Killed steel which is composed of residual iron (Fe) and inevitably contained impurities.
그리고, 상기 알루미늄-킬드강을 1200 ∼ 1250℃의 온도 범위에서 균질화 처리한 후, 910℃부근에서 마무리 압연하고, 600 ∼ 750℃부근 온도에서 권취간 다음, 압하율 80%로 냉간 압연한 후, 720℃ 이상에서 연속 소둔한 후, 조질 압연을 행하는 것을 특징으로 하는 제조 방법을 제공한다.After the homogenization treatment of the aluminum-kilted steel at a temperature range of 1200 to 1250 ° C, the final rolling is carried out at 910 ° C, followed by winding at a temperature of 600 to 750 ° C, and then cold rolled to a rolling reduction of 80%. After continuous annealing at 720 ° C. or higher, tempering rolling is performed to provide a production method.
이하에 본 발명을 상세하게 설명한다.The present invention will be described in detail below.
본 발명은 용접성 및 성형성이 우수한 확관 용기용 냉연 강판 제조 방법에 관한 것으로, 그 화학 성분은 중량 비로, 탄소(C) : 0.005% 이하, 망간 (Mn) : 0.1 ∼0.4%, 인(P) : 0.03% 이하, 황(S) : 0.015%, 알루미늄(Sol-Al) : 0.06% 이하, 질소(N) : 0.004% 이하, 티타늄(Ti) : 0.03 ∼ 0.05%, 고용 보론(B) : 0.0005 ∼ 0.0015%, “[Ti] - 1.5{S] ≥ 3.43}일 경우 보론(B) : (0.77{[N]- ([Ti] - 1.5[S]) / 3.43} = 0.0005) ≤ [B] ≤ (0.77{[N] - ([Ti] - 1.5[S]) /3.43} = 0.0015) 범위내에서 관리하고 잔부 철(Fe) 및 불가피하게 함유되는 불순물로 조성된다.The present invention relates to a method for producing a cold rolled steel sheet for expansion vessel having excellent weldability and formability, the chemical composition of which is by weight ratio of carbon (C): 0.005% or less, manganese (Mn): 0.1 to 0.4%, phosphorus (P) : 0.03% or less, sulfur (S): 0.015%, aluminum (Sol-Al): 0.06% or less, nitrogen (N): 0.004% or less, titanium (Ti): 0.03-0.05%, solid boron (B): 0.0005 -0.0015%, “In case of [Ti]-1.5 {S] ≥ 3.43} Boron (B): (0.77 {[N]-([Ti]-1.5 [S]) / 3.43} = 0.0005) ≤ [B] ≤ (0.77 kPa [N]-([Ti]-1.5 [S]) /3.43 kPa = 0.0015) and it is composed of the balance iron (Fe) and inevitably contained impurities.
상기와 같이 조성된 강을 1200 ∼ 1250℃의 온도 범위에서 균질화 처리한 후, 910℃부근에서 마무리 마무리 압연하고, 600 ∼ 750℃부근 온도에서 권취한 다음, 압하율 80%로 냉간 압연한 후, 720℃ 이상에서 연속 소둔한 후, 조질 압연을 행하여 제조된다.After homogenizing treatment of the steel composition as described above in the temperature range of 1200-1250 ° C, finish finishing rolling at 910 ° C and winding up at 600-750 ° C, then cold rolling at a reduction ratio of 80%, After continuous annealing at 720 ° C. or higher, it is produced by temper rolling.
상기와 같은 조성과 제조 방법에 의해 제조된 강은 포밍성과 용접성이 매우 우수한 것을 특징으로 한다.Steel produced by the composition and production method as described above is characterized in that the excellent formability and weldability.
한편, 본 발명에서 상기 화학 성분의 농도를 상기와 같이 제한하는 이유는 다음과 같다.On the other hand, the reason for limiting the concentration of the chemical component in the present invention as described above is as follows.
먼저, 상기 탄소(C)의 함량은 0.004 중량%(이하 %라고 함) 이상이 되면 항복 강도가 상승되어 포밍(Forming) 불량을 유발하고, 또한 고용탄소의 증가로 최종 소둔 후 항복점 연신을 유발시켜 스트레처 스트레인(stretcher strain)을 발생시키므로 탄소 함량을 0.005% 이하로 제한하는 것이 바람직하며, 탄소 함량은 낮게 관리할수록 좋다.First, when the content of carbon (C) is more than 0.004% by weight (hereinafter referred to as%), the yield strength is increased to cause a defect in forming, and also to increase the yield point after the final annealing due to the increase of solid solution carbon. It is preferable to limit the carbon content to 0.005% or less, since it causes a stretcher strain, and the lower the carbon content, the better.
상기 망간(Mn)은 그 함량이 0.4% 이상인 경우에는 망간의 고용 강화에 의해 재질이 경화되거나 성형성이 악화되고, 그 함량이 0.10% 이하인 경우에는 열간 취성 원소인 황(S)을 충분히 고정시키지 못하기 때문에 0.10 ∼ 0.40%로 제한하는 것이 바람직하다.When the content of manganese (Mn) is 0.4% or more, the material hardens or deteriorates formability due to solid solution strengthening of manganese, and when the content is 0.10% or less, sulfur (S), a hot brittle element, is not sufficiently fixed. Since it is impossible, it is preferable to limit it to 0.10 to 0.40%.
상기 인(P)은 고용 경화 효과가 가장 큰 치환용 합금 원소로써 0.03% 이상 첨가 시 재질 경화 및 성형성이 나빠지므로 그 함량을 0.03% 이하로 제한하는 것이 바람직하다.The phosphorus (P) is a substitutional alloy element having the largest solid solution hardening effect, and thus, when added in an amount of 0.03% or more, the material hardening and moldability deteriorate. Therefore, the content of phosphorous (P) is preferably limited to 0.03% or less.
상기 황(S)은 열간 취성을 일으키는 취약한 원소로써 성분 범위를 낮게 관리할수록 좋으며, 또한 망간계 황화물로 석출되기 때문에 망간을 낮추기 위해서는 그 함량을 0.015% 이하로 제한하는 것이 바람직하다.The sulfur (S) is a fragile element that causes hot brittleness is better to manage the lower the range, and also to precipitate the manganese sulfide, so to reduce the manganese it is preferable to limit the content to 0.015% or less.
상기 알루미늄(Al)은 강의 탈산을 위해 첨가하는 성분으로써, 그 첨가량이 0.06% 이상인 경우에는 재질 경화의 원인이 되므로, 그 함량은 0.06% 이하로 제한하는 것이 바람직하다.The aluminum (Al) is a component added for deoxidation of steel, and if the amount is 0.06% or more, it causes hardening of the material, and therefore the content is preferably limited to 0.06% or less.
상기 질소(N)는 침입형 원소로써[1,1,1] 집합 조직을 억제하여 가공성을 해치고 입자 성장을 해치고 낮게 관리할수록 가공성이 좋으며, 또한 시효성 원소이므로 시효 현상을 최소화하기 위해 0.004% 이하로 제한하는 것이 바람직하다.Nitrogen (N) is an invasive element, which inhibits the [1,1,1] texture, impairs the processability, impairs particle growth, and manages the lower the better. It is preferable to limit to.
상기 티타늄(Ti)은 고용 원소(탄소, 질소, 황)를 탄화티타늄(TiC), 질화티타늄(TiN), 황화티타늄(TiS)으로 석출시키므로써 항복 강도를 낮추고 항복점 연신을 제거시켜 스트레처 스트레인의 발생을 억제하는 역할을 한다. 일반적으로, 소둔 후의 항복 강도와 성형 시 발생하는 스트레처 스트레인은 강 중에 존재하는 고용 원소량에 비례하여 증가하게 된다. 그러므로, 본 발명에서 티타늄을 첨가하는 것은 니오븀(Nb)을 첨가하는 것에 비하여 고용 원소를 완벽하게 석출시켜 항복 강도를 낮추고 스트레처 스트레인을 제거시키기 위한 것이다.The titanium (Ti) precipitates solid solution elements (carbon, nitrogen, sulfur) with titanium carbide (TiC), titanium nitride (TiN), and titanium sulfide (TiS) to lower the yield strength and remove the yield point elongation. It plays a role in suppressing occurrence. In general, the yield strength after annealing and the stretcher strain generated during molding increase in proportion to the amount of solid solution present in the steel. Therefore, the addition of titanium in the present invention is to completely precipitate the solid solution element compared to the addition of niobium (Nb) to lower the yield strength and to remove the stretcher strain.
따라서, 그 함량이 0.03% 이하가 되면 고용 원소를 효과적으로 석출시킬 수 없고, 0.05% 이상이 되면 다량의 석출물 발생으로 오히려 강도 상승을 초래할 염려가 있으므로 그 함량 범위를 0.03 ∼ 0.05%로 제한하는 것이 바람직하다.Therefore, if the content is less than 0.03%, it is not possible to effectively precipitate the solid solution element, and if it is more than 0.05%, it is preferable to limit the content range to 0.03 to 0.05%, since there is a possibility that a large amount of precipitates may cause the increase in strength. Do.
상기 보론(B)은 입계 강화 원소로써 고용 상태의 보론을 0.0005 ~ 0.0015% 첨가함으로써 그 효과를 볼 수 있다.The boron (B) can be seen by adding 0.0005 ~ 0.0015% of boron in solid solution as a grain boundary strengthening element.
고용 상태의 보론이 0.0005% 이하로 첨가되면 입계 강화의 효과가 미약하고, 0.0015% 이상 첨가하면 El, r치 등 가공성이 열악하게 되므로 고용 상태 보론의 양을 0.0005 ∼ 0.0015%로 제한하는 것이 바람직하다.When the boron in solid solution is added at 0.0005% or less, the effect of grain boundary strengthening is insignificant, and when it is added at 0.0015% or more, it is desirable to limit the amount of boron in solid solution state to 0.0005 to 0.0015% because of poor processing properties such as El and r values. .
그러나, 보론이 석출물인 질화붕소(BN)로 존재 시 입계 강화 효과는 무시되는데, 이는 보론이 입계에 편석되어 강화 효과를 나타내기 위해서는 고용 상태로 존재하여 입자 내부에서 입계까지 확산을 통하여 이동해야 되는데 이동 전에 질화붕소(BN)로 석출되면 입계까지 확산이 안되므로 입계 강화 효과를 얻을 수 없다. 따라서, 보론의 함량은 질소를 고정시킬 수 있는 티타늄 량에 의해 결정될 수 있으며, 티타늄은 고온에서 황과 먼저 반응을 일으키므로 보론의 첨가량은 티타늄과 질소, 황의 함량을 변수로 하는 식(式)으로 규정할 수 있다.However, when boron is present as boron nitride (BN) as a precipitate, the grain boundary strengthening effect is ignored. In order for boron to segregate at the grain boundary and exhibit a strengthening effect, the grain boundary must be present in solid solution and diffused from the inside to the grain boundary. If it is precipitated with boron nitride (BN) before the transfer, the grain boundary strengthening effect cannot be obtained because it does not diffuse to the grain boundary. Therefore, the content of boron can be determined by the amount of titanium to fix nitrogen, and since titanium first reacts with sulfur at a high temperature, the amount of boron added is determined by the formula of titanium, nitrogen and sulfur as variables. Can be specified
즉 티타늄과 질소, 황의 관계식은 티타늄의 질소와 황을 고정시킬 수 있는 최소한의 필요량이 있다고 가정하면 [Ti] - 3.43[N] - 1.5[S] = 0이고, 따라서 [N] = ([Ti]-1.5[S]) / 3.43이 된다. 따라서, 보론과 질소는 0.77의 비율로 결합하고 고용 보론이 0.0005 ∼ 0.0015%로 존재하려면 보론의 함량 조건은 다음과 같다.That is, the relation between titanium, nitrogen, and sulfur is [Ti]-3.43 [N]-1.5 [S] = 0, assuming that there is a minimum amount to fix nitrogen and sulfur of titanium, so that [N] = ([Ti ] -1.5 [S]) / 3.43. Therefore, in order to combine boron and nitrogen at a ratio of 0.77 and to have solid boron present at 0.0005 to 0.0015%, the content of boron is as follows.
먼저, “[Ti] - 1.5[S] ≥ 3.43[N]”일 경우, 보론의 함량은 0.0005 ~ 0.0015%이어야 하고, 다음으로 “[Ti] - 1.5[S] [ 3.43[N]” 일 경우, 보론의 함량은 0.77{[N] - ([Ti] - 1.5[S] / 3.43} + 0.0005 ≤ B ≤ 0.77{[N] - ([Ti] -1.5[S]) /3.43} + 0.0015 범위 내에서 관리되어야 한다.First, when “[Ti]-1.5 [S] ≥ 3.43 [N]”, the boron content should be 0.0005 to 0.0015%, and then when “[Ti]-1.5 [S] [3.43 [N]” , The content of boron is in the range of 0.77N [N]-([Ti]-1.5 [S] / 3.43} + 0.0005 ≤ B ≤ 0.77 {[N]-([Ti] -1.5 [S]) /3.43} + 0.0015 Should be managed within.
상기와 같이 조성하여 제조된 강을 연속 주조하여 만든 슬래브를 열간 압연 전에 오스테나이트 조직이 충분하게 균질화 되도록 1200 ∼ 1250℃에서 균질화 처리한다. 균질화 온도를 상기와 같이 제한하는 이유는 슬래브 재 가열 온도가 1200℃ 이하이면 강은 균일한 오스테나이트 결정립이 되지못하고 혼립이 발생하며, 1250℃ 이상이 되면 표면에 스케일(Scale) 층이 과다하게 발생하여 제품의 손실이 크므로 1200 ∼ 1250℃로 제한하는 것이 바람직하다.The slab made by continuously casting the steel produced as described above is homogenized at 1200 to 1250 ° C. so that the austenite structure is sufficiently homogenized before hot rolling. The reason for limiting the homogenization temperature as described above is that if the slab reheating temperature is lower than 1200 ° C, the steel does not become uniform austenite grains and is mixed, and when the temperature exceeds 1250 ° C, excessive scale layers are generated on the surface. Therefore, since the loss of the product is large, it is preferable to limit the temperature to 1200 to 1250 ° C.
상기 균질화 처리 후, Ar3온도 직상 즉, 910℃에서 마무리 열간 압연을 실시한다. 마무리 열간 압연을 상기 Ar3온도 직망에서 실시하는 이유는 Ar3이하로 하면(페라이트 + 펄라이트)의 이상(二相) 조직에서 압연되므로 이상 조대립이 발생되고, 그에 따라 제품 가공 시 불량발생의 요인이 된다. 따라서, 상기 마무리 열간 압연 온도는 Ar3변태점 이상인 910℃ 부근으로 제한하는 것이 바람직하다.After the homogenization treatment, the finish hot rolling is performed directly at the Ar 3 temperature, that is, at 910 ° C. The reason why the finish hot rolling is performed at the above Ar 3 temperature network is that if it is less than Ar 3 (ferrite + pearlite), it is rolled in an abnormal structure, and thus abnormal coarse grains are generated, thereby causing defects in product processing. Becomes Therefore, it is preferable to limit the finishing hot rolling temperature to around 910 ° C which is greater than or equal to the Ar 3 transformation point.
상기 열연 권취 온도는 고온작업시 스케일(Scale)이 다량으로 발생하여 표면의 품질에 문제가 발생하며, 저온으로 권취하면 코일 내외부의 온도 편차가 크게 발생하여 코일 내 재질의 편차가 발생할 우려가 있으므로 600 ∼ 750℃로 제한하는 것이 바람직하다.The hot rolled winding temperature is a problem occurs in the quality of the surface due to the generation of a large amount of scale (Scale) during high-temperature work, and the winding at low temperature may cause a large temperature deviation inside and outside the coil, causing a variation in the material in the coil 600 It is preferable to limit to -750 degreeC.
상기 냉간 압하율은 고인성 확보를 위하여 80% 이상으로 제한하는 것이 바람직하다.The cold reduction rate is preferably limited to 80% or more in order to secure high toughness.
상기 연속 소둔 온도는 재결정 완료 온도 이하로 소둔하면 혼립 조직이 발생하여 재질 편차 및 가공 시 크랙의 발생이 우려되므로 재결정 완료 온도 이상으로 제한해야 하며, 단시간 연속 소둔임을 감안하여 720℃ 이상으로 제한하는 것이 바람직하다.When the continuous annealing temperature is annealed below the recrystallization completion temperature, a mixed structure is generated, so that material variation and cracks may occur during processing. desirable.
이하에 본 발명을 실시예를 통하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.
[실시예]EXAMPLE
하기한 [표 1]과 같은 조성을 갖도록 극저 탄소 알루미늄-킬드강을 전로에서 용해하여 노외 정련 처리를 한 후 연속 주조하여 강 슬래브(Slab)를 제조하였다. 이 때 하기 [표 1]에 나타낸 발명강 1∼3 및 비교강 4∼9는 모두 노외 정련한 후의 최종 성분이다.To prepare a steel slab (Slab) by dissolving the ultra-low carbon aluminum-kilted steel in the converter so as to have a composition as shown in Table 1 below, after the furnace refining treatment. At this time, the inventive steels 1 to 3 and the comparative steels 4 to 9 shown in the following [Table 1] are all final components after out-of-furnace refining.
[표 1]TABLE 1
(단, α = 0.77{[N] -([Ti] - 1.5[S]) / 3.43} + 0.0005, β = .77([N] - ([Ti] - 1.5[S]) / 3.43} + 0.0015, γ = {Ti] - 1.5[S] - 3.43[N])(Where α = 0.77 0.7 [N]-([Ti]-1.5 [S]) / 3.43} + 0.0005, β = .77 ([N]-([Ti]-1.5 [S]) / 3.43} + 0.0015, γ = {Ti]-1.5 [S]-3.43 [N])
발명강 1은 {[Ti] - 1.5[S] - 3.43[N] (이하, γ로 칭함))이 “0”보다 많거나 같은 즉, γ ≥0인 성분 조성으로써 보론의 조성은 5 ∼ 15(ppm)범위 내로 첨가하였으며, 발명강 2 및 3은 상기 γ가 “0”보다 적은 즉, γ<0인 성분 조성으로써 보론의 조성은 0.77{[N] - ([Ti] - 1.5[S]) / 3.43} + 0.0005(이하, α로 칭함) ∼ 0.77{[N] - ([Ti] - 1.5[S] / 3.43} + 0.80015(이하, β로 칭함) 범위 내로 첨가되었다.Inventive steel 1 has a component composition in which {[Ti]-1.5 [S]-3.43 [N] (hereinafter referred to as γ) is greater than or equal to "0", that is, γ ≥ 0, and the composition of boron is 5 to 15. (ppm) was added in the range, and the inventive steels 2 and 3 have a component composition in which γ is less than “0”, that is, γ <0, and the composition of boron is 0.77 {[N]-([Ti]-1.5 [S] ) / 3.43 kPa + 0.0005 (hereinafter referred to as α) to 0.77 kPa [N]-([Ti]-1.5 [S] / 3.43 kPa + 0.80015 (hereinafter referred to as β)).
또한, 비교강 4 및 5는 보론이 첨가되지 않은 강이고, 비교강 6은 γ<0이고 보론이 α ∼ β범위 밖이며, 비교강 7은 보론이 초과 첨가된 강종이다. 그리고, 비교강 8은 티타늄이 미달된 강종이고, 비교강 9는 r<0이고 보론이 α ∼ β 범위 밖이며 티타늄이 미달된 강종이다.In addition, Comparative steels 4 and 5 are steels without boron added, Comparative steel 6 is γ <0, boron is outside the range of α to β, and comparative steel 7 is steel with excess boron added. In addition, Comparative Steel 8 is a steel grade in which titanium is insufficient, Comparative Steel 9 is a steel grade in which r <0, boron is outside the α to β range, and titanium is insufficient.
상기한 [표 1]과 같은 조성을 갖는 강 슬래브를 1250℃의 온도에서 균질화 처리한 후 Ar3직상 온도인 910℃ 부근에서 2.3(mm)의 두께로 마무리 열간 압연한다.The steel slab having the composition as described in [Table 1] is homogenized at a temperature of 1250 ° C., and then finish hot rolled to a thickness of 2.3 (mm) near 910 ° C., which is directly above Ar 3 .
그 후, 하기한 [표 2]에 표기한 각 열연 권취 온도에서 권취하고 통상의 방법으로 산세를 행하였다.Then, it wound up at each hot-rolling winding temperature shown in following Table 2, and pickled by the normal method.
산세된 열연 강판은 냉간 압연 후 연속 소둔을 적용하여 최종 냉연 강판의 두께가 0.35(mm)인 냉연 강판을 얻었다. 한편, [표 2]는 발명강과 비교강의 기계적 성질 및 확관 용기의 가공성을 나타낸다.The pickled hot rolled steel sheet was subjected to continuous annealing after cold rolling to obtain a cold rolled steel sheet having a thickness of 0.35 (mm). On the other hand, Table 2 shows the mechanical properties of the inventive steel and the comparative steel and the workability of the expansion vessel.
[표 2]TABLE 2
상기 [표 1, 2]에 나타낸 바와 같이, 비교강 4의 경우에는 보론을 미첨가한 티타늄 첨가 강으로써 충분한 티타늄 첨가에 의해 시효는 일어나지 않아 용기 가공 시 포밍성은 양호했지만 용접 후 크랙이 발생하였다.As shown in Tables 1 and 2, in the case of Comparative Steel 4, as the titanium-added steel without boron, aging did not occur due to sufficient titanium addition, and the foamability was good during processing of the container, but cracks occurred after welding.
비교강 5의 경우에는 보론을 미첨가한 티타늄 첨가 강으로써 티타늄의 미달 처가에 의해 시효가 일어나고, 따라서 용기 가공 시 포밍성이 불량하고, 크랙의 발생으로 용접성도 불량하였다.In the case of Comparative Steel 5, the titanium-added steel without boron caused aging due to the undertreatment of titanium. Therefore, the forming property was poor during the processing of the container, and the weldability was also poor due to the occurrence of cracks.
비교강 6의 경우에는 보론, 티타늄이 첨가된 강이나 보론의 경우 γ<0인 조건이면서 α ∼ β범위 내로 첨가되지 못하였으므로 용접 후 크랙이 발생하여 용접성이 불량하였다.In the case of Comparative Steel 6, the boron, titanium-added steel, or boron were γ <0 and were not added within the range of α to β, so that cracks occurred after welding, resulting in poor weldability.
비교강 7의 경우에는 보론, 티타늄이 첨가된 강이나 보론의 경우 γ>0인 조건이면서 5 ∼ 15(ppm) 범위 내로 첨가되지 못하였으므로 YP가 높고 El가 감소되어 포밍성이 불량하였다.In the case of the comparative steel 7, boron, titanium and steel or boron were not added within the range of 5 to 15 (ppm) under the condition of γ> 0, so that YP was high and El was decreased, resulting in poor formability.
비교강 8의 경우에는 티타늄이 미달 첨가되어 시효로 인한 포밍성의 불량과, 보론의 경우 γ<0인 조건이면서 α ∼β범위 내로 첨가되어 용접 후 크랙의 발생이 없어 용접성은 양호하였다.In the case of Comparative Steel 8, the titanium was insufficiently added to formability due to aging, and in the case of boron, γ <0, but within the range of α-β, no cracks occurred after welding.
비교강 9의 경우에는 보론, 티타늄이 첨가된 강이나 티타늄의 경우 미달 첨가되어 시효가 일어나 포밍성이 불량하였고, 보론의 경우 γ<0인 조건이면서 α ~ β범위 내로 첨가외지 않아 용접 후 크랙이 발생하여 용접성이 불량하였다.In the case of Comparative Steel 9, boring and titanium added steel or titanium were under-added due to aging, resulting in poor foaming. In the case of boron, γ <0, but not within the range of α ~ β. Generated and poor weldability.
그러나, 발명강 1의 경우 보론, 티타늄이 첨가된 강으로 충분한 티타늄 첨가로 시효 발생이 없어 용기 가공 시 포밍성이 양호했으며, 보론의 경우 γ >0인 조건으로써 5 ∼ 15(ppm) 범위 내로 첨가되어 용접 후 크랙이 발생하지 않아 용접성이 양호하였다.However, in the case of invention steel 1, boron and titanium were added, and there was no aging due to the addition of sufficient titanium, so that the forming property was good during processing of the container. There was no crack after welding, and weldability was good.
발명강 2 및 3의 경우에도 보론과 티타늄이 첨가된 강으로써 충분한 티타늄의 첨가로 시효 발생이 없어 용기 가공 시 포밍성이 양호하였으며, 보론의 경우도 γ<0인 조건으로써 α ∼β범위 내로 첨가되어 용접 후 크랙이 발생하지 않아 용접성이 양호하였다.In the case of invention steels 2 and 3 as well, boron and titanium were added, and there was no aging due to the addition of sufficient titanium. There was no crack after welding, and weldability was good.
첨부한 현미경 사진을 통하여 비교강과 발명강을 비교 설명하면, 제1도는 비교강 4의 용접부 현미경 조익 사진으로 사진 중앙부에 나타난 열 영향 부위의 조직이 성장하여 이상 조대립 현상을 보이며, 따라서 확관 가공 시 이 열 영향 부위에서 크랙이 발생하게 된다.When comparing the comparative steel and the invention steel through the attached micrograph, FIG. 1 is a microscopic photographic image of a weld zone microscope of Comparative Steel 4, showing that an abnormal coarse phenomenon occurs due to the growth of the tissue at the center of the heat affected zone. Cracks are generated at these heat affected sites.
그리고, 제2도는 발명강 2의 용접부위에 대한 현미경 조직 사진으로 사진 중앙부에 나타난 열 영향 부위의 조직이 주위의 모재와 대비했을 때 거의 동일할 정도고 미세하게 구성되는데, 용기의 확관 가공시 열 영향 부위에 크랙이 발생하지 않아 용접성이 매우 양호하였다.FIG. 2 is a microscopic structure photograph of the welded portion of the inventive steel 2, and the structure of the heat affected area shown in the center of the photograph is almost the same and finer as compared with the surrounding base material. There was no crack in the site, and weldability was very good.
상기와 같이 본 발명은 용기 가공 시 시효로 인한 포밍 불량을 해소하고, 용접 후 용접 부위에 크랙이 발생하는 것을 방지하여 확관 가공시 용접성을 개선하는 효과를 제공한다.As described above, the present invention provides an effect of eliminating the defect in forming due to aging during processing of the container, and preventing the occurrence of cracks in the welded area after welding, thereby improving the weldability during expansion processing.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019950023566A KR100238012B1 (en) | 1995-07-31 | 1995-07-31 | The manufacturing method for extruding container cold rolling steel sheet with excellent weldability and formative |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019950023566A KR100238012B1 (en) | 1995-07-31 | 1995-07-31 | The manufacturing method for extruding container cold rolling steel sheet with excellent weldability and formative |
Publications (2)
Publication Number | Publication Date |
---|---|
KR970006520A KR970006520A (en) | 1997-02-21 |
KR100238012B1 true KR100238012B1 (en) | 2000-01-15 |
Family
ID=19422499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019950023566A Expired - Fee Related KR100238012B1 (en) | 1995-07-31 | 1995-07-31 | The manufacturing method for extruding container cold rolling steel sheet with excellent weldability and formative |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100238012B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100530068B1 (en) * | 2001-12-17 | 2005-11-22 | 주식회사 포스코 | Steel strip for the automotive reinforcement parts and method of manufacturing thereof |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100276295B1 (en) * | 1996-11-05 | 2000-12-15 | 이구택 | The manufacturing method for high work used cold rolling steel sheet with excellent resirtance weldability |
KR19990057391A (en) * | 1997-12-29 | 1999-07-15 | 이구택 | Manufacturing method of low yielding point hardened steel with excellent aging resistance |
KR100345019B1 (en) * | 1999-09-11 | 2002-07-19 | 주식회사 케이 디 에스 | Manufacturing method of steel plate for fork bolt and wedge striker of car door latch |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR930021808A (en) * | 1992-04-06 | 1993-11-23 | 도사끼시노부 | Can steel sheet and manufacturing method |
KR940014345A (en) * | 1992-12-17 | 1994-07-18 | 가와무라 요시부미 | Biphenyl derivatives, methods for their preparation and their use as therapeutic agents for hypertension and heart disease |
-
1995
- 1995-07-31 KR KR1019950023566A patent/KR100238012B1/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR930021808A (en) * | 1992-04-06 | 1993-11-23 | 도사끼시노부 | Can steel sheet and manufacturing method |
KR940014345A (en) * | 1992-12-17 | 1994-07-18 | 가와무라 요시부미 | Biphenyl derivatives, methods for their preparation and their use as therapeutic agents for hypertension and heart disease |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100530068B1 (en) * | 2001-12-17 | 2005-11-22 | 주식회사 포스코 | Steel strip for the automotive reinforcement parts and method of manufacturing thereof |
Also Published As
Publication number | Publication date |
---|---|
KR970006520A (en) | 1997-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2415893B1 (en) | Steel sheet excellent in workability and method for producing the same | |
US5470529A (en) | High tensile strength steel sheet having improved formability | |
US5582658A (en) | High strength steel sheet adapted for press forming and method of producing the same | |
US4406711A (en) | Method for the production of homogeneous steel | |
EP2468909A1 (en) | Highly processable steel sheet for three-piece welded can and method for producing same | |
EP0559225B1 (en) | Producing steel sheet having high tensile strength and excellent stretch flanging formability | |
JPH03277741A (en) | Dual-phase cold roller steel sheet excellent in workability, cold nonaging properties and baking hardenability and its manufacture | |
KR100238012B1 (en) | The manufacturing method for extruding container cold rolling steel sheet with excellent weldability and formative | |
KR102321269B1 (en) | High strength steel sheet and manufacturing method thereof | |
CN111511949B (en) | Hot-rolled steel sheet having excellent expansibility and method for producing same | |
JPH02163318A (en) | Production of high-tension cold rolled steel sheet having excellent press formability | |
KR100240986B1 (en) | The manufacturing method for deep drawing high strength cold rolling steelsheet with excellent workability brittle | |
KR20030053770A (en) | A method for manufacturing high strength steel having superior aging index | |
JPH02232316A (en) | Production of cold rolled steel sheet for working having good baking hardenability and cold non-aging property | |
JP3911075B2 (en) | Manufacturing method of steel sheet for ultra deep drawing with excellent bake hardenability | |
KR20210062892A (en) | Steel sheet with excellent low temperature toughness and its manufacturing method | |
KR960005236B1 (en) | Manufacturing method of high strength cold rolled steel sheet for high processing with excellent resistance to low temperature brittleness | |
JPH08225854A (en) | Production of high strength cold rolled steel sheet excellent in deep drawability | |
KR20090068906A (en) | Tin plated disc and its manufacturing method | |
KR100360092B1 (en) | A method for manufacturing cold-rolled steel having uniform mechanical properties along its wide direction | |
JP3888187B2 (en) | Steel sheet for nitriding and method for producing nitrided steel product | |
KR100276291B1 (en) | The manufacturing method for cold rolling steel sheet with excellent thickness precision | |
KR100325111B1 (en) | Method of manufacturing high cold-rolled steel sheet having workability | |
JP3261037B2 (en) | Manufacturing method of cold rolled steel sheet with good aging resistance | |
KR100276295B1 (en) | The manufacturing method for high work used cold rolling steel sheet with excellent resirtance weldability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 19950731 |
|
PG1501 | Laying open of application | ||
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 19970823 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 19950731 Comment text: Patent Application |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 19990601 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 19991004 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 19991012 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 19991013 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20021002 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20031001 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20041001 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20051005 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20061002 Start annual number: 8 End annual number: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20071015 Start annual number: 9 End annual number: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20081006 Start annual number: 10 End annual number: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20090930 Start annual number: 11 End annual number: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20101012 Start annual number: 12 End annual number: 12 |
|
PR1001 | Payment of annual fee |
Payment date: 20111012 Start annual number: 13 End annual number: 13 |
|
FPAY | Annual fee payment |
Payment date: 20121012 Year of fee payment: 14 |
|
PR1001 | Payment of annual fee |
Payment date: 20121012 Start annual number: 14 End annual number: 14 |
|
FPAY | Annual fee payment |
Payment date: 20131011 Year of fee payment: 15 |
|
PR1001 | Payment of annual fee |
Payment date: 20131011 Start annual number: 15 End annual number: 15 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20150909 |