[go: up one dir, main page]

KR100202688B1 - Air flow control method - Google Patents

Air flow control method Download PDF

Info

Publication number
KR100202688B1
KR100202688B1 KR1019970001762A KR19970001762A KR100202688B1 KR 100202688 B1 KR100202688 B1 KR 100202688B1 KR 1019970001762 A KR1019970001762 A KR 1019970001762A KR 19970001762 A KR19970001762 A KR 19970001762A KR 100202688 B1 KR100202688 B1 KR 100202688B1
Authority
KR
South Korea
Prior art keywords
air
humidity
control
temperature
duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1019970001762A
Other languages
Korean (ko)
Other versions
KR19980066331A (en
Inventor
이동훈
Original Assignee
권태웅
엘지하니웰주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 권태웅, 엘지하니웰주식회사 filed Critical 권태웅
Priority to KR1019970001762A priority Critical patent/KR100202688B1/en
Publication of KR19980066331A publication Critical patent/KR19980066331A/en
Application granted granted Critical
Publication of KR100202688B1 publication Critical patent/KR100202688B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/755Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity for cyclical variation of air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/10Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/40Damper positions, e.g. open or closed

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Ventilation (AREA)

Abstract

본 발명은 풍량 제어 방법에 관한 것으로 특히, 제어 매체인 공기의 풍속에 따라 급기팬의 속도를 제어하여 덕트내에 항력이 최소화 즉, 손실이 적은 일정한 공기량을 공급함에 의해 덕트내 댐퍼의 안정성과 제어의 원활함을 제공하여 CAV 또는 VAV 제어의 에너지 효율을 높이도록 창안한 것이다. 이러한 본 발명은 에어 플로우 센서가 온되면 덕트내의 풍속을 정압 센서로 측정하는 제1단계와, 상기에서 측정한 정압을 풍속으로 환산하여 레이놀드 번호(Re)를 계산하여 그 값(Re)이 난류 특성치(4

Figure kpo00005
105)인지 판단하는 제2단계와, 상기에서 레이놀드 번호(Re)의 값이 난류 특성치(4
Figure kpo00006
105)가 아닌 경우 덕트내의 풍량이 일정하게 되도록 급기팬/환기팬의 속도를 조정하는 제3단계와, 상기에서 레이놀드 번호(Re)의 값이 난류 특성치(4
Figure kpo00007
105)가 되면 실내 감지 온/습도와 실내 설정 온/습도에 따라 PID 연산하여 냉각/가습/가열 밸브의 개폐를 제어하고 각방의 설정 온도와 감지 온도에 따라 PID 연산하여 각 방의 VAV 댐퍼를 개폐하는 제4단계를 수행한다.The present invention relates to a method for controlling the air volume, and in particular, by controlling the speed of the air supply fan according to the wind speed of the air as a control medium, the drag in the duct is minimized, that is, by supplying a constant amount of air with a low loss of stability and control of the damper. It is designed to provide smoothness and increase the energy efficiency of CAV or VAV control. According to the present invention, when the air flow sensor is turned on, the first step of measuring the wind speed in the duct with a static pressure sensor and converting the static pressure measured above into the wind speed calculates the Reynolds number Re, and the value Re is turbulent. Characteristic value (4
Figure kpo00005
10 5 ), and the Reynolds number (Re) is a turbulent characteristic value (4).
Figure kpo00006
10 5 ), the third step of adjusting the speed of the air supply fan / ventilation fan so that the air volume in the duct is constant, and the value of Reynolds No. (Re) is the turbulent characteristic value (4).
Figure kpo00007
10 5 ), PID operation is performed according to indoor sensing temperature / humidity and indoor setting temperature / humidity to control opening / closing of cooling / humidity / heating valve and PID operation according to set temperature and sensing temperature of each room to open and close VAV dampers in each room. Perform the fourth step.

Description

풍량 제어방법Air flow control method

본 발명은 풍량 제어에 관한 것으로 특히, 빌딩내의 온도 및 습도 제어함에 있어서 에너지 소비를 줄일 수 있도록 한 풍량 제어 방법에 관한 것이다.The present invention relates to air volume control, and more particularly, to a method for controlling air volume to reduce energy consumption in controlling temperature and humidity in a building.

빌딩내의 온도 및 습도 제어하는 알고리즘은 크게 2가지로 나뉘어진다.There are two main algorithms for temperature and humidity control in buildings.

첫째, CAV(Constant Air Volume)방식으로 일정한 공기를 히팅 밸브 또는 습도 밸브를 이용하여 온,습도를 제어한다.First, the temperature and humidity are controlled by using a heating valve or a humidity valve with constant air in a CAV (Constant Air Volume) method.

둘째, VAV(Variable Air Volume)방식으로 일정한 온,습도의 공기량을 가변적으로 공급하여 온,습도를 제어한다.Second, it controls the temperature and humidity by variably supplying the air volume of a constant temperature and humidity by VAV (Variable Air Volume) method.

일반적인 CAV, VAV 제어 장치의 구성도는 제1도에 도시된 바와 같이, 에어 플로우센서(2,23), 실내급기 온도센서(14), 실내급기 습도센서(15), 실내환기 온도센서(3), 실내환기 습도센서(4), 외기 온도센서(18), 외기 습도센서(19), 혼합 온도센서(22), 각방의 온도센서(12,13), 정압센서(11)로 입력부를 구성하고, 급기팬(1), 배기팬(16), 냉각밸브(5), 가습밸브(7), 각방의 VAV 댐퍼(9,10), 외기급기 댐퍼, 배기 댐퍼(20), 혼합 댐퍼(21)로 출력부를 구성하게 된다.As shown in FIG. 1, a general CAV and VAV control device is illustrated in FIG. 1, by using the air flow sensors 2 and 23, the indoor air temperature sensor 14, the indoor air humidity sensor 15, and the indoor air temperature sensor 3. ), The indoor ventilation humidity sensor (4), the outside air temperature sensor (18), the outside air humidity sensor (19), the mixed temperature sensor (22), the temperature sensor (12, 13) of each room, the static pressure sensor (11) Air supply fan (1), exhaust fan (16), cooling valve (5), humidification valve (7), each VAV damper (9, 10), external air supply damper, exhaust damper (20), mixing damper (21). ) To configure the output.

이와같은 일반적인 CAV, VAV제어 장치의 동작 과정을 설명하면 다음과 같다.Referring to the operation of the general CAV, VAV control device as follows.

종래의 CAV 제어는 외기 온도센서(18), 외기습도센서(19), 실내환기 온도센서(3), 실내환기 습도센서(4)로부터 실내와 실외의 엔탈피를 계산하여 냉각 제어 또는 난방 제어의 모드를 선택한 후 외기혼합 온도센서(22)로 감지한 외기혼합 온도와 외기혼합 설정온도를 비교 연산함에 따라 외기급기 댐퍼, 배기 댐퍼(20)를 비례 제어하며, 혼합댐퍼(21)를 역비례 제어흘 시작하여 외부로부터 흡입된 공기량이 외부로 배기하는 공기량과 같아지도록 한다.Conventional CAV control is a mode of cooling control or heating control by calculating the enthalpy of the indoor and outdoor from the outside temperature sensor 18, the outside air humidity sensor 19, the indoor ventilation temperature sensor 3, and the indoor ventilation humidity sensor 4 Select and then proportionally control the outside air supply damper and the exhaust damper 20 by comparing and calculating the outside air mixing temperature detected by the outside air mixing temperature sensor 22 and the set temperature of the outside air mixing, and starts the mixing damper 21 in inverse control. The amount of air sucked from the outside is equal to the amount of air exhausted to the outside.

이때부터 급기팬(1)이 기동되고 급기 에어 플로우 센서(2)가 온되면 약 5초후 환기팬(16)이 기동하게 된다.At this time, when the air supply fan 1 is started and the air supply air flow sensor 2 is turned on, the ventilation fan 16 is started after about 5 seconds.

이후, 환기 에어 플로우 센서(23)가 온되면 메인덕트의 설정된 압력과 현재의 정압센서(11)로 감지한 압력을 PID연산하여 급기팬(1)으로의 출력값(0~100%)을 제어콘트롤러에서 '0~12VDC'로 신호 변환하고 그 변환된 값을 급기팬(1)의 인버터에 출력함에 의해 인버터가 그 급기팬(1)의 속도를 조절하여 풍량을 일정하게 한다.After that, when the ventilation air flow sensor 23 is turned on, the PID controller calculates an output value (0 to 100%) to the air supply fan 1 by PID operation of the set pressure of the main duct and the pressure detected by the current static pressure sensor 11. By converting the signal into '0 ~ 12VDC' and output the converted value to the inverter of the air supply fan 1, the inverter adjusts the speed of the air supply fan 1 to keep the air flow constant.

이후, 실내환기 온도센서(3), 실내 습도센서(4)로 감지한 실내의 감지 온도/습도와 실내 설정온도/습도를 연산함에 따라 냉각 밸브(5), 가습 밸브(6), 가열 밸브(7)를 PID 제어를 하게 된다.Then, the cooling valve (5), the humidification valve (6), the heating valve (calculated) by calculating the indoor sensing temperature / humidity and the indoor set temperature / humidity detected by the indoor ventilation temperature sensor (3), the indoor humidity sensor (4) 7) PID control.

또한, VAV 제어는 서브 덕트(8)로 CAV 제어에 의한 일정 습도의 공기량을 각방의 온도 센서(12,13)로 감지한 온도와 각방의 설정온도를 비교 연산함에 의해 각방의 VAV 댐퍼(9,10)를 PID제어하게 된다.In addition, the VAV control is performed by comparing and calculating the temperature detected by the temperature sensors 12 and 13 of each room and the set temperature of each room to the sub-duct 8 by comparing the amount of air with constant humidity by CAV control. 10) PID control.

이러한 동작은 제2도의 신호 흐름과 동일한 과정으로 이루어진다.This operation is performed in the same process as the signal flow of FIG.

이러한 종래의 기술은 정압 센서(11)에서의 감지 압력만으로 기준으로 하여 급기팬(1), 배기팬(16)의 속도를 조절함에 의해 덕트내의 풍속을 일정하게 하는데, 만일 풍속이 낮아 공기가 층류 형태로 공급되는 경우에는 덕트내의 댐퍼에 미치는 항력 주로, 압력 항력이 증가하여 댐퍼의 파손이나 댐퍼의 부하 증가로 댐퍼의 동작이 원할하지 못하게 됨으로 온, 습도 제어가 불가능하게 되어 에너지 소모가 증가하게 되는 문제점이 있다.This conventional technique makes constant the wind speed in the duct by adjusting the speed of the air supply fan 1 and the exhaust fan 16 based on the detected pressure of the static pressure sensor 11 only. When supplied in the form of drag, the drag on the damper in the duct is mainly due to the increase in the pressure drag and the damper's damage due to the damage of the damper or the increase in the load of the damper. There is a problem.

반대로, 풍속이 높아 공기가 극한 난류 형태로 공급되는 경우에는 팬의 고속 운행을 위한 불필요한 동력이 요구되므로 에너지 소모가 증가하는 문제점이 있다.On the contrary, when the wind speed is high and the air is supplied in the form of extreme turbulence, unnecessary power is required for the high speed operation of the fan, thereby increasing energy consumption.

따라서, 본 발명은 종래의 문제점을 개선하기 위하여 제어 매체인 공기의 풍속에 따라 급기팬의 속도를 제어하여 덕트내에 항력이 최소화 즉, 손실이 적은 일정한 공기량을 공급함에 의해 덕트내 댐퍼의 안정성과 제어의 원활함을 제공하여 CAV 또는 VAV 제어의 에어지 효율을 높이도록 창안한 풍량 제어 방법을 제공함에 목적이 있다.Therefore, the present invention is to control the speed of the air supply fan in accordance with the wind speed of the control medium in order to improve the problems of the prior art by minimizing drag in the duct, that is, supplying a constant amount of air in the duct damper stability and control It is an object of the present invention to provide a method for controlling the air volume, which is designed to increase the air efficiency of the CAV or VAV control by providing the smoothness.

제1도는 일반적인 CAV, VAV 제어 장치의 구성도.1 is a configuration diagram of a general CAV, VAV control device.

제2도는 종래의 풍량 제어를 위한 신호 흐름도.2 is a signal flowchart for a conventional air volume control.

제3도는 본 발명에서의 풍량 제어를 위한 신호 흐름도.3 is a signal flowchart for controlling the air volume in the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 급기팬 2,23 : 에어 플로우 센서1: Air supply fan 2,23: Air flow sensor

3 : 실내환기 온도센서 4 : 실내환기 습도센서3: indoor ventilation temperature sensor 4: indoor ventilation humidity sensor

5 : 냉각 밸브 6 : 가습 밸브5: cooling valve 6: humidification valve

7 : 가열 밸브 8 : 서브 덕트7: heating valve 8: sub-duct

9,10 : VAV 댐퍼 11 : 정압 센서9,10: VAV damper 11: Positive pressure sensor

12,13 : 각 방의 온도 센서 14 : 실내급기 온도 센서12,13: temperature sensor in each room 14: indoor air temperature sensor

15 : 실내급기 습도센서 16 : 배기팬15: indoor air humidity sensor 16: exhaust fan

18 : 외기 온도센서 19 : 외기 습도센서18: outside temperature sensor 19: outside humidity sensor

20 : 외기급기댐퍼, 배기댐퍼 21 : 혼합 댐퍼20: air supply damper, exhaust damper 21: mixed damper

22 : 혼합 온도센서22: mixed temperature sensor

즉, 본 발명은 상기의 목적을 달성하기 위하여 CAV 제어의 경우 메인 덕트내의 정압 센서의 압력으로부터 풍속을 계산하여 Raynold Number가 난류 특성치 (4

Figure kpo00008
105)를 갖도록 급기팬의 속도를 PID 제어로 조절하여 메인 덕트내의 공기를 난류화하여 항력이 최소화된 일정한 공기를 메인 덕트내로 공급하며 또한, VAV 제어의 경우 메인 덕트에서 분기된 서브 덕트내의 정압 센서의 압력으로부터 풍속을 계산하여 Raynold Number가 난류 특성치 (4
Figure kpo00009
105)를 갖도록 메인 덕트내 급기팬의 속도를 PID 제어로 조절하여 서브 덕트내의 공기를 난류화하여 항력이 최소화된 일정한 온,습도의 공기량을 서브 덕트내로 공급하는 동작을 수행한다.That is, the present invention calculates the wind speed from the pressure of the static pressure sensor in the main duct in the case of CAV control in order to achieve the above object, the Raynold Number is a turbulent characteristic value (4
Figure kpo00008
10 5 ) by adjusting the speed of the air supply fan with PID control to turbulent air in the main duct to supply constant air with minimal drag into the main duct. The wind speed is calculated from the pressure of the sensor, and the Raynold Number is the turbulent characteristic value (4
Figure kpo00009
10 5 ) to control the speed of the supply fan in the main duct by PID control to turbulize the air in the sub duct to supply a constant temperature and humidity of air with minimal drag into the sub duct.

이하, 본 발명은 도면에 의거 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to the drawings.

본 발명에 따른 실시예는 제1도과 동일하게 구성한다.Embodiment according to the present invention is configured in the same manner as in FIG.

이와같이 구성한 본 발명의 실시예에 대한 동작 및 작용 효과를 설명하면 다음과 같다.Referring to the operation and effect of the embodiment of the present invention configured as described above are as follows.

먼저, CAV 제어의 경우 외기 온도센서(18), 외기 습도센서(19)와 실내환기 온도센서(3), 실내환기 습도센서(4)로부터 실내와 실외의 엔탈피를 계산하여 냉각 제어(여름제어모드) 또는 난방 제어(겨울제어모드)의 모드를 선택하면 외기혼합 온도센서(22)로 감지한 온도와 외기혼합 설정온도에 따라 외기급기댐퍼, 배기댐퍼(20)를 비례 제어하며, 혼합댐퍼(21)를 역비례 제어를 시작하여 외부로부터 흡입된 공기량이 외부로 배기되는 공기량과 같아지도록 한다.First, in the case of CAV control, the enthalpy of indoor and outdoor is calculated from the outside temperature sensor 18, the outside humidity sensor 19, the indoor ventilation temperature sensor 3, and the indoor ventilation humidity sensor 4 to control cooling (summer control mode). ) Or heating control (winter control mode) mode to control the air supply damper, exhaust damper 20 proportionally according to the temperature detected by the outdoor air mixing temperature sensor 22 and the external air mixing set temperature, the mixing damper 21 ) Inversely controlled to make the amount of air sucked from the outside equal to the amount of air exhausted to the outside.

이때, 급기팬(1)이 가동되고 급기 에어 플로우 센서(2)가 온되면 약 5초후 배기팬(16)이 기동하고 환기 에어 플로우 센서(23)가 온된다.At this time, when the air supply fan 1 is operated and the air supply air flow sensor 2 is turned on, the exhaust fan 16 is started after about 5 seconds, and the ventilation air flow sensor 23 is turned on.

이에 따라, 메인 덕트내의 현재 풍속을 정압 센서(11)를 이용하여 정압 범위인 '4~20mA'의 신호를 측정하고 그 측정한 정압값을 제어 콘트롤러에서 다시 풍속으로 환산하여 레이놀드 번호(Raynold Number)를 계산한다.Accordingly, the current wind speed in the main duct is measured by using the positive pressure sensor 11 to measure a signal of 4-20 mA, which is the positive pressure range, and the measured static pressure value is converted into the wind speed again by the control controller. Calculate

상기 레이놀드 번호(Raynold Number)는 Re=Vd/v (V : 풍속, d : 덕트 직경, v : 공기 동점성계수(1.64

Figure kpo00010
10-4ft2/s))인 식에 의해 계산하게 된다.The Raynold Number is Re = Vd / v (V: wind speed, d: duct diameter, v: air kinematic coefficient (1.64)
Figure kpo00010
10 -4 ft2 / s)).

이때, 레이놀드 번호(Re)의 값이 '4

Figure kpo00011
105'인 난류가 인가되지 않은 경우 덕트의 단면이 원형이거나 사각형의 경우 항력 계수(Cd)가 최소가 됨로 레이놀드 번호(Re)를 '4
Figure kpo00012
105'으로 설정하여 현재의 레이놀드 번호값과 비교함에 의해 PID 연산을 하여 출력값(0~100%)을 제어 콘트롤러에서 '0~12VDC'로 신호 변환하고 그 변환된 신호를 급기팬(1)의 인버터에 출력하여 급기팬(1)/환기팬(16)의 속도를 조절하여 풍량을 일정하게 한다.At this time, the value of Reynolds number (Re) is' 4
Figure kpo00011
If the turbulence of 10 5 'is not applied, the Reynolds number (Re) should be reduced to' 4 'because the drag coefficient (Cd) is minimal in the case of a circular or rectangular cross section.
Figure kpo00012
10 5 'to perform PID operation by comparing with current Reynolds number value and convert the output value (0 ~ 100%) to' 0 ~ 12VDC 'at the control controller and convert the converted signal into the supply fan (1). It outputs to the inverter of the air supply fan (1) / ventilation fan 16 to adjust the speed of the air volume is constant.

이후, 레이놀드 번호(Re)가 '4

Figure kpo00013
105'인 난류가 인가되면 실내환기 온/습도센서(3)/(4)에서 감지한 실내환기 온/습도와 실내설정 온/습도에 따라 PID 연산하여 출력값(0~100%)을 제어 콘트롤러에서 '0~12VDC'로 신호 변환하고 그 변환된 신호를 모터에 출력하여 냉각 밸브(5)/가습 밸브(6)/가열 밸브(7)를 개폐함에 의해 실내 설정 온/습도가 되도록 CAV 제어를 한다.Since Reynolds number (Re) is' 4
Figure kpo00013
When 10 5 'turbulence is applied, PID controller is calculated according to indoor ventilation temperature / humidity detected by indoor ventilation temperature / humidity sensor (3) / (4) and indoor setting temperature / humidity to control output value (0 ~ 100%). Converts the signal into '0 ~ 12VDC' and outputs the converted signal to the motor to open / close the cooling valve (5) / humidification valve (6) / heating valve (7) to control the room temperature / humidity. do.

한편, VAV 제어는 서브 덕트(8)내의 현재 풍속을 풍량 센서(11)를 이용하여 정압 범위인 '4~20mA'의 신호로 측정하고 그 측정한 정압값을 제어 콘트롤러에서 다시 풍속으로 환산하여 레이놀드 번호(Re)를 계산한다.On the other hand, the VAV control measures the current wind speed in the sub duct 8 by using the air volume sensor 11 as a signal of '4-20 mA', which is the constant pressure range, and converts the measured static pressure value into the wind speed again by the control controller. Calculate the Known number (Re).

상기에서 레이놀드 번호는 Re=Vd/v (V : 풍속, d : 덕트 직경, v : 공기 동점성계수(1.64

Figure kpo00014
10-4ft2/s))인 식에 의해 계산한다.In the above Reynolds number is Re = Vd / v (V: wind speed, d: duct diameter, v: air kinematic coefficient (1.64)
Figure kpo00014
10 -4 ft2 / s)).

이때, 레이놀드 번호(Re)의 값이 '4

Figure kpo00015
105'인 난류가 인가되지 않는 경우 덕트의 단면이 원형이거나 사각형의 경우 항력 계수(Cd)가 최소가 되므로 레이놀드 번호를 '4
Figure kpo00016
105'으로 설정하여 현재의 레이놀드 번호값과 비교하여 PID 연산함에 의해 출력값(0~100%)을 제어 콘트롤러에서 '0~12VDC'로 신호 변환하고 그 변환된 신호값을 급기팬(1)의 인버터에 출력하여 급기팬(1)/환기팬(16)의 속도를 조절하여 풍량을 일정하게 한다.At this time, the value of Reynolds number (Re) is' 4
Figure kpo00015
If the turbulence of 10 5 'is not applied, the Reynolds number should be' 4 'because the drag coefficient (Cd) is the minimum in the case of a circular or rectangular cross section.
Figure kpo00016
Set the value to 10 5 'and convert the output value (0 ~ 100%) to' 0 ~ 12VDC 'by the control controller by PID operation by comparing with the current Reynolds number value and convert the converted signal value into the air supply fan (1). It outputs to the inverter of the air supply fan (1) / ventilation fan 16 to adjust the speed of the air volume is constant.

이후, 레이놀드 번호(Re)가 '4

Figure kpo00017
105'인 난류가 인가되면 실내환기 온/습도센서(3)/(4)에서 감지한 온/습도와 실내설정온습도에 따라 PID 연산하여 출력값(0~100%)을 제어 콘트롤러에서 '0~12VDC'로 신호 변환하고 그 변환된 신호값을 모터에 출력하여 냉각 밸브(5)/가습 밸브(6)/가열 밸브(7)를 개폐함에 의해 실내 설정 온/습도가 되도록 제어하며 또한, 각 방의 온도센서(12)/(13)로 감지한 온도와 각 방의 설정 온도를 비교하여 PID 연산함에 의해 출력값(0~100%)을 VAV 제어 콘트롤러에서 '0~12VDC'로 신호 변환하고 그 변환된 신호값을 모터에 출력하여 각 방의 VAV 댐퍼를 개폐함에 의해 풍량을 조절하여 각 방의 설정 온도가 되도록 VAV 제어를 수행한다.Since Reynolds number (Re) is' 4
Figure kpo00017
When 10 5 'turbulence is applied, PID operation is calculated according to the temperature / humidity detected by the indoor ventilation temperature / humidity sensor (3) / (4) and the indoor setting temperature / humidity to control the output value (0 ~ 100%) from the control controller. It converts the signal to 12VDC 'and outputs the converted signal value to the motor to control the room setting temperature / humidity by opening / closing the cooling valve 5 / humidification valve 6 / heating valve 7 By comparing the temperature detected by the temperature sensor (12) / (13) with the set temperature of each room, the output value (0 ~ 100%) is converted into '0 ~ 12VDC' by the VAV control controller by PID calculation and the converted signal. The VAV control is performed so that the air volume is adjusted to the set temperature of each room by outputting a value to the motor and opening and closing the VAV damper in each room.

본 발명은 공기를 이용한 제어뿐만 아니라 풍속에 따른 항력을 측정하거나 줄이는 방법에 응용될 수 있다.The present invention can be applied to a method of measuring or reducing drag according to wind speed as well as control using air.

상기에서 상세히 설명한 바와 같이 본 발명은 현재의 풍속을 정압 센서를 통하여 측정하여 이를 Raynold Number로 환산함에 의해 난류 유무를 확인하고 최소의 동력으로 효과가 큰 난류를 생성키위해 급/배기팬의 속도를 조절하여 실내환기 온도, 실내환기 습도, 각방의 온도와 설정온도/습도에 따라 냉각 밸브, 가습 밸브, 가열 밸브 및 각방의 VAV 댐퍼를 원활하게 PID 제어하게 된다.As described in detail above, the present invention measures the current wind speed through a static pressure sensor and converts it into a Raynold Number to determine whether there is turbulence and to generate a highly effective turbulence with minimum power. PID control of cooling valve, humidification valve, heating valve and VAV damper of each room is made smoothly according to indoor ventilation temperature, indoor ventilation humidity, temperature of each room and set temperature / humidity.

따라서, 본 발명은 덕트내 난류 경계층에서는 유동에 수직하는 방향으로의 운동량혼합이 활발하므로 층류에 비해 박리를 지연시켜 댐퍼에 미치는 항력중 90% 이상인 압력 항력을 대폭 줄일 수 있으므로 에너지 효율을 향상시키는 효과가 있다.Therefore, in the present invention, since the momentum mixing in the direction perpendicular to the flow is active in the turbulent boundary layer in the duct, the pressure drag, which is 90% or more of the drag on the damper, can be greatly reduced by delaying peeling compared to the laminar flow, thereby improving energy efficiency. There is.

Claims (1)

에어 플로우 센서가 온되면 덕트내의 풍속을 정압 센서로 측정하는 제1단계와, 상기에서 측정한 정압을 풍속으로 환산하여 레이놀드 번호(Re)를 계산하여 그 값(Re)이 난류 특성치(4
Figure kpo00018
105)인지 판단하는 제2단계와, 상기에서 레이놀드 번호(Re)의 값이 난류 특성치(4
Figure kpo00019
105)가 아닌 경우 덕트내의 풍량이 일정하게 되도록 급기팬/환기팬의 속도를 조정하는 제3단계와, 상기에서 레이놀드 번호(Re)의 값이 난류 특성치(4
Figure kpo00020
105)가 되면 실내 감지 온/습도와 실내 설정 온/습도에 따라 PID 연산하여 냉각/가습/가열 밸브의 개폐를 제어하고 각방의 설정 온도와 감지 온도에 따라 PID 연산하여 각 방의 VAV 댐퍼를 개폐하는 제4단계를 수행함을 특징으로 하는 풍량제어 방법.
When the air flow sensor is turned on, the first step of measuring the wind speed in the duct with the static pressure sensor, and converts the static pressure measured above into the wind speed, calculates the Reynolds number (Re), and the value (Re) is the turbulent characteristic value (4).
Figure kpo00018
10 5 ), and the Reynolds number (Re) is a turbulent characteristic value (4).
Figure kpo00019
10 5 ), the third step of adjusting the speed of the air supply fan / ventilation fan so that the air volume in the duct is constant, and the value of Reynolds No. (Re) is the turbulent characteristic value (4).
Figure kpo00020
10 5 ), PID operation is performed according to indoor sensing temperature / humidity and indoor setting temperature / humidity to control opening / closing of cooling / humidity / heating valve and PID operation according to set temperature and sensing temperature of each room to open and close VAV dampers in each room. Air volume control method characterized in that the fourth step to perform.
KR1019970001762A 1997-01-22 1997-01-22 Air flow control method Expired - Fee Related KR100202688B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970001762A KR100202688B1 (en) 1997-01-22 1997-01-22 Air flow control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970001762A KR100202688B1 (en) 1997-01-22 1997-01-22 Air flow control method

Publications (2)

Publication Number Publication Date
KR19980066331A KR19980066331A (en) 1998-10-15
KR100202688B1 true KR100202688B1 (en) 1999-06-15

Family

ID=19495288

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970001762A Expired - Fee Related KR100202688B1 (en) 1997-01-22 1997-01-22 Air flow control method

Country Status (1)

Country Link
KR (1) KR100202688B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000024516A (en) * 2000-02-17 2000-05-06 박문수 Fuzzy-VAV DDC control method to improve indoor environment in IB( Intelligent Building)
KR101190354B1 (en) * 2005-11-17 2012-10-11 엘지전자 주식회사 Airflow controlling method of fan for an air conditioning system
CN106524382A (en) * 2016-12-20 2017-03-22 晋江市意翔环保科技有限公司 Vent pipe capable of automatically controlling air amount

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100695933B1 (en) * 2005-06-08 2007-03-15 한국건설기술연구원 External Air Attraction Control System and Method in Water-Air Combined Central Air Conditioning System
CN110631235B (en) * 2019-09-26 2023-10-24 国药奇贝德(上海)工程技术有限公司 Wind speed and air quantity measuring device and efficient air port with same
CN119103671B (en) * 2024-10-15 2025-06-03 东莞市鑫洲机电空调工程有限公司 A method and system for controlling constant air volume of an air conditioner fan system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000024516A (en) * 2000-02-17 2000-05-06 박문수 Fuzzy-VAV DDC control method to improve indoor environment in IB( Intelligent Building)
KR101190354B1 (en) * 2005-11-17 2012-10-11 엘지전자 주식회사 Airflow controlling method of fan for an air conditioning system
CN106524382A (en) * 2016-12-20 2017-03-22 晋江市意翔环保科技有限公司 Vent pipe capable of automatically controlling air amount
CN106524382B (en) * 2016-12-20 2019-04-30 广州正德工业工程技术有限公司 A kind of ventilation duct that can automatically control air quantity

Also Published As

Publication number Publication date
KR19980066331A (en) 1998-10-15

Similar Documents

Publication Publication Date Title
US9500383B2 (en) Method for controlling a ventilation system for the ventilation of an enclosure and a ventilation system
CN108151246A (en) Air quantity variable air conditioner wind system Optimization of Energy Saving control method and device
JP2014173826A (en) Total heat exchange type ventilation device
KR100202688B1 (en) Air flow control method
JP3013964B2 (en) Underfloor air conditioning system
CN1333213C (en) Terminal dynamic air blow of individuation air conditioning system
US20060065752A1 (en) Fluid flow balancing system
JP2755003B2 (en) Duct air conditioner
JP2004333183A (en) Wind speed sensor device and ventilator
JPS62225842A (en) Air conditioner
JP2004301350A (en) Ventilation equipment
Smith et al. Simulations of a novel demand-controlled room-based ventilation system for renovated apartments
JP3239159B2 (en) Control method of air conditioning equipment
JP3334068B2 (en) VAV control system
JP3401208B2 (en) Air conditioning control system
JP4346295B2 (en) Air volume control device for air conditioner
JP2005127636A (en) Air conditioning system and air conditioning method
JPH04347437A (en) Controller of air conditioner
CN211233652U (en) Air energy heat pump dew point dehumidification constant temperature system
JP2863443B2 (en) Ventilation control device
JPH0875231A (en) Variable air quantity air conditioning system
JPH023104B2 (en)
JPS6266043A (en) Air conditioner
JPS6284245A (en) air conditioner
CN2727617Y (en) Single air flue variable wind rate terminal control device

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

St.27 status event code: A-0-1-A10-A12-nap-PA0109

PA0201 Request for examination

St.27 status event code: A-1-2-D10-D11-exm-PA0201

R17-X000 Change to representative recorded

St.27 status event code: A-3-3-R10-R17-oth-X000

PG1501 Laying open of application

St.27 status event code: A-1-1-Q10-Q12-nap-PG1501

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

St.27 status event code: A-1-2-D10-D22-exm-PE0701

GRNT Written decision to grant
PR0701 Registration of establishment

St.27 status event code: A-2-4-F10-F11-exm-PR0701

PR1002 Payment of registration fee

St.27 status event code: A-2-2-U10-U11-oth-PR1002

Fee payment year number: 1

PG1601 Publication of registration

St.27 status event code: A-4-4-Q10-Q13-nap-PG1601

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

St.27 status event code: A-4-4-U10-U13-oth-PC1903

Not in force date: 20020321

Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

PC1903 Unpaid annual fee

St.27 status event code: N-4-6-H10-H13-oth-PC1903

Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

Not in force date: 20020321

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

P22-X000 Classification modified

St.27 status event code: A-4-4-P10-P22-nap-X000

P22-X000 Classification modified

St.27 status event code: A-4-4-P10-P22-nap-X000

P22-X000 Classification modified

St.27 status event code: A-4-4-P10-P22-nap-X000

P22-X000 Classification modified

St.27 status event code: A-4-4-P10-P22-nap-X000