KR100202963B1 - The making method of rotary compresser vein with fe sintered and same product - Google Patents
The making method of rotary compresser vein with fe sintered and same product Download PDFInfo
- Publication number
- KR100202963B1 KR100202963B1 KR1019960029107A KR19960029107A KR100202963B1 KR 100202963 B1 KR100202963 B1 KR 100202963B1 KR 1019960029107 A KR1019960029107 A KR 1019960029107A KR 19960029107 A KR19960029107 A KR 19960029107A KR 100202963 B1 KR100202963 B1 KR 100202963B1
- Authority
- KR
- South Korea
- Prior art keywords
- iron
- sintered
- molybdenum
- wear
- heat treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 12
- 210000003462 vein Anatomy 0.000 title 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 34
- 238000004519 manufacturing process Methods 0.000 claims abstract description 18
- 229910052742 iron Inorganic materials 0.000 claims abstract description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 10
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 10
- 239000011733 molybdenum Substances 0.000 claims abstract description 10
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 8
- 238000005245 sintering Methods 0.000 claims description 24
- 229910045601 alloy Inorganic materials 0.000 claims description 13
- 239000000956 alloy Substances 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 10
- 238000000465 moulding Methods 0.000 claims description 9
- 229910017116 Fe—Mo Inorganic materials 0.000 claims description 7
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims description 6
- 239000011574 phosphorus Substances 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 5
- 239000011812 mixed powder Substances 0.000 claims description 4
- 238000005496 tempering Methods 0.000 claims description 4
- 229910000640 Fe alloy Inorganic materials 0.000 claims 1
- DSMZRNNAYQIMOM-UHFFFAOYSA-N iron molybdenum Chemical compound [Fe].[Fe].[Mo] DSMZRNNAYQIMOM-UHFFFAOYSA-N 0.000 claims 1
- 239000000203 mixture Substances 0.000 abstract description 4
- 239000011230 binding agent Substances 0.000 abstract description 2
- 238000005057 refrigeration Methods 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- 239000002131 composite material Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- KWUUWVQMAVOYKS-UHFFFAOYSA-N iron molybdenum Chemical compound [Fe].[Fe][Mo][Mo] KWUUWVQMAVOYKS-UHFFFAOYSA-N 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 238000005261 decarburization Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000004663 powder metallurgy Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 229910001315 Tool steel Inorganic materials 0.000 description 1
- QLWNCDGQUWNOFD-UHFFFAOYSA-N [C].[Mo].[P].[Fe] Chemical compound [C].[Mo].[P].[Fe] QLWNCDGQUWNOFD-UHFFFAOYSA-N 0.000 description 1
- NHJPOWMUHUATOK-UHFFFAOYSA-N [Mo].[Fe].[C] Chemical compound [Mo].[Fe].[C] NHJPOWMUHUATOK-UHFFFAOYSA-N 0.000 description 1
- QJPUVINSFCCOIL-UHFFFAOYSA-N [P].[C].[Fe] Chemical compound [P].[C].[Fe] QJPUVINSFCCOIL-UHFFFAOYSA-N 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 238000005255 carburizing Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229940042126 oral powder Drugs 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0257—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Powder Metallurgy (AREA)
Abstract
본 발명은 냉동공조기기에 적용되는 로타리식 압축기 베인용 내마모성 철계소결합금 및 제조 방법에 관한 것으로서 0.5~2.5% 탄소, 0.3~2.0%인 , 1~15%몰리브덴 나머지 철의 조성을 갖는 것이다.The present invention relates to a wear-resistant iron-based binder for a rotary compressor vane applied to a refrigeration air conditioner and a manufacturing method, which has a composition of 0.5 to 2.5% carbon, 0.3 to 2.0%, and 1 to 15% molybdenum remaining iron.
Description
본 발명은 냉동공조기기에 적용되는 로타리식 압축기 베인용 내마모성 철계소결합금의 제조방법에 관한 것이다.The present invention relates to a method for producing a wear-resistant iron-based alloy for rotary compressor vanes applied to refrigeration air conditioning equipment.
로타리식 압축기에서 베인은 실린더 내 베인 홈에서 왕복운동하면서 압축실과 흡입실을 구분하는 벨브기능을 가진다. 제1도는 본 발명의 주 대상이 되는 롤링 피스톤형 로타리식 압축기의 개략적인 구조를 나타낸 것으로 , 베인, 피스톤 , 실린더, 및 양측면의 상,하부 베어링 플레이트 등에 의해 형성되는 공간에서 샤프트에 의해 편심 회전하는 피스톤의 위치에 따라 냄매가 흡입되어 압축된 후 밸브를 통해 도출되는 기구를 가지고 있다. 이때 베인은 흡입된 냄매 가스의 저압실괴 고압실을 구분하는 벽으로서 기밀성이 중요한 요구 특성이 되며 상당한 접촉하중으로 맞닿아 있는 피스톤과의 마모 특성 및 실린더와의 마모 특성 등도 요구 특성 중 중요하게 고려되는 부분이다. 또한 베인과 실린더는 미소한 간극으로 서로 조립되어 있어서 사용도중 시효 변형에 의해 베인의 두께가 팽창할 경우 실린더에 끼이게 되는 결합이 발생하게 된다. 그 외에도 높은 강성과 경량성이 요구되며 특히 기존 베인 소재와의 가격 경쟁력은 대체 개발 소재의 적용 여부를 좌우하는 결정적인 요건이 되고 있다.In rotary compressors, the vane has a valve function that separates the compression chamber from the suction chamber while reciprocating in the vane groove in the cylinder. 1 shows a schematic structure of a rolling piston rotary compressor, which is a main object of the present invention, and is eccentrically rotated by a shaft in a space formed by vanes, pistons, cylinders, and upper and lower bearing plates on both sides. According to the position of the piston, the smell is sucked in and compressed and has a mechanism that is drawn out through the valve. At this time, the vane is a wall that separates the high pressure chamber of low pressure chamber of inhaled odor gas, and the airtightness is an important requirement, and the wear characteristics with the piston and the cylinder with the contact load are considered as important among the required characteristics. Part. In addition, the vanes and the cylinders are assembled to each other with a small gap, so that when the thickness of the vanes expands due to aging deformation during use, a bond is formed in the cylinder. In addition, high rigidity and light weight are required, and the price competitiveness with existing vane materials is becoming a decisive requirement for the application of alternative development materials.
따라서 본 발명의 목적은 이와 같은 다양한 요구 특성을 만족함은 물론 기존 베인 적용 소재인 고가의 용제재 고속도 공구강을 소재비 및 후가공비 면에서 보다 저가인 내마모성 철계소결합금의 제조방법을 제공하는데 있다.Accordingly, an object of the present invention is to provide a method for producing a low-wearing iron-based alloy alloy of low cost in terms of material cost and post processing cost of expensive solvent material high speed tool steel as well as satisfying various requirements such as these.
상기와 같은 본 발명의 목적은 압축기 베인용 고강도, 내마모성 철계소결합금의 제조방법에 있어서, 0.5~2.5wt% 탄소(C)와, 0.3~2.0wt% 인(P)과, 1~15wt% 몰리브덴(Mo)과 나머지는 철(Fe)로 조성되는 Fe-No-P-C계 공정합금 형성용 혼합분말 또는 여기에 1~10wt% 철-몰리브덴(Fe-No)경질입자를 첨가한 혼합분말을 5~8ton/cm2의 성형압으로 가압성형하는 가압성형단계와; 가압성형 단계를 거친 후, 이들 압분체를 N2, H2가스보호식 연속 소결로를 사용하여 비교적 저온인 통상의 철계 소결온도 1,100~1,150℃에서 30분간 소결함으로써 99% 이상의 밀도를 갖는 치밀한 소결체를 제조하는 소결체 제조단계와; 이들 소결체를 N2, H2가스보호식 연속 열처리로를 사용하여 800~900℃에서 1시간 가열, 켄칭(Quenching)한 후 150~200℃에서 2시간 저온 템퍼링(Tempering)하는 경화열처리단계를 거쳐 제조되는 것을 특징으로 하는 로타리식 압축기 베인용 내마모성 철계소결합금의 제조방법을 제공함으로써 달성된다.The object of the present invention as described above is 0.5 to 2.5wt% carbon (C), 0.3 to 2.0wt% phosphorus (P), and 1 to 15wt% molybdenum in the manufacturing method of high strength, wear-resistant iron-based alloy for compressor vanes (Mo) and the remainder of the mixed powder for forming a Fe-No-PC-based process alloy made of iron (Fe) or mixed powder in which 1 ~ 10wt% iron-molybdenum (Fe-No) hard particles are added thereto. A press molding step of press molding at a molding pressure of 8 ton / cm 2 ; After the press forming step, these green compacts are sintered for 30 minutes at a relatively low temperature of a conventional iron-based sintering temperature of 1,100 to 1,150 ° C. using a N 2 , H 2 gas-protected continuous sintering furnace to obtain a dense sintered body having a density of 99% or more. And a sintered body manufacturing step of manufacturing; These sintered bodies were heated and quenched at 800 ~ 900 ℃ for 1 hour using N 2 , H 2 gas-protected continuous heat treatment furnace, followed by curing heat treatment step of tempering at 150 ~ 200 ℃ for 2 hours. It is achieved by providing a method for producing a wear-resistant iron-based alloy for rotary compressor vane, characterized in that it is manufactured.
제1도는 본 발명의 합금으로 제조되는 베인이 장치된 롤링 피스톤형 로타리식 압축기의 개략적인 구조도1 is a schematic structural diagram of a rolling piston type rotary compressor equipped with vanes made of the alloy of the present invention.
제2도는 실시예 소결합금의 경화 열처리후 광학현미경 조직(배율 X1000)으로 1은 Fe-Mo 입자, 2는 경질 복합 탄화물 입자, 3은 기지조직을 각각 나타낸다.FIG. 2 shows the optical microscope structure (magnification X1000) after hardening heat treatment of the Example small alloy, where 1 is Fe-Mo particles, 2 is hard composite carbide particles, and 3 is matrix structure.
본 발명의 특징은 베인 제조에 있어 내마모성을 향상시키고 최종 마무리 경면 가공 이전의 중간 소재를 제조함에 있어 기계절삭가공 공정을 최소화하기 위해 분말야금법을 적용한 것이다. 이러한 분말야금법을 적용함에 있어서도 공정원가 및 작업의 편이성을 고려하여 철(Fe),몰리브덴(Mo),인(P),탄소(C) 등의 원소들을 적절히 배합함으로써 고속도공구강분말의 소결이 고진공분위기 및 1200℃ 이상의 고온에서만 가능한데 반하여 일반적인 보호 가스 분위기 및 비교적 낮은 온도(1,120℃)에서도 95% 이상의 높은 소결밀도에 도달하도록 하고 아울러 적정 크기 및 분포를 갖는 탄화물을 형성시켜 소재의 강성과 내마모성을 향상시키고자 하였으며 더욱 내마모성을 배가시키기 위해 적량의 금속간 화합물인 Fe-Mo 분말을 경화재로 분산시킨 것을 요지로 한다. 또한 기지의 경도 향성을 통한 내마모성 개선을 위해 공정비가 저렴한 일반 경화 열처리 법을 적용한 것도 본 발명의 특징이다.A feature of the present invention is the application of powder metallurgy in order to improve the wear resistance in vane production and to minimize the machine cutting process in the production of intermediate materials prior to final finishing mirror finishing. Even in the application of powder metallurgy, sintering of high-speed coating oral powder is achieved by appropriately mixing elements such as iron (Fe), molybdenum (Mo), phosphorus (P), and carbon (C) in consideration of process cost and ease of operation. It can only be used in the atmosphere and high temperature of 1200 ℃ or higher, while it reaches 95% higher sintered density in general protective gas atmosphere and relatively low temperature (1,120 ℃), and forms carbide with proper size and distribution to improve the rigidity and wear resistance of the material. In order to double the wear resistance, an adequate amount of Fe-Mo powder, an intermetallic compound, is dispersed in a hardening material. In addition, it is also a feature of the present invention to apply a general hardening heat treatment method inexpensive process cost to improve the wear resistance through the hardness of the known.
탄소는 소결 중에 철, 인, 몰리브덴과 함께 철-인-탄소, 철-몰리브덴-탄소 및 철-인-몰리브덴-탄소 등의 액상화합물을 형성하여 소결을 촉진시킴으로써 고밀도화를 도모한다. 또한 소결 완료한 합금내에 각종 복합 탄화물을 형성시킴은 물론 기지내에 고용되어 열처리후 기지경도를 증가시킴으로써 소재의 강성과 내마모성 향상에 기여한다. 탄소의 적정 첨가량은 0.5~2.5wt%로 0.5wt%이하에서는 탄화물 형성량이 적고 기지의 경화도가 미흡하며 2.5wt%이상에서는 소결중 과다한 액상의 형성으로 형상 유지가 곤란하며 탄화물 형성량이 많아 기계가공이 매우 어렵게 된다.Carbon is densified by sintering by forming liquid compounds such as iron-phosphorus-carbon, iron-molybdenum-carbon, and iron-phosphorus-molybdenum-carbon together with iron, phosphorus and molybdenum during sintering. In addition, various composite carbides are formed in the sintered alloy as well as solid solution in the base to increase the hardness after heat treatment, thereby contributing to the improvement of the rigidity and wear resistance of the material. The proper amount of carbon is 0.5 ~ 2.5wt%, less than 0.5wt% of carbide formation, less known degree of hardening, and more than 2.5wt%, it is difficult to maintain the shape due to excessive liquid formation during sintering. It becomes very difficult.
인은 소결 중에 철, 탄소와 함께 액상화합물을 형성하여 소결을 촉진시킴으로써 고밀도화를 도모하며 아울러 매우 경한 복합탄화물을 형성하는데 기여한다. 인의 적정한 첨가량은 0.3~2.0wt%로 0.3%이하에서는 액상 생성량이 부족하여 고밀도화에 대한 기여가 미흡하며 2.0wt% 이상에서는 액상 생성량이 과다하여 형상 유지가 곤란하고 매우 경한 복합 탄화물이 과다하게 형성됨으로써 기계가공성을 해칠 뿐만 아니라 매우 취약하게 된다.Phosphorus promotes sintering by forming a liquid compound together with iron and carbon during sintering, thereby increasing density and contributing to the formation of very hard composite carbides. The proper amount of phosphorus is 0.3 ~ 2.0wt%, and the amount of liquid generation is insufficient at less than 0.3%, so the contribution to the densification is insufficient. It not only hurts the machinability but also becomes very vulnerable.
몰리브덴은 소결중에 철, 탄소와 함께 액상화합물을 형성하여 소결을 촉진시킴으로써 고밀도화를 도모하며 소결중 강력한 탄화물 형성원으로 작용하여 복합탄화믈을 형성시킨다. 또한 기지내에 고용되어 열처리 경화능을 향상시키며 페라이트(ferrite)안정화 원소로 작용하여 잔류 오스테나이트(austenite) 형성을 억제함으로써 시효 변경을 최소화한다. 몰리브덴의 적정 첨가량은 1~15wt%로 1wt%이하에서는 탄화물 형성량이 적어 내마모성 합금으로 부적합하며 15wt% 이상에서는 과다한 탄화물이 형성되어 취성을 갖게 되며 기계가공성이 나빠지게 된다. 또한 고융점 금속인 몰리브덴의 첨가량이 많아지게 되면 분말제조가 어려우므로 몰리브덴이 고가이기 때문에 원재로 가격이 상승하게 된다.Molybdenum promotes sintering by forming a liquid compound together with iron and carbon during sintering, thereby achieving high density, and forming a composite carbide by acting as a strong carbide forming source during sintering. In addition, it is solid-solution in the base to improve the heat treatment hardenability and act as a ferrite stabilizing element to suppress the formation of residual austenite (austenite) to minimize the aging change. The proper amount of molybdenum is 1 ~ 15wt%, less than 1wt% of carbide is less suitable for wear-resistant alloy, and over 15wt% of excessive carbide forms brittle and poor machinability. In addition, when the addition amount of molybdenum, which is a high melting point metal, increases, it is difficult to manufacture powder, and thus, the price of raw materials increases because molybdenum is expensive.
Fe-Mo은 소결중에 형성되는 미세한 경질 복합탄화물과 함께 내마모성을 더욱 향상시키기 위해 첨가되는 경질입자(1,100~1,300 DPH)로써 적정 첨가량은 1~10%이다. 1%이하에서는 분산경화재로의 역할이 미흡하며 10%이상이 첨가되면 기계가 공성이 극히 나빠짐은 물론 고가이기 때문에 원재료 가격이 상승하게 된다.Fe-Mo is a hard particle (1,100 ~ 1,300 DPH) added to further improve abrasion resistance together with the fine hard composite carbide formed during sintering, and an appropriate amount is 1 to 10%. Below 1%, the role of dispersion hardener is insufficient. If more than 10% is added, the price of raw materials will rise because the machine is extremely poor and expensive.
본 발명의 제조방법은 다음과 같다.The production method of the present invention is as follows.
원재료 분말 혼합: 적정량의 철-몰리브덴, Fe3P, 흑연, Fe-Mo 및 윤활제를 일반 V-cone형 또는 Double-cone형 혼합기에서 20~60분 동안 혼합한다. 이때 특수한 결합체를 첨가하여 혼합할 경우 편석이 없는 균일한 혼합체를 얻을 수 있다.Raw material powder mixing: Mix the appropriate amount of iron-molybdenum, Fe 3 P, graphite, Fe-Mo and lubricant for 20 to 60 minutes in a general V-cone or double-cone mixer. In this case, when a special binder is added and mixed, a uniform mixture without segregation can be obtained.
분말 형성: 혼합완료된 원료분말의 적정 성형압은 5~8ton/cm2로 5 ton/cm2이하에서는 소결후 고밀도를 얻을 수 없으며 8ton/cm2이상에서는 소결밀도가 더 이상 증가하지 않고 금형파손의 위험성이 급격하게 커지게 된다.Powder formation: The optimum molding pressure of the mixed raw powder is 5 ~ 8ton / cm 2 , it is impossible to obtain high density after sintering at below 5 ton / cm 2 , and the sintered density does not increase any more than 8ton / cm 2 . The risk is dramatically increased.
소결: 소결분위기로는 진공, 분해암모니아 가스, 수소가스 등이 사용될 수 있으나 소결공정의 편이성, 공정가 절감, 탈탄 방지 등을 위해 질소기 가스(질소:85~95%, 수소:5~15%) 또는 질소기 가스에 탈탄 방지를 위해 미량의 침탄성 가스가 혼합된 분위기가 바람직하다. 적정 소결온도로는 1,100~1,150℃에서 30분간 소결함으로써 99% 이상의 밀도를 갖는 치밀한 소결체를 제조하는데, 1,100℃이하에서는 소결중 액상생성량이 적어 고밀도의 제품을 얻을 수 없으며 1,150℃ 이상에서는 소결밀도가 증가하지 않고 Fe-Mo의 급격한 분해가 일어난다. 또한 과도한 액상이 형성되어 건전한 형상 유지가 곤란하며 복합탄화물도 조대하게 성장한다.Sintering: Vacuum, cracked ammonia gas, hydrogen gas, etc. can be used as sintering atmosphere, but nitrogen gas (nitrogen: 85 ~ 95%, hydrogen: 5 ~ 15%) for ease of sintering process, process cost reduction and decarburization. Alternatively, an atmosphere in which a small amount of carburizing gas is mixed with the nitrogen gas to prevent decarburization is preferable. By sintering at 1,100 ~ 1,150 ℃ for 30 minutes at a suitable sintering temperature, a dense sintered body having a density of 99% or more is manufactured. Sudden decomposition of Fe-Mo occurs without increasing. In addition, excessive liquid phase is formed, it is difficult to maintain a healthy shape and complex carbide grows coarse.
경화열처리: 소결후 냉각을 바르게 함으로써 높은 경도값을 얻을 수 있으나 실제 양산용 소결로의 경우 정밀한 냉각속도의 조절이 쉽지 않기 때문에 균일한 경도 값을 얻기 위해서는 수결후 경화 열처리가 필요하다. 진공 열처리도 가능하지만 공정의 편이성 및 공정가 절감을 위해 일반 가스식 경화 열처리가 바람직하며 오스테나이징 온도범위는 800~900℃에서 1시간 가열, 켄칭(Quenching)은 제품의 균열 및 변형방지를 위해 50~60℃로 유지된 기름에서 실시하며 탬퍼링은 150~200℃에서 2시간 저온 템퍼링(Tempering)을 적용하는 것이 바람직하다.Curing heat treatment: High hardness value can be obtained by correcting the cooling after sintering, but in the case of actual mass production sintering furnace, it is not easy to control precise cooling rate. Vacuum heat treatment is also possible, but general gas-type hardening heat treatment is preferred for ease of process and reduction of process cost. The austenizing temperature range is 800 ~ 900 ℃ for 1 hour, and quenching is 50 ~ to prevent cracking and deformation of the product. It is preferable to apply low temperature tempering (Tempering) for 2 hours at 150 ~ 200 ℃ and tampering in oil maintained at 60 ℃.
이하 본 발명의 바람직한 실시예중 하나를 예시한다.Hereinafter, one of the preferred embodiments of the present invention is illustrated.
[실시예]EXAMPLE
본 발명 실시예는 조성되는 각 성분의 조성비는 1.15wt%(중량백분율)흑연과, 0.6wt%(중량백분율)인과, 10wt%(중량백분율)몰리브덴과, 5wt%(중량백분율)Fe-Mo과 나머지 철로 조성되어 합금된다.In the embodiment of the present invention, the composition ratio of each component to be composed is 1.15 wt% (wt%) graphite, 0.6 wt% (wt%), 10 wt% (wt%) molybdenum, 5 wt% (wt%) Fe-Mo It is composed of the remaining iron and alloyed.
시편제조 공정은 다음과 같다. Specimen manufacturing process is as follows.
-성형 : 성형압력 6ton/cm2(성형밀도 : 6.5g/cm3)Molding: Molding pressure 6ton / cm 2 (Molding density: 6.5g / cm 3 )
-소결 : 1,130℃ × 30 분 (질소기 가스 : 질소 90%, 수소 : 10%)Sintered: 1,130 ° C × 30 minutes (Nitrogen gas: 90% nitrogen, hydrogen: 10%)
-열처리 : 오스테나이징(850℃ × 60분)→유냉(50℃)→탬퍼링(160℃ × 80분)-Heat treatment: austenizing (850 ℃ × 60 minutes) → oil cooling (50 ℃) → tampering (160 ℃ × 80 minutes)
마모시험방법 및 조건Wear test method and condition
시험기 : PIN ON DISK 식 마모시험기Tester: PIN ON DISK Type Abrasion Tester
PIN(시험대상 시편 : 5×5×15 mm)PIN (Test Specimen: 5 × 5 × 15 mm)
DISK(SKD 11-HRC 61: 80×8mm)DISK (SKD 11-HRC 61: 80 x 8 mm)
시험조건 : 건식시험Test condition: Dry test
하중 : 200g (압력 : 40 kg/cm2)Load: 200g (Pressure: 40 kg / cm 2 )
PIN 주행속도: 0.4, 1m/secPIN Travel Speed: 0.4, 1m / sec
PIN 주행거리 : 25,000mPIN Mileage: 25,000m
상기와 같은 본 발명의 합금의 제조방법은 비교적 저온인 통상 철계소결온도(1,120℃)에서도 거의 진밀도에 도달함으로써 높은 강도를 얻을 수 있고, 적용되는 소결 및 열처리 공정도 양산성이 우수할 뿐만 아니라 공정비도 저렴하다는 장점이 있다.As described above, the method for producing an alloy of the present invention achieves high strength by reaching almost true density even at a relatively low temperature, usually iron-based sintering temperature (1,120 ° C.), and the applied sintering and heat treatment processes are not only excellent in mass productivity. The process cost is also low.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019960029107A KR100202963B1 (en) | 1996-07-19 | 1996-07-19 | The making method of rotary compresser vein with fe sintered and same product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019960029107A KR100202963B1 (en) | 1996-07-19 | 1996-07-19 | The making method of rotary compresser vein with fe sintered and same product |
Publications (2)
Publication Number | Publication Date |
---|---|
KR980009491A KR980009491A (en) | 1998-04-30 |
KR100202963B1 true KR100202963B1 (en) | 1999-06-15 |
Family
ID=19466719
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019960029107A Expired - Fee Related KR100202963B1 (en) | 1996-07-19 | 1996-07-19 | The making method of rotary compresser vein with fe sintered and same product |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100202963B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090097715A (en) * | 2008-03-12 | 2009-09-16 | 가야에이엠에이 주식회사 | Iron-based sintered body having high strength and high toughness and manufacturing method thereof |
JP2014084826A (en) * | 2012-10-25 | 2014-05-12 | Riken Corp | Vane for rotary compressor |
-
1996
- 1996-07-19 KR KR1019960029107A patent/KR100202963B1/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
KR980009491A (en) | 1998-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4970049A (en) | Sintered materials | |
JP2799235B2 (en) | Valve seat insert for internal combustion engine and method of manufacturing the same | |
JP4891421B2 (en) | Powder metallurgy mixture and method for producing powder metallurgy parts using the same | |
JP2687125B2 (en) | Sintered metal compact used for engine valve parts and its manufacturing method. | |
US4388114A (en) | Anti-wear sintered alloy | |
JP3378012B2 (en) | Manufacturing method of sintered product | |
CN101486098B (en) | Method for preparing high-hardness wear-resistant powder metallurgical rolling sleeve | |
US4491477A (en) | Anti-wear sintered alloy and manufacturing process thereof | |
EP2778243A1 (en) | Iron based sintered sliding member and method for producing the same | |
US4904302A (en) | Roller in rotary compressor and method for producing the same | |
US20030230164A1 (en) | Iron-based sintered alloy for use as valve seat and its production method | |
US4861372A (en) | Roller in rotary compressor and method for producing the same | |
JPH0610103A (en) | Vane material excellent in wear resistance and sliding property | |
KR100202963B1 (en) | The making method of rotary compresser vein with fe sintered and same product | |
JP2001107173A (en) | Roller for rotary compressor | |
CN108150379B (en) | Method for manufacturing a swashplate | |
EP0946775B1 (en) | Iron based metal powder mixture and component made therefrom | |
Arbstedt | Alloy systems developed for pressing and sintering in the ferrous field | |
JPH0551708A (en) | Wear resistant material for compressor and compressor using the same | |
JP2661045B2 (en) | Fe-based sintered alloy with excellent sliding properties | |
JPS62164850A (en) | Wear-resistant iron-based sintered alloy and its manufacturing method | |
JPH06192784A (en) | Wear resistant sintered sliding member | |
US20230052262A1 (en) | Outer ring for an oil pump and a method for manufacturing the same | |
KR930008550B1 (en) | Method of manufacturing vanes for rotary compressors | |
JPH06207253A (en) | Iron base sliding part material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 19960719 |
|
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 19960719 Comment text: Request for Examination of Application |
|
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 19981026 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 19990224 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 19990322 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 19990323 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20021210 |