[go: up one dir, main page]

KR100234777B1 - Structure for reducing compression loss of hermetic rotary compressor - Google Patents

Structure for reducing compression loss of hermetic rotary compressor Download PDF

Info

Publication number
KR100234777B1
KR100234777B1 KR1019970061044A KR19970061044A KR100234777B1 KR 100234777 B1 KR100234777 B1 KR 100234777B1 KR 1019970061044 A KR1019970061044 A KR 1019970061044A KR 19970061044 A KR19970061044 A KR 19970061044A KR 100234777 B1 KR100234777 B1 KR 100234777B1
Authority
KR
South Korea
Prior art keywords
cylinder
refrigerant gas
compression
chamber
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1019970061044A
Other languages
Korean (ko)
Other versions
KR19990040593A (en
Inventor
변상명
Original Assignee
구자홍
엘지전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 구자홍, 엘지전자주식회사 filed Critical 구자홍
Priority to KR1019970061044A priority Critical patent/KR100234777B1/en
Publication of KR19990040593A publication Critical patent/KR19990040593A/en
Application granted granted Critical
Publication of KR100234777B1 publication Critical patent/KR100234777B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0027Pulsation and noise damping means
    • F04B39/0055Pulsation and noise damping means with a special shape of fluid passage, e.g. bends, throttles, diameter changes, pipes
    • F04B39/0066Pulsation and noise damping means with a special shape of fluid passage, e.g. bends, throttles, diameter changes, pipes using sidebranch resonators, e.g. Helmholtz resonators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • F04C29/061Silencers using overlapping frequencies, e.g. Helmholtz resonators

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

본 발명은 밀폐형 회전식 압축기의 압축손실 저감구조에 관한 것으로, 종래에는 실린더의 토출유도홈 주변에 공명실이 연통되게 형성되어 냉매가스의 토출시 발생되는 공명음을 상쇄시키는 것으로, 이는 토출되는 냉매가스의 일부가 상기의 공명실로 유입되었다가 일정정도 팽창된 채로 토출되므로, 냉매가스의 압축효율이 저하되게 되고, 또한, 상기 실린더의 압축실로부터 토출되려는 냉매가스가 실린더의 토출유도홈을 따라 상승하여 일시에 토출밸브를 치게 되므로, 이 과정에서 냉매가스의 충격소음이 발생되는 문제점이 있었던 바, 본 발명에서는 회전축에 편심결합되어 선회운동을 하는 롤링피스톤이 베인에 의해 흡입실 및 압축실이 구획되는 실린더의 내주면에 종방향으로 선접촉하여 미끄러지면서 흡입된 냉매가스를 압축 토출하는 밀폐형 회전식 압축기에 있어서 ; 상기 실린더의 내주면 일측 상단에 형성되는 토출유도홈에서 압축실로 연통되도록 공명실 겸 바이패스용 냉매유로를 실린더의 내부에 형성함으로써, 냉매가스의 토출시 압축손실이 발생되지 않게 되는 것은 물론, 상기 냉매가스의 토출시 토출밸브를 치면서 발생되는 충격음을 최소화할 수 있는 효과가 있다.The present invention relates to a compression loss reduction structure of a hermetic rotary compressor, and in the related art, a resonance chamber is formed in communication with a discharge induction groove of a cylinder to cancel resonance sound generated when the refrigerant gas is discharged. Part of the refrigerant flows into the resonance chamber and is discharged while being expanded to some extent, so that the compression efficiency of the refrigerant gas is lowered, and the refrigerant gas to be discharged from the compression chamber of the cylinder rises along the discharge induction groove of the cylinder. Since the discharge valve is hit at a time, there is a problem in that impact noise of the refrigerant gas is generated in this process. In the present invention, the suction piston and the compression chamber are partitioned by vanes of the rolling piston eccentrically coupled to the rotating shaft. Hermetic type which compresses and discharges refrigerant gas sucked while sliding by linearly contacting the inner circumferential surface of cylinder In rotary compressors; A resonance chamber and a bypass refrigerant path are formed in the cylinder to communicate with the compression chamber from the discharge induction groove formed at one upper end of the inner circumferential surface of the cylinder, so that the compression loss does not occur when the refrigerant gas is discharged, of course, the refrigerant. When discharging the gas there is an effect that can minimize the impact sound generated by hitting the discharge valve.

Description

밀폐형 회전식 압축기의 압축손실 저감구조Compression loss reduction structure of hermetic rotary compressor

본 발명은 밀폐형 회전식 압축기에 관한 것으로, 특히 냉매가스의 토출시 압축손실은 물론 이상소음까지도 저감시킬 수 있는 밀폐형 회전식 압축기의 소음 저감구조에 관한 것이다.The present invention relates to a hermetic rotary compressor, and more particularly, to a noise reduction structure of a hermetic rotary compressor that can reduce not only compression loss but also abnormal noise during discharge of refrigerant gas.

일반적으로 에어컨 등에 적용되는 밀페형 회전식 압축기는 전동기구부에 일체된 회전축의 하부에 압축기구부의 롤러가 편심되게 결합되고, 그 롤러가 원형 실린더 내에서 선회운동을 하면서 흡입되는 냉매가스를 압축하여 토출하는 것으로, 종래의 밀폐형 회전식 압축기는 도 1에 도시된 바와 같다.In general, a hermetic rotary compressor applied to an air conditioner is eccentrically coupled to a roller of a compression mechanism unit at a lower portion of a rotating shaft integrated with a power mechanism, and the roller compresses and discharges refrigerant gas sucked while rotating in a circular cylinder. The conventional hermetic rotary compressor is as shown in FIG. 1.

도시된 바와 같이 종래의 밀폐형 회전식 압축기는 외부를 둘러싸는 밀폐용기(1)의 내주면에 고정자(2)가 고정되고, 그 고정자(2)의 내주면에는 전원 인가시 회전하는 회전자(3)가 개재되며, 그 회전자(3) 중심에 압입된 회전축(4)의 하부에는 롤링피스톤(5)이 편심되게 결합되고, 그 롤링피스톤(5)의 외주면이 접하도록 밀폐용기(1)의 내벽에는 어규뮬레이터(6)로부터 냉매가스를 공급받는 실린더(7)가 용접되며, 그 실린더(7)의 상,하면에는 각각 롤링피스톤(5)과 미끄러지도록 접촉되는 상,하부베어링(8,9)이 볼트로 고정되고, 상기 밀폐용기(1)의 저면에는 오일(O)이 채워져 있다.As shown, a conventional hermetic rotary compressor has a stator 2 fixed to an inner circumferential surface of an airtight container 1 surrounding the outside, and a rotor 3 that rotates when power is applied to an inner circumferential surface of the stator 2. The rolling piston 5 is eccentrically coupled to the lower portion of the rotating shaft 4 press-fitted to the center of the rotor 3, and the inner wall of the airtight container 1 is in contact with the outer circumferential surface of the rolling piston 5. The cylinder 7 receiving the refrigerant gas from the regulator 6 is welded, and the upper and lower bearings 8 and 9 which are in contact with the rolling piston 5 so as to slide on the upper and lower surfaces of the cylinder 7 respectively. It is fixed with a bolt, and oil (O) is filled in the bottom of the sealed container (1).

도면중 미설명 부호인 8a는 토출구, 10은 토출밸브, 11은 토출관이다.In the drawings, reference numeral 8a denotes a discharge port, 10 a discharge valve, and 11 a discharge tube.

상기와 같이 구성된 종래의 밀폐형 회전식 압축기의 동작은 다음과 같다.The operation of the conventional hermetic rotary compressor configured as described above is as follows.

상기 회전자(3)에 전원이 인가되면 그 전원의 인가에 따라 회전자(3)가 고정자(2)의 내부에서 회전을 하게 되고, 그 회전자(3)의 회전에 의해 회전축(4)이 회전을 하면서 롤링피스톤(5)이 실린더(7)내에서 편심회전하게 되며, 그 롤링피스톤(5)의 편심회전에 따라 실린더(7)내로 유입된 냉매가스가 일정지점까지 지속적으로 압축되고, 그 압축되는 냉매가스가 임계한도를 지났을 때에는 압축가스의 압력이 압축기 내부의 압력보다 상대적으로 고압이 되어 상부베어링(8)에 장착된 토출밸브(10)를 밀면서 압축기의 내부로 분출되며, 그 압축기의 내부로 분출된 고압의 냉매가스는 각 틈새를 통해 상부로 이동하여 토출관(11)으로 배출되는 것이었다.When power is applied to the rotor 3, the rotor 3 rotates inside the stator 2 according to the application of the power, and the rotation shaft 4 is rotated by the rotation of the rotor 3. While rotating, the rolling piston 5 eccentrically rotates in the cylinder 7, and the refrigerant gas introduced into the cylinder 7 is continuously compressed to a certain point according to the eccentric rotation of the rolling piston 5, When the refrigerant gas to be compressed has passed the critical limit, the pressure of the compressed gas becomes relatively higher than the pressure inside the compressor, and is ejected into the compressor by pushing the discharge valve 10 mounted on the upper bearing 8, The high-pressure refrigerant gas ejected into the interior was discharged to the discharge pipe 11 by moving upward through each gap.

여기서, 상기 실린더(7)로부터 토출되는 냉매가스가 일시에 토출밸브(10)를 밀어내면서 소음이 발생되는 것을 방지하기 위하여, 상기 실린더(7)의 내경 일측 상단에 형성된 토출유도홈(7a)과 연통되도록 공명실을 형성시키는 방안이 알려져 적용되어 왔다.Here, in order to prevent noise generated while the refrigerant gas discharged from the cylinder 7 pushes the discharge valve 10 at one time, the discharge guide groove 7a formed at the upper end of the inner diameter side of the cylinder 7 and A method of forming a resonance chamber in communication has been known and applied.

도 2a 내지 도 2c는 종래의 공명실을 보인 것으로, 이에 도시된 바와 같이, 도 2a는 실린더(7)의 토출유도홈(7a) 주변에 바로 공명실(R1)을 형성하는 것이고, 도 2b는 상기 실린더(7)의 토출유도홈(7a)으로부터 일정거리의 가스유도구(7b)를 형성한 후에 공명실(R2)을 형성하는 것이며, 도 2c는 상기 상부베어링(8)의 저면에 가스유도구(8b)를 형성한 후에 공명실(R3)을 형성한 것이다.2a to 2c show a conventional resonance chamber, as shown in FIG. 2a is to form a resonance chamber (R1) immediately around the discharge guide groove (7a) of the cylinder (7), Figure 2b After the gas induction groove 7a of the cylinder 7 is formed, the resonance chamber R2 is formed after the gas induction tool 7b is formed at a predetermined distance. After the tool 8b is formed, the resonance chamber R3 is formed.

이와 같이 공명실이 구비된 압축기에 있어서도 전술한 바와 같이, 상기 롤링피스톤(5)이 실린더(7)의 내주면에 미끄럼 접촉하면서 흡입된 냉매가스를 압축하여 토출시키게 되는데, 그 압축 냉매가스가 토출밸브(10)를 통과하면서 발생되는 맥동음이 상기 공명실(R1,R2,R3)에서 소정의 공명과정을 거치면서 상쇄되는 것이었다.As described above, even in the compressor provided with the resonance chamber, the rolling piston 5 compresses and discharges the sucked refrigerant gas while slidingly contacting the inner circumferential surface of the cylinder 7, and the compressed refrigerant gas is discharged to the discharge valve. The pulsation sound generated while passing (10) was canceled through a predetermined resonance process in the resonance chambers R1, R2, and R3.

그러나, 상기와 같이 실린더(7)의 토출유도홈(7a) 주변에 공명실(R1,R2,R3)이 연통되게 형성되어 냉매가스의 토출시 발생되는 공명음을 상쇄시키는 종래의 밀폐형 회전식 압축기에 있어서는, 토출되는 냉매가스의 일부가 상기의 공명실(R1,R2,R3)로 유입되었다가 일정정도 팽창된 채로 토출되므로, 냉매가스의 압축효율이 저하되는 문제점이 있었다.However, as described above, the resonance chambers R1, R2, and R3 are formed in communication with the discharge induction groove 7a of the cylinder 7 to offset the resonance sound generated when the refrigerant gas is discharged. In this case, a part of the discharged refrigerant gas flows into the resonance chambers R1, R2, and R3, and is discharged while being expanded to a certain extent, thereby reducing the compression efficiency of the refrigerant gas.

또한, 상기 실린더(7)의 압축실로부터 토출되려는 냉매가스가 실린더(7)의 토출유도홈(7a)을 따라 상승하여 일시에 토출밸브(10)를 치게 되므로, 이 과정에서 냉매가스의 충격소음이 발생되는 문제점도 있었다.In addition, since the refrigerant gas to be discharged from the compression chamber of the cylinder 7 rises along the discharge guide groove 7a of the cylinder 7 to hit the discharge valve 10 at a time, impact noise of the refrigerant gas in this process There was also a problem that occurs.

따라서, 본 발명은 상기와 같은 종래 밀폐형 회전식 압축기가 가지는 제반 문제점을 감안하여 안출한 것으로, 냉매가스의 토출시 압축손실이 발생되지 않도록 하는 밀폐형 회전식 압축기를 제공하는데 본 발명의 목적이 있다.Accordingly, an object of the present invention is to provide a hermetic rotary compressor in which a compression loss is not generated when discharging refrigerant gas.

또한, 상기 냉매가스의 토출시 토출밸브를 치면서 발생되는 충격음을 최소화할 수 있는 밀폐형 회전식 압축기를 제공하는데 본 발명의 목적이 있다.In addition, an object of the present invention to provide a hermetic rotary compressor that can minimize the impact noise generated by hitting the discharge valve during the discharge of the refrigerant gas.

도 1은 종래 밀폐형 회전식 압축기의 구성을 보인 종단면도.1 is a longitudinal sectional view showing a configuration of a conventional hermetic rotary compressor.

도 2a 내지 도 2c는 종래 밀폐형 회전식 압축기에 있어서, 공명실의 각 예를 보인 종단면도.2A to 2C are longitudinal cross-sectional views showing respective examples of a resonance chamber in a conventional hermetic rotary compressor.

도 3a 및 도 3b는 본 발명에 의한 밀폐형 회전식 압축기의 소음 저감구조를 개략적으로 보인 사시도 및 종단면도.3A and 3B are a perspective view and a longitudinal sectional view schematically showing the noise reduction structure of the hermetic rotary compressor according to the present invention.

도 4a 내지 도 4c는 본 발명에 의한 밀폐형 회전식 압축기에 있어서, 소음 저감구조를 변형예를 보인 종단면도.Figures 4a to 4c is a longitudinal sectional view showing a modification of the noise reduction structure in the hermetic rotary compressor according to the present invention.

* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

20 : 실린더 22 : 토출유도홈20: cylinder 22: discharge guide groove

23,23a,23b,23c : 공명실 겸 바이패스용 냉매유로23,23a, 23b, 23c: Refrigerant flow path for resonance chamber and bypass

이와 같은 본 발명의 목적을 달성하기 위하여, 회전축에 편심결합되어 선회운동을 하는 롤링피스톤이 베인에 의해 흡입실 및 압축실이 구획되는 실린더의 내주면에 종방향으로 선접촉하여 미끄러지면서 흡입된 냉매가스를 압축 토출하는 밀폐형 회전식 압축기에 있어서 ; 상기 실린더의 내주면 일측 상단에 형성되는 토출유도홈에서 압축실로 연통되도록 공명실 겸 바이패스용 냉매유로를 실린더의 내부에 형성하는 것을 특징으로 하는 밀폐형 회전식 압축기의 압축손실 저감구조가 제공된다.In order to achieve the object of the present invention, the rolling piston eccentrically coupled to the rotating shaft is a refrigerant gas sucked while sliding in linear contact with the inner circumferential surface of the cylinder in which the suction chamber and the compression chamber are partitioned by vanes In the hermetic rotary compressor for compressing and discharging; A compression loss reduction structure of a hermetic rotary compressor is provided, wherein a refrigerant passage for bypass and bypass is formed in the cylinder so as to communicate with the compression chamber from the discharge induction groove formed at one upper end of the inner circumferential surface of the cylinder.

이하, 본 발명에 의한 밀폐형 회전식 압축기의 압축손실 저감구조를 첨부도면에 도시된 일실시예에 의거하여 상세하게 설명한다.Hereinafter, the compression loss reduction structure of the hermetic rotary compressor according to the present invention will be described in detail based on the embodiment shown in the accompanying drawings.

먼저, 도 1에 도시된 바와 같이 본 발명에 의한 압축손실 저감구조가 구비된 밀폐형 회전식 압축기는, 전원 인가시 회전하는 회전자(3)의 중심에 회전축(4)이 압입되고, 그 회전축의 하부에는 롤링피스톤(5)이 상,하부베어링의 사이에 밀착 고정되는 실린더(7)에 종방향으로 미끄러지게 결합되는데, 상기 실린더(20)의 일측에는 도 3a 및 도 3b에 도시된 바와 같이, 흡입실 및 압축실을 구획하는 베인(미도시)이 탄지되기 위한 베인슬릿부(21)가 형성되고, 그 베인슬릿부(21)의 일측, 즉 압축실측의 실린더(20) 내주면에는 압축된 냉매가스를 상기 상부베어링(8)에 형성된 토출구(8a)로 유도하기 위한 토출유도홈(22)이 움푹하게 파여 형성되며, 그 토출유도홈(22)의 일측에는 압축실로 연통되는 공명실 겸 바이패스용 냉매유로(이하, 냉매유로로 통칭함)(23)를 실린더(20)의 내부에 형성된다.First, as shown in FIG. 1, in the hermetic rotary compressor equipped with the compression loss reducing structure according to the present invention, the rotary shaft 4 is press-fitted to the center of the rotor 3 rotating when the power is applied, and the lower portion of the rotary shaft is pressed. There is a rolling piston 5 is slidably coupled in the longitudinal direction to the cylinder 7 is tightly fixed between the upper and lower bearings, one side of the cylinder 20, as shown in Figure 3a and 3b, A vane slit 21 for forming a vane (not shown) for partitioning the seal and the compression chamber is formed, and one side of the vane slit 21, that is, the inner circumferential surface of the cylinder 20 on the compression chamber side, is compressed refrigerant gas. Discharge guide groove 22 for guiding the discharge port (8a) formed in the upper bearing (8) is formed by digging, one side of the discharge guide groove 22 for the resonance chamber and bypass for communicating with the compression chamber The refrigerant passage (hereinafter referred to as the refrigerant passage) 23 is referred to as a cylinder 20. It is formed inside of.

상기 냉매유로(23)는 실린더(20)의 상면에서 내주면 하단으로 비스듬히 경사지게 실린더(20)의 내부에 형성되는 것으로, 그 위치는 통상 실린더(20) 내경의 중심과 실린더(20) 토출유도홈(22)의 좌우측 종점을 각각 잇는 각도내에 형성되는 것이 바람직하다.The refrigerant passage 23 is formed inside the cylinder 20 to be inclined obliquely from the upper surface of the cylinder 20 to the lower end of the inner circumferential surface, and the position thereof is usually the center of the inner diameter of the cylinder 20 and the discharge guide groove of the cylinder 20 ( 22) is preferably formed within the angle connecting the left and right end points respectively.

여기서, 상기 냉매유로(23)는 사선방향으로 형성되는 것 외에도 도 4a 내지 도 4c에 도시된 바와 같이, '역ㄴ'자 또는 '역ㄷ'자 형상으로 냉매유로(22a,22b)가 형성되거나 또는 실린더(20) 내주면 중간부에 출구부가 형성되게 냉매유로(22c)가 '역ㄷ'자 형상으로 형성하더라도 그 출구부가 입구측보다 넓은 측에 연통되어 있으면 무관하다.Here, the coolant flow path 23 is formed in the diagonal direction, as shown in Figures 4a to 4c, the coolant flow paths (22a, 22b) is formed in the 'inverse b' or 'inverse c' shape, or Alternatively, even if the refrigerant passage 22c is formed in a 'reverse' shape so that the outlet portion is formed in the middle of the inner circumferential surface of the cylinder 20, the outlet portion may be connected to a side wider than the inlet side.

도면중 종래와 동일한 부분에 대하여는 동일한 부호를 부여하였다.In the drawings, the same reference numerals are given to the same parts as in the prior art.

상기와 같은 본 발명에 의한 압축손실 저감구조가 형성된 밀폐형 회전식 압축기에 있어서는, 전원의 인가에 따라 회전자(3)가 고정자(2)의 내부에서 회전을 하게 되고, 그 회전자(3)의 회전에 의해 회전축(4)이 회전을 하면서 롤링피스톤(5)이 실린더(7)내에서 편심회전하게 되며, 그 롤링피스톤(5)의 편심회전에 따라 실린더(7)내로 유입된 냉매가스가 일정지점까지 지속적으로 압축되었다가 임계한도를 지났을 때에 상부베어링(8)의 토출밸브(10)를 밀면서 압축기의 내부로 분출되는데, 그 분출되려는 냉매가스의 일부가 실린더(20)의 냉매유로(23)를 따라 바이패스되고, 그 바이패스된 냉매가스가 냉매유로(23)의 출구부에서 면적이 넓은 토출유도홈(22)으로 퍼지면서 분산되어 정상적으로 압축실로부터 토출되는 냉매가스와 합쳐져 토출된다.In the hermetic rotary compressor in which the compression loss reduction structure according to the present invention is formed as described above, the rotor 3 rotates inside the stator 2 according to the application of a power source, and the rotation of the rotor 3 is performed. As the rotating shaft 4 rotates, the rolling piston 5 eccentrically rotates in the cylinder 7, and the refrigerant gas introduced into the cylinder 7 is fixed at a certain point according to the eccentric rotation of the rolling piston 5. When it continues to be compressed until the critical limit is passed, the ejection valve 10 of the upper bearing 8 is ejected into the compressor, and a part of the refrigerant gas to be ejected passes through the refrigerant passage 23 of the cylinder 20. Accordingly, the bypassed refrigerant gas is dispersed while spreading from the outlet portion of the refrigerant passage 23 to the large discharge guide groove 22 having a large area, and is discharged in combination with the refrigerant gas normally discharged from the compression chamber.

이 때, 고압으로 압축되어 토출되는 냉매가스의 일부가 냉매유로(23)를 거쳐 퍼지면서 토출밸브(10)를 밀게 되므로, 일시에 강하게 토출밸브(10)를 치는 것보다는 그 충격음이 상당히 감소될 뿐만 아니라, 이러한 토출과정에서 발생되는 공명음은 상기 냉매유로(23)로 흡수되어 상쇄된다.At this time, since a part of the refrigerant gas compressed and discharged at a high pressure is pushed through the refrigerant passage 23 and pushes the discharge valve 10, the impact sound is considerably reduced rather than hitting the discharge valve 10 strongly at one time. In addition, the resonance sound generated during the discharging process is absorbed and canceled by the refrigerant passage 23.

또한, 상기의 공명음을 상쇄시키기 위하여 밀폐된 공명실(R1,R2,R3) 대신에 개방된 공명실을 적용함으로써, 종래의 공명실로 유입 팽창되어 발생되던 압축손실이 현저하게 저감되는 것이다.In addition, by applying an open resonance chamber in place of the closed resonance chambers R1, R2, and R3 to cancel the resonance sound, the compression loss caused by the expansion and expansion of the conventional resonance chamber is significantly reduced.

이러한, 압축손실의 저감 및 소음의 저감은 도 4a 내지 도 도 4c에 도시된 바와 같이, 상기 냉매유로(23a,23b,23c)를 다른형태로 변형시키더라도 입구부가 실린더(20)의 토출유도홈(22) 하측에 형성되는 반면 그 출구부가 토출유도홈(22)에 연통되도록 형성되면, 효과는 대동소이하다.The reduction of the compression loss and the noise can be reduced as shown in FIGS. 4A to 4C, even when the refrigerant paths 23a, 23b, and 23c are modified in other forms. (22) If formed at the lower side while the outlet portion thereof is formed to communicate with the discharge guide groove 22, the effect is almost the same.

이상에서 설명한 바와 같이 본 발명에 의한 밀폐형 회전식 압축기의 압축손실 저감구조는, 회전축에 편심결합되어 선회운동을 하는 롤링피스톤이 베인에 의해 흡입실 및 압축실이 구획되는 실린더의 내주면에 종방향으로 선접촉하여 미끄러지면서 흡입된 냉매가스를 압축 토출하는 밀폐형 회전식 압축기에 있어서 ; 상기 실린더의 내주면 일측 상단에 형성되는 토출유도홈에서 압축실로 연통되도록 공명실 겸 바이패스용 냉매유로를 실린더의 내부에 형성함으로써, 냉매가스의 토출시 압축손실이 발생되지 않게 되는 것은 물론, 상기 냉매가스의 토출시 토출밸브를 치면서 발생되는 충격음을 최소화할 수 있는 효과가 있다.As described above, the compression loss reduction structure of the hermetic rotary compressor according to the present invention has a rolling piston which is eccentrically coupled to the rotating shaft and is vertically formed on the inner circumferential surface of the cylinder in which the suction chamber and the compression chamber are partitioned by vanes. In the hermetic rotary compressor for compressing and discharging the sucked refrigerant gas while sliding in contact; A resonance chamber and a bypass refrigerant path are formed in the cylinder to communicate with the compression chamber from the discharge induction groove formed at one upper end of the inner circumferential surface of the cylinder, so that the compression loss does not occur when the refrigerant gas is discharged, of course, the refrigerant. When discharging the gas there is an effect that can minimize the impact sound generated by hitting the discharge valve.

Claims (2)

회전축에 편심결합되어 선회운동을 하는 롤링피스톤이 베인에 의해 흡입실 및 압축실이 구획되는 실린더의 내주면에 종방향으로 선접촉하여 미끄러지면서 흡입된 냉매가스를 압축 토출하는 밀폐형 회전식 압축기에 있어서 ; 상기 실린더의 내주면 일측 상단에 형성되는 토출유도홈에서 압축실로 연통되도록 공명실 겸 바이패스용 냉매유로를 실린더의 내부에 형성하는 것을 특징으로 하는 밀폐형 회전식 압축기의 압축손실 저감구조.In a hermetic rotary compressor, in which a rolling piston which is eccentrically coupled to a rotating shaft and slides in a longitudinal direction is linearly contacted with the inner circumferential surface of a cylinder in which a suction chamber and a compression chamber are partitioned by vanes, thereby compressing and discharging the sucked refrigerant gas; A compression loss reduction structure of a hermetic rotary compressor, characterized in that the resonance chamber and the bypass refrigerant path is formed in the cylinder so as to communicate with the compression chamber from the discharge induction groove formed at one upper end of the inner circumferential surface of the cylinder. 제1항에 있어서, 상기 공명실 겸 바이패스용 냉매유로는 실린더 내경의 중심과 실린더 토출유도홈의 좌우측 종점을 각각 잇는 각도내에 형성되는 것을 특징으로 밀폐형 회전식 압축기의 압축손실 저감구조.The compression loss reduction structure of a hermetic rotary compressor according to claim 1, wherein the resonance chamber and the bypass refrigerant passage are formed at an angle between the center of the cylinder inner diameter and the left and right end points of the cylinder discharge guide groove.
KR1019970061044A 1997-11-19 1997-11-19 Structure for reducing compression loss of hermetic rotary compressor Expired - Fee Related KR100234777B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970061044A KR100234777B1 (en) 1997-11-19 1997-11-19 Structure for reducing compression loss of hermetic rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970061044A KR100234777B1 (en) 1997-11-19 1997-11-19 Structure for reducing compression loss of hermetic rotary compressor

Publications (2)

Publication Number Publication Date
KR19990040593A KR19990040593A (en) 1999-06-05
KR100234777B1 true KR100234777B1 (en) 1999-12-15

Family

ID=19525058

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970061044A Expired - Fee Related KR100234777B1 (en) 1997-11-19 1997-11-19 Structure for reducing compression loss of hermetic rotary compressor

Country Status (1)

Country Link
KR (1) KR100234777B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100438624B1 (en) * 2002-07-13 2004-07-02 엘지전자 주식회사 Apparatus for discharge the gas in compressor
KR20050012008A (en) * 2003-07-24 2005-01-31 엘지전자 주식회사 Structure for reducing dead volume of enclosed compressor
CN110360111B (en) * 2019-08-26 2024-11-22 珠海格力节能环保制冷技术研究中心有限公司 Cylinders, pump assemblies, compressors and air conditioners
CN113803253B (en) * 2021-09-14 2025-06-24 珠海格力节能环保制冷技术研究中心有限公司 Pump assembly, rotary fluid compression device

Also Published As

Publication number Publication date
KR19990040593A (en) 1999-06-05

Similar Documents

Publication Publication Date Title
US10731650B2 (en) Rotary compressor
KR101587171B1 (en) Scroll compressor and refrigeration equipment using it
US6336800B1 (en) Rotary compressor
KR100234777B1 (en) Structure for reducing compression loss of hermetic rotary compressor
JPH11324959A (en) Hermetic rotary compressor
KR100624374B1 (en) Slewing vane compressor
KR100397560B1 (en) Muffler of hermetic type rotary compressor
KR200381016Y1 (en) Structure for reducing suction loss of rotary compressor
KR100575833B1 (en) Noise reduction device of rotary compressor
KR102270805B1 (en) Rotary compressor
KR200171578Y1 (en) Structure for discharging active gas in rotary compressor
KR100332782B1 (en) Structure for reduction of noise in rotary compressor
KR100343731B1 (en) Apparatus for preventing vacuum compression of scroll compressor
KR100317378B1 (en) Apparatus for preventing vacuum compression of scroll compressor
KR100343687B1 (en) Apparatus for preventing superheating of fixing-scroll in scroll compressor
KR100304556B1 (en) Structure for reducing noise of rotary compressor
KR101161440B1 (en) Rotary compressor
KR20050097340A (en) Muffler for hermetic type compressor
KR20010076883A (en) Apparatus for reducing axial leakage of scroll compressor
KR100343730B1 (en) Apparatus for preventing vacuum compression of scroll compressor
KR100434401B1 (en) Apparatus for preventing vacuum compression of scroll compressor
KR200203908Y1 (en) Structure for reducing noise of rotary compressor
KR20010035864A (en) Structure for reducing gas-leakage of scrollcompressor
KR0141725B1 (en) Noise reduction device of hermetic rotary compressor
KR100494391B1 (en) Closed rotary compressor

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 19971119

PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 19971119

Comment text: Request for Examination of Application

PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 19990629

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 19990918

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 19990920

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20011224

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20021213

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20031231

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20050602

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20060616

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20070816

Start annual number: 9

End annual number: 9

FPAY Annual fee payment

Payment date: 20080723

Year of fee payment: 10

PR1001 Payment of annual fee

Payment date: 20080723

Start annual number: 10

End annual number: 10

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee