KR100215422B1 - Method for manufacturing electrolyte support for molten carbonate fuel cell - Google Patents
Method for manufacturing electrolyte support for molten carbonate fuel cell Download PDFInfo
- Publication number
- KR100215422B1 KR100215422B1 KR1019960062494A KR19960062494A KR100215422B1 KR 100215422 B1 KR100215422 B1 KR 100215422B1 KR 1019960062494 A KR1019960062494 A KR 1019960062494A KR 19960062494 A KR19960062494 A KR 19960062494A KR 100215422 B1 KR100215422 B1 KR 100215422B1
- Authority
- KR
- South Korea
- Prior art keywords
- electrolyte support
- fuel cell
- surface area
- electrolyte
- molten carbonate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/14—Fuel cells with fused electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
개시한 내용은 용융탄산염 연료전지에서 전극들 사이에 접합되는 전해질지지체의 제조방법에 관한 것이다. 본 발명에 따른 전해질 지지체 제조방법에서는 톨루엔과 에탄올의 혼합용액에 리튬 알루미네이트 고표면적 분말과 오일 분산제를 적절한 속도로 하루 동안 혼합하고, 이 혼합물에 저표면적 세라믹 분말과 알루미나 섬유, 그리고 폴리 비닐 부틸알 바인더와 디부틸프탈레이트 가소제를 첨가하여 볼밀혼합후 건조시켜 전해질 지지체를 완성한다.The disclosure relates to a method of manufacturing an electrolyte support bonded between electrodes in a molten carbonate fuel cell. In the method for preparing an electrolyte support according to the present invention, a lithium aluminate high surface area powder and an oil dispersant are mixed in a mixed solution of toluene and ethanol at an appropriate rate for one day, and the low surface area ceramic powder, alumina fibers, and polyvinyl butylal are mixed in the mixture. A binder and a dibutyl phthalate plasticizer are added to the ball mill mixture, followed by drying to complete the electrolyte support.
따라서, 본 발명에 따라 제조된 전해질 지지체 테이프는 잘 찢어지거나 깨어지지 않으며 열충격에 견딜 수 있도록 강도가 강할 뿐 아니라, 연료전지의 전해질 지지체로 사용했을 때 적절한 기공율과 기공크기를 가지게 되어 용융탄산염 연료전지의 성능과 수명을 향상시키는 장점이 있다.Therefore, the electrolyte support tape prepared according to the present invention is not easily torn or broken, and has a strong strength to withstand thermal shock, and has an appropriate porosity and pore size when used as an electrolyte support of a fuel cell. It has the advantage of improving performance and lifespan.
Description
본 발명은 석탄가스나 천연가스를 연료로 하고 공기를 산화제로하여 전기를 발생시키는 새로운 발전시스템의 한 종류인 용융탄산염형 연료전지(MCFC : Molten Carbonate Fuel Cell)에 관한 것으로서, 특히 연료전지의 양 쪽 전극사이에 접합되어 연료전지의 화학반응시 용융된 탄산염 전해질을 흡수하고, 연료전지를 지지하는 전해질 지지체의 제조방법에 관한 것이다.The present invention relates to a molten carbonate fuel cell (MCFC), which is a kind of a new power generation system that generates electricity by using coal gas or natural gas as fuel and air as an oxidant. The present invention relates to a method for producing an electrolyte support bonded between the electrodes to absorb a molten carbonate electrolyte during a chemical reaction of a fuel cell and to support the fuel cell.
일반적으로 연료전지는 반응물의 화학에너지를 전기에너지로 직접 전환시키는 고효율, 저공해의 발전장치이다. 대개의 연료전지 본체를 구성하는 구성요소로는 도1에서 보는 바와같이, 전기화학 반응이 일어나는 전극(30a)과 전극(30b), 이 전극들(30a,30b) 사이에 접합되어 연료전지의 화학반응시 전해질인 용용탄산염을 흡수하여 용융탄산염을 지지하는 전해질 지지체(40), 그리고, 전극들(30a,30b)의 각 상하면에는 전류집전체들(20a,20b)이 접합되어 있다. 또한, 이 전류집전체(20a,20b)의 각 상하면은 전해질 지지체(40)와 일정부분 접합되어 있는 분리판(10a,10b)들에 접합되어 있다. 이 분리판들(10a,10b)은 반응가스의 유입,출입 및 전기의 흐름을 연결시켜준다.In general, a fuel cell is a high efficiency, low pollution power generation device that directly converts chemical energy of a reactant into electrical energy. As shown in FIG. 1, the components constituting the main fuel cell main body are bonded between the electrode 30a and the electrode 30b and the electrodes 30a and 30b where the electrochemical reaction takes place, as shown in FIG. An electrolyte support 40 which absorbs molten carbonate, which is an electrolyte, and supports molten carbonate during the reaction, and current collectors 20a and 20b are joined to upper and lower surfaces of the electrodes 30a and 30b, respectively. In addition, each of the upper and lower surfaces of the current collectors 20a and 20b is joined to the separator plates 10a and 10b which are fixedly bonded to the electrolyte support 40. These separation plates 10a and 10b connect the inflow, outflow, and flow of electricity to the reaction gas.
이 연료전지의 전극(30a,30b)재질로서는 연료극으로 니켈-크롬(Ni-Cr)을, 산화극으로 산화니켈(NiO)을 사용하며, 전해질은 62mol% 탄산리튬(Li2CO3)과 38mol% 탄산칼륨(K2CO3)의 조성을 가지는 혼합 탄산염을, 전해질 지지체(40)는 리튬 알루미네이트(LiAlO2)를 사용하며, 분리판(10a,10b)의 재질은 스테인리스 강으로서 대개 AISI 316 이나 AISI 310을 사용한다.Nickel-chromium (Ni-Cr) is used as the anode and nickel oxide (NiO) is used as the anode as the material of the electrodes 30a and 30b of the fuel cell, and the electrolyte is 62 mol% lithium carbonate (Li 2 CO 3 ) and 38 mol. A mixed carbonate having a composition of% potassium carbonate (K 2 CO 3 ), the electrolyte support 40 uses lithium aluminate (LiAlO 2 ), and the material of the separators 10a and 10b is stainless steel, usually AISI 316 or Use AISI 310.
이러한 내부 구성을 갖는 용융탄산염 연료전지에서 연료전지의 화학반응이 시작되면, 전해질 지지체에서는 전해질 지지체 내에 고체상으로 내포된 탄산염 전해질이 상온에서 고체상태로 있다가 연료전지의 온도가 490℃로 증가하게 되면 용융되기 시작하여 액체로 변하게 된다. 따라서, 전해질 지지체는 액체로 변한 이 전해질을 흡수하여 전해질의 이동을 막는 전해질 보관창고가 된다.In the molten carbonate fuel cell having such an internal configuration, when the fuel cell chemical reaction starts, the electrolyte support in the electrolyte support is solid at room temperature in the solid state in the electrolyte support when the temperature of the fuel cell increases to 490 ℃ It begins to melt and turns into a liquid. Accordingly, the electrolyte support becomes an electrolyte storage warehouse that absorbs the electrolyte turned into a liquid and prevents the movement of the electrolyte.
이때, 연료전지에 사용되는 전해질 지지체가 갖추어야 할 요건으로는 연료전지의 반응시 발생되는 열충격에 견딜 수 있도록 강도가 강해야 하며, 기공크기가 양쪽 전극보다 작아서 용융된 전해질을 잘 흡수해야 한다. 또한, 전해질 지지체의 두께는 일정해야 하며 구성재료인 리튬 알루미네이트 분말이 전면적에 결쳐 골고루 잘 분포되어야 한다.In this case, the electrolyte support used in the fuel cell has to be strong enough to withstand the thermal shock generated during the reaction of the fuel cell, and the pore size is smaller than both electrodes to absorb the molten electrolyte well. In addition, the thickness of the electrolyte support should be constant, and the lithium aluminate powder as a constituent material should be evenly distributed throughout the entire area.
만약, 전해질 지지체의 기공크기가 어느 한쪽의 전극보다 크게 되면 전해질이 지지체에 흡수되지 않고 전극으로 이동하게 되어, 전극에 전해질이 넘쳐 흘러 전극성능이 급격히 떨어지게 된다. 그리고, 지지체의 두께가 일정하지 않으면 전지를 누르는 표면압력차이에 의해 지지체를 뚫고 반응가스가 반대쪽 전극으로 넘어가는 이른바 가스 크로스오버(gas crossover)현상이 생길 수 있게 된다.If the pore size of the electrolyte support is larger than either electrode, the electrolyte is not absorbed by the support and moves to the electrode, and the electrolyte overflows to the electrode, thereby rapidly degrading electrode performance. In addition, when the thickness of the support is not constant, a so-called gas crossover phenomenon may occur in which the reaction gas passes through the support and the reaction gas is transferred to the opposite electrode due to the surface pressure difference pressing the battery.
이러한 종래의 연료전지용 전해질 지지체 제조방법으로는 세라믹 박판 제조 기술인 테이프 캐스팅(tape casting)법이 보편적으로 사용되고 있다. 이 방법은 세라믹 분말과 용매, 바인더(binder) 그리고 첨가제 등을 혼합한 슬러리를 테이프 캐스팅기기(미도시)의 슬러리댐에 붓고 닥터 블레이드(doctor blade)(미도시)라고 불리우는 날로 일정두께로 긁어 전해질 지지체 테이프를 제조하는 방식이다. 이때 세라믹 분말과 용매, 바인더, 첨가제 등의 조성에 따라 그리고 각 성분의 종류에 따라서 지지체 테이프의 상태가 달라지게 된다.As a conventional method of manufacturing an electrolyte support for a fuel cell, a tape casting method, which is a ceramic thin plate manufacturing technology, is commonly used. This method involves pouring a slurry of a mixture of ceramic powder, solvent, binder and additives into a slurry dam of a tape casting machine (not shown) and scraping it to a certain thickness with a blade called a doctor blade (not shown). It is a method of manufacturing a support tape. At this time, the state of the support tape varies depending on the composition of the ceramic powder, the solvent, the binder, the additive, and the like, and the type of each component.
이러한 전해질 지지체의 조성에 따른 상태변화를 아래에 상세히 설명한다. 전해질 지지체에 용매를 최적량보다 많이 첨가하게 되면, 슬러리의 점도가 낮아 캐스팅 후 슬러리의 유동이 생겨 균일한 두께로 제조하기 힘들어진다. 그리고, 리튬 알루미네이트는 물과의 반응성이 크기 때문에 에탄올과 톨루엔을 적당히 혼합한 용액을 용매로 사용하고 있다. 에탄올의 증발속도는 톨루엔의 증발속도보다 빠르므로 톨루엔과 에탄올의 양을 적당히 잘 조절하면 슬러리의 건조속도를 조절할 수 있다. 만약 에탄올로만을 용매로 사용하면 건조속도가 너무 빨라 전해질 지지체 테이프의 표면이 갈라지는 문제점이 발생한다. 바인더는 주로 고분자 물질을 사용하게 되는데 용매가 에탄올과 톨루엔이므로 이 용매에 잘 녹는 고분자물질을 선택해야 한다. 또한 바인더의 종류에 따라 분자량이 다르기 때문에 슬러리의 정도가 달라지므로 바인더 종류에 따라 용매양이 달라진다. 바인더로는 폴리비닐부틸알이 바람직하며, 여기에서 사용된 폴리 비닐 부틸알은 톨루엔과 에탄올의 혼합 용매에 잘 녹을 뿐 아니라 적당한 점도를 가지고 있다. 바인더양이 지나치게 적으면 건조후 지지체 테이프가 깨어지게 되며, 양이 너무 많으면 점도가 너무 높아 균일한 혼합이 되지 않고 두께조절이 어려워진다. 한편, 첨가제에는 지지체 테이프의 유연성을 증가시키는 가소제와 각 세라믹 분말이 엉겨 붙지 않도록 서로 분산시켜 주는 분산제 등이 있다. 가소제의 양이 너무 적으면 테이프가 유연하지 못하고 쉽게 깨어지며, 반면 너무 많으면 건조에 장시간이 소요되며 흡습될 위험이 있다. 또한, 분산제는 세라믹 분말에 흡착하여 전하반발등으로 각각의 분말의 응집을 막아주는 것으로, 탄소 이중결합과 체인길이에 따라 그 성능이 달라진다. 보편적으로 많이 쓰이는 분산제로는 유기재료인 피쉬오일(fish oil)이나 콘오일(corn oil)등이 있다. 전해질 지지체를 제조하는데 사용되는 바인더와 각종 첨가제들은 전지의 온도를 증가시키는 동안 완전히 분해되어 재나 금속물질등이 남지 않아야 한다.The state change according to the composition of the electrolyte support will be described in detail below. When the solvent is added to the electrolyte support more than the optimum amount, the viscosity of the slurry is low, it is difficult to produce a uniform thickness flow of the slurry after casting. Since lithium aluminate has high reactivity with water, a solution in which ethanol and toluene are properly mixed is used as a solvent. The evaporation rate of ethanol is faster than the evaporation rate of toluene, so controlling the amount of toluene and ethanol properly can control the drying rate of the slurry. If only ethanol is used as the solvent, the drying speed is so high that the surface of the electrolyte support tape is cracked. The binder mainly uses a high molecular material. Since the solvents are ethanol and toluene, a high molecular material that is well soluble in this solvent should be selected. In addition, since the degree of slurry is different because the molecular weight is different depending on the type of binder, the amount of solvent is different depending on the type of binder. As the binder, polyvinyl butylal is preferable, and the polyvinyl butylal used here is not only soluble in a mixed solvent of toluene and ethanol, but also has an appropriate viscosity. If the amount of the binder is too small, the support tape is broken after drying. If the amount is too large, the viscosity is too high, so that it is difficult to control the thickness without uniform mixing. On the other hand, additives include plasticizers that increase the flexibility of the support tape and dispersants that disperse each other so that each ceramic powder does not become entangled. If the amount of plasticizer is too small, the tape is inflexible and easily broken, while if too large, drying takes a long time and there is a risk of moisture absorption. In addition, the dispersant is adsorbed on the ceramic powder to prevent the aggregation of each powder by the charge repulsion, etc., the performance varies depending on the carbon double bond and chain length. Commonly used dispersants include fish oil or corn oil, which are organic materials. The binder and various additives used to prepare the electrolyte support should be completely decomposed while increasing the temperature of the battery, so that no ash or metal substance remains.
이렇게 제조된 전해질 지지체는 용융탄산염 연료전지에 적합한 기공구조를 가져야 한다. 기공구조에 가장 큰 영향을 미치는 인자는 리튬 알루미네이트의 비표면적(또는 입자크기)과 혼합시간이다.The electrolyte support thus prepared should have a pore structure suitable for molten carbonate fuel cells. The most significant factors affecting the pore structure are the specific surface area (or particle size) and mixing time of lithium aluminate.
이러한 제작방법에 의해 제작된 종래의 용융탄산염 연료전지용 전해질 지지체는 연료전지가 화학반응을 일으킬 때, 전해질지지체의 기공의 크기가 양쪽 전극보다 작지 않아 고온에서 생성된 액상의 전해액이 전극으로 흘러넘치는 현상이 발생되었다. 또한, 전해질 지지체가 고온의 열충격을 견뎌내지 못하여 깨어지는 문제점이 발생하였다. 이로인해, 반응가스가 서로 섞여 부분적으로 고온열하가 진행되어 연료전지의 성능이 저하되는 문제점이 발생하였다.In the conventional electrolyte support for molten carbonate fuel cells manufactured by the above-described manufacturing method, when a fuel cell causes a chemical reaction, the size of pores of the electrolyte support is not smaller than that of both electrodes, so that the liquid electrolyte generated at high temperature flows to the electrodes. This occurred. In addition, a problem arises in that the electrolyte support is broken because it cannot withstand high temperature thermal shock. As a result, the reaction gases are mixed with each other to cause high temperature heat to partially degrade the performance of the fuel cell.
본 발명은 이와같은 문제점을 해결하기 위해 안출한 것으로서, 그 목적은 용융탄산염용 연료전지에서 발생하는 열충격에 의한 전해질 지지체의 파손과 고온에서 형성된 액상 전해질이 넘쳐흐르는 현상을 없애기 위해 전해질 지지체를 열충격에 충분히 견딜 수 있는 강성을 가지게 하며, 액상의 전해질의 흡수성이 우수한 용융탄산염 연료전지용 전해질지지체 제조방법을 제공함에 있다.The present invention has been made to solve such a problem, the object of the present invention is to prevent the damage of the electrolyte support due to the thermal shock generated in the fuel cell for molten carbonate and the liquid electrolyte formed at high temperature overflows the electrolyte support to the thermal shock The present invention provides a method for producing an electrolyte support for a molten carbonate fuel cell which has sufficient rigidity and excellent absorption of liquid electrolyte.
도 1은 일반적인 용융탄산염 연료전지의 단면도,1 is a cross-sectional view of a typical molten carbonate fuel cell,
도 2는 용융탄산염 연료전지의 전해질 지지체 테이프 제조과정을 도시한 공정도.2 is a process chart showing a process for preparing an electrolyte support tape of a molten carbonate fuel cell.
※도면의 주요부분에 대한 부호 설명※※ Explanation of symbols on main parts of drawing ※
10a,10b : 분리판20a,20b : 전류집전체10a, 10b: Separator 20a, 20b: Current collector
30a,30b : 전극40 : 전해질 지지체30a, 30b: electrode 40: electrolyte support
이와같은 목적을 달성하기 위한 본 발명의 특징은 용융탄산염 전해질을 제조하는 연료전지용 전해질 지지체 제조방법에 있어서, 고표면적 세라믹 분말, 용매 및 분산제를 무게비 70 대 163 대 1의 혼합물로 혼합하여 1차 볼밀링하는 단계; 혼합물을 볼밀통에서 1차 볼밀링한 후, 저표면적 세라믹 분말, 바인더, 가소제 및 알루미나 섬유를 중량비로 4대 7대 6대 2로 혼합하여 2차 볼밀링하는 단계; 및 2차 볼밀링 된 혼합물을 탈포 및 건조시키는 단계를 포함하는 용융탄산염 연료전지용 전해질 지지체 제조방법에 있다.In order to achieve the above object, a feature of the present invention is a method for preparing an electrolyte support for a fuel cell for preparing a molten carbonate electrolyte. Milling; First ball milling the mixture in a ball mill, followed by secondary ball milling by mixing the low surface area ceramic powder, binder, plasticizer and alumina fibers in a weight ratio of 4 to 7 to 6 to 2; And defoaming and drying the secondary ball milled mixture.
그러면 첨부된 도면을 참조하여 본발명의 바람직한 일실시예를 설명한다.Hereinafter, with reference to the accompanying drawings will be described a preferred embodiment of the present invention.
도2는 본발명에 따른 전해질지지체 제조과정을 도시한 공정도이다. 본 발명에 따른 전해질 지지체는 비표면적 10m2/g의 고표면적 분말 70g에 톨루엔과 에탄올을 7대 3으로 섞은 혼합용액 163g과, 분산제 합성오일 1g을 첨가하여(단계100) 볼밀통에 넣고 회전속도 85rpm으로 하루동안 1차 볼밀링 한다(단계101). 여기에 비표면적 0.1m2/g의 저표면적 LiAlO2분말 20g과 알루미나 섬유 10g, 바인더로 폴리비닐부틸알 35g, 그리고 가소제로 디부틸프탈레이트(dibutylphthalate) 30g을 첨가(단계102)한 후 5일 동안 회전속도 85rpm으로 2차 볼밀링 한다(단계103). 이러한 저표면적 분말과 알루미나 섬유를 사용하는 이유는 고표면적 분말에 저표면적 분말과 알루미나 섬유를 혼합하면 전해질 지지체의 강도가 강해져 열충격 등에 대한 내구성이 좋아질 뿐 아니라 지지체 테이프도 취급하기 편해지기 때문이다. 여기서 알루미나 섬유는 고순도, 길이 3mm, 두께 10㎛의 사양을 갖는다. 볼밀링 시간과 볼밀 속도도 테이프제조 공정에 매우 주요한 과정중의 하나인데, 적절하지 못한 볼밀과정을 거치면 세라믹 분말과 각종 바인더와 첨가제 등의 혼합이 잘 이루어지지 않아 원하는 지지체 테이프를 제작할 수 없다. 볼밀이 끝난 슬러리 내에 존재하는 기포를 제거하기 위해 진공탈포를 약 1시간 동안 실시한다(단계104). 이 과정에서 슬러리의 점도를 약 10,000cP로 조절한다. 탈포된 슬러리를 두께 약 0.5mm로 캐스팅한(단계105) 후 자연 건조시켜 전해질 지지체 테이프를 완성시킨다. 이렇게 제조된 전해질 지지체 테이프는 상온에서 4∼5시간 정도 지나면 거의 건조되며, 또는 2시간 상온건조 후 60℃에서 가열 건조도 가능하다.Figure 2 is a process chart showing a process for manufacturing an electrolyte support according to the present invention. In the electrolyte support according to the present invention, 163 g of a mixed solution of 7 to 3 of toluene and ethanol was added to 70 g of a high surface area powder having a specific surface area of 10 m 2 / g, and 1 g of a dispersant synthetic oil was added (step 100) into a ball mill and a rotational speed. First ball mill for one day at 85 rpm (step 101). To this was added 20 g of a low surface area LiAlO 2 powder with a specific surface area of 0.1 m 2 / g, 10 g of alumina fiber, 35 g of polyvinylbutyl al as a binder, and 30 g of dibutylphthalate as a plasticizer (step 102) for 5 days. Second ball milling is performed at a rotational speed of 85 rpm (step 103). The reason why such low surface area powder and alumina fiber is used is that mixing the low surface area powder and alumina fiber with the high surface area powder increases the strength of the electrolyte support, which improves durability against thermal shock, etc., and also facilitates handling of the support tape. Here, the alumina fiber has the specifications of high purity, length 3mm, thickness 10micrometer. Ball milling time and ball mill speed are also one of the very important processes in the tape manufacturing process. If the ball mill process is not appropriate, the mixing of ceramic powder, various binders and additives is difficult to produce, and thus, a desired support tape cannot be produced. Vacuum defoaming is performed for about 1 hour to remove bubbles present in the ball milled slurry (step 104). In this process, the viscosity of the slurry is adjusted to about 10,000 cP. The degassed slurry is cast to a thickness of about 0.5 mm (step 105) and then naturally dried to complete the electrolyte support tape. The electrolyte support tape thus prepared is almost dried after 4 to 5 hours at room temperature, or heat-dried at 60 ° C. after 2 hours of room temperature drying.
이러한 제조방법으로 제작된 지지체 테이프는 유연하여 이동과 절단가공등이 용이하며, 잘 찢어지거나 깨어지지 않는다. 또한 지지체강화제로 알루미나 섬유를 첨가하였기 때문에 열충격에도 매우 강하다. 전지에 사용할 때에는 원하는 크기로 절단하여 장착하여 전지의 온도가 500℃될때까지 열처리하게 되면 바인더와 첨가제등이 소성되어 제거되고 세라믹 분말과 알루미나 섬유만 남아 전해질 지지체로 작용하게 된다. 이 전해질 지지체 테이프를 650℃공기중에서 소성한 후 수은 침투법으로 기공율 및 크기를 측정한 결과 용융탄산염 연료전지의 전해질 지지체가 갖추어야 할 최적의 기공구조인 55∼60%의 기공율과 0.3∼0.4㎛의 기공크기를 나타내었다.The support tape made by this manufacturing method is flexible and easy to move and cut, and is not easily torn or broken. In addition, since alumina fiber is added as a support strengthening agent, it is also very resistant to thermal shock. When used in a battery, it is cut and mounted to a desired size and heat treated until the temperature of the battery is 500 ° C. The binder and additives are calcined and removed, and only ceramic powder and alumina fibers remain as an electrolyte support. After measuring the porosity and size by mercury permeation after calcining the electrolyte support tape in 650 ° C air, the porosity of 55-60% and 0.3-0.4 μm, which is the optimum pore structure that the electrolyte support of molten carbonate fuel cell should have, were measured. Pore size is shown.
따라서, 본 발명에 따라 제조된 전해질 지지체 테이프는 잘 찢어지거나 깨어지지 않으며 열충격에 견딜수 있도록 강도가 강할뿐 아니라, 연료전지의 전해질 지지체로 사용했을 때 적절한 기공율과 기공크기를 가지게 되어 용융탄산염 연료전지의 성능과 수명을 향상시키는 효과를 갖는다.Therefore, the electrolyte support tape prepared according to the present invention is not easily torn or broken and has a strong strength to withstand thermal shock, and has an appropriate porosity and pore size when used as an electrolyte support of a fuel cell. Has the effect of improving performance and lifespan.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019960062494A KR100215422B1 (en) | 1996-12-06 | 1996-12-06 | Method for manufacturing electrolyte support for molten carbonate fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019960062494A KR100215422B1 (en) | 1996-12-06 | 1996-12-06 | Method for manufacturing electrolyte support for molten carbonate fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
KR19980044401A KR19980044401A (en) | 1998-09-05 |
KR100215422B1 true KR100215422B1 (en) | 1999-08-16 |
Family
ID=19486221
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019960062494A Expired - Lifetime KR100215422B1 (en) | 1996-12-06 | 1996-12-06 | Method for manufacturing electrolyte support for molten carbonate fuel cell |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100215422B1 (en) |
-
1996
- 1996-12-06 KR KR1019960062494A patent/KR100215422B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
KR19980044401A (en) | 1998-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3350167B2 (en) | Molten carbonate fuel cell | |
US4317865A (en) | Ceria matrix material for molten carbonate fuel cell | |
US12173416B2 (en) | High-temperature alkaline water electrolysis using a composite electrolyte support membrane | |
CN100511797C (en) | Integrated preparing method for molten carbonate fuel cell electrolyte membrane | |
EP1883986B1 (en) | Electrolyte matrix for molten carbonate fuel cells with improved pore size and method of manufacturing same | |
EP0508745B1 (en) | Fuel cell with a molten carbonate electrolyte retained in a matrix | |
US4297419A (en) | Anode-matrix composite for molten carbonate fuel cell | |
KR100215422B1 (en) | Method for manufacturing electrolyte support for molten carbonate fuel cell | |
JPH03116659A (en) | Solid electrolyte fuel cell | |
KR100318207B1 (en) | A method for impregnating a electrolyte for molten carbonate fuel cell | |
KR100368561B1 (en) | Method for Manufacturing Electrolyte Plate of Molten Carbonate Fuel Cells | |
KR100236274B1 (en) | Manufacturing Method of Electrolyte for Molten Carbonate Fuel Cell | |
JP2944097B2 (en) | Molten carbonate fuel cell | |
JPH0449750B2 (en) | ||
JPH10112329A (en) | Molten carbonate fuel cell and manufacture of holding material for molten carbonate fuel cell electrolyte plate | |
KR100356684B1 (en) | Method for manufacture of cathode in molten carbonate type fuel cell | |
CN114914507A (en) | A conductive flat tube-supported solid oxide fuel cell/electrolyte cell, preparation method thereof, and cell stack structure | |
CN1395331A (en) | LiCoO2 type cathode with multiple-structure and its preparation method | |
JPS62176063A (en) | Manufacture of electrolyte tile of molten carbonate fuel cell | |
JPH0227786B2 (en) | ||
JP2997518B2 (en) | Molten carbonate fuel cell | |
KR100331083B1 (en) | An anode of molten carbonate fuel cell | |
JP2000156235A (en) | Corrosion control method for current collector of molten carbonate fuel cell | |
JPH09129249A (en) | Fused carbonate fuel cell | |
JPH01120774A (en) | Method for manufacturing electrolyte tiles for molten carbonate fuel cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 19961206 |
|
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 19961206 Comment text: Request for Examination of Application |
|
PG1501 | Laying open of application | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 19990226 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 19990524 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 19990525 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20020525 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20030513 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20040514 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20050517 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20060517 Start annual number: 8 End annual number: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20070517 Start annual number: 9 End annual number: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20080519 Start annual number: 10 End annual number: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20090519 Start annual number: 11 End annual number: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20100518 Start annual number: 12 End annual number: 12 |
|
PR1001 | Payment of annual fee |
Payment date: 20110517 Start annual number: 13 End annual number: 13 |
|
FPAY | Annual fee payment |
Payment date: 20111214 Year of fee payment: 14 |
|
PR1001 | Payment of annual fee |
Payment date: 20111214 Start annual number: 14 End annual number: 14 |
|
FPAY | Annual fee payment |
Payment date: 20111031 Year of fee payment: 18 |
|
PR1001 | Payment of annual fee |
Payment date: 20111031 Start annual number: 15 End annual number: 18 |
|
EXPY | Expiration of term | ||
PC1801 | Expiration of term |