[go: up one dir, main page]

KR100190230B1 - Method for producing biodegradable polylactic acid - Google Patents

Method for producing biodegradable polylactic acid Download PDF

Info

Publication number
KR100190230B1
KR100190230B1 KR1019960022245A KR19960022245A KR100190230B1 KR 100190230 B1 KR100190230 B1 KR 100190230B1 KR 1019960022245 A KR1019960022245 A KR 1019960022245A KR 19960022245 A KR19960022245 A KR 19960022245A KR 100190230 B1 KR100190230 B1 KR 100190230B1
Authority
KR
South Korea
Prior art keywords
lactic acid
polylactic acid
molecular weight
oligomer
acid oligomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1019960022245A
Other languages
Korean (ko)
Other versions
KR980002098A (en
Inventor
오상균
위상백
김준영
이준희
Original Assignee
김윤
주식회사삼양사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김윤, 주식회사삼양사 filed Critical 김윤
Priority to KR1019960022245A priority Critical patent/KR100190230B1/en
Publication of KR980002098A publication Critical patent/KR980002098A/en
Application granted granted Critical
Publication of KR100190230B1 publication Critical patent/KR100190230B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
    • C08G63/86Germanium, antimony, or compounds thereof
    • C08G63/866Antimony or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/88Post-polymerisation treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/105Esters; Ether-esters of monocarboxylic acids with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2230/00Compositions for preparing biodegradable polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

본 발명은 생분해성 고분자인 폴리락트산을 정제된 락트산 올리고머로부터 직접 탈수 축합반응에 의해 제조하는 개량된 생분해성 폴리락트산에 관한 것으로, 락트산을 삼산화 안티몬 또는 산화 제1주석등과 함께 반응기 내에서 1차로 탈수, 중축합 반응시켜 평균 분자량이 3,000 이상인 락트산 올리고머를 얻고 이 락트산 올리고머를 클로로포름 또는 메틸렌클로라이드에 녹인 다음 메탈올에 침지시키거나 직접 이소프로필에테르로 정제하여 미반응 락트산의 함량이 0.5중량%를 초과하지 않도록 충분히 제거하고 2차로 다시 중축합 반응시켜 폴리락트산을 제조하되, 락트산 올리고머 또는 락트산 100중량부에 대해 중축합 반응 촉매 0.0005∼5중량%, 산화방지제 0.0001∼5중량% 첨가하고 직접 탈수 중축합 반응시킴을 특징으로 하는 분자량 30,000∼250,000의 직쇄형 분자구조를 갖는 생분해성 폴리락트산의 제조방법에 관한 것으로, 본 발명 생분해성 폴리락트산은 수술용 봉합사등의 의료용 재료나 범용수지 대체물로 유용하게 쓰인다.The present invention relates to an improved biodegradable polylactic acid produced by direct dehydration condensation reaction of a biodegradable polymer, polylactic acid, from purified lactic acid oligomer, wherein the lactic acid is mixed with antimony trioxide or stannic oxide, etc., Dehydration and polycondensation reaction to obtain a lactic acid oligomer having an average molecular weight of 3,000 or more and then dissolving the lactic acid oligomer in chloroform or methylene chloride and then immersing it in a metal alcohol or directly refining with isopropyl ether to obtain a lactic acid oligomer having an unreacted lactic acid content exceeding 0.5% And the polycondensation reaction is carried out in a second order to produce polylactic acid. The polylactic acid is prepared by adding 0.0005 to 5 wt% of a polycondensation catalyst and 0.0001 to 5 wt% of an antioxidant to 100 parts of lactic acid oligomer or lactic acid, A linear chain having a molecular weight of 30,000 to 250,000 That relates to a process for the preparation of biodegradable polylactic acid having a molecular structure, the present invention is a biodegradable polylactic acid is useful as a medical material or a substitute for general-purpose resins such as a suture for surgery.

Description

생분해성 폴리락트산의 제조방법Method for producing biodegradable polylactic acid

본 발명은 개질된 생분해성 폴리락트산의 제조방법에 관한 것으로, 의료용 재료나 발포체, 망상체등의 범용수지의 대체물로 유용한 생분해성 폴리락트산을 환상 이량체를 사용하지 않고 락트산의 직접 탈수 축합반응에 의해 간단한 방법으로 고분자의 폴리락트산을 제조하는 방법에 관한 것이다.The present invention relates to a process for producing a modified biodegradable polylactic acid, which comprises a step of subjecting a biodegradable polylactic acid useful as a substitute for a general purpose resin such as a medical material, a foam, a reticulum or the like by direct dehydration condensation reaction of lactic acid without using a cyclic dimer And a method for producing a polylactic acid of a polymer by a simple method.

플라스틱 제품의 특성인 비 부폐성은 환경 오염의 심각한 문제를 유발하고, 특히 대량 소비되는 플라스틱중 생활용품 및 산업용품으로 사용된 후 버려지는 각종 용기, 필름, 포장재, 코팅재등에 의한 환경오염은 날로 심각하며 이에 대한 대책이 시급히 요구되고 있다.The non-caking property, which is a characteristic of plastic products, causes serious problems of environmental pollution. Especially, environmental pollution caused by various containers, films, packaging materials and coating materials used after being used as household goods and industrial products in mass- Measures are urgently needed.

락트산은 자연계에 넓게 분포하며 동식물 또는 인체에 무해하고, 그의 중합물인 폴리락트산은 물에 의해 비교적 용이하게 가수분해되기 때문에 범용수지의 대체물로 사용되나, 근래에 와서 의료용 재료로서 수술용 봉합사나 약물의 서방성 중합체로 많이 이용되고 있다.Lactic acid is widely distributed in nature and harmless to plants and animals or human body. Its polylactic acid is hydrolyzed relatively easily by water, so it is used as a substitute for general-purpose resin. Recently, And is widely used as a sustained-release polymer.

폴리히드록시산인 폴리락트산은 일반적으로 락트산의 환상 이량체인 락티드를 개환 중합함으로써 만들어 질수 있다. 종래에 미국특허 제2,703,316호에서는 D.L.-락트산을 올리고머화 한 후, 감압하에서 200∼250℃에서 열분해시켜 락트산의 환상이량체인 락티드를 만든 후, 에틸아세테이트로 재결정시키고 융점 120℃ 이상의 라세믹락티드를 개환중합하여 용액점도(inherent viscosity) 0.45dl/g 이상의 폴리 D,L-락트산을 만들어 강력한 필름과 섬유를 얻는 방법이 개시되어 있다.Polylactic acid, which is a polyhydroxy acid, can generally be produced by ring-opening polymerization of a lactide ring-shaped chain of lactic acid. Conventionally, U.S. Patent No. 2,703,316 discloses oligomerization of DL-lactic acid followed by pyrolysis at 200-250 ° C under reduced pressure to form a lactide, which is a cyclic dimer of lactic acid. The lactic acid is then recrystallized from ethyl acetate to obtain racemic lactide L-lactic acid having an inherent viscosity of 0.45 dl / g or more to produce a strong film and a fiber.

또, 미국특허 제2,758,987호에는 L-락트산으로부터 같은 방법으로 얻어진 융점 94℃ 이상의 L-락티드에 의해 용액점도 0.4dl/g 이상의 폴리 L-락트산을 얻는 방법이 공지되고 있으나, 고분자 원료에 적합한 락티드의 제조를 위해서는 증류, 재결정등 많은 노력과 비용이 소요되는 폐단이 있다.In addition, U.S. Patent No. 2,758,987 discloses a method of obtaining poly L-lactic acid having a solution viscosity of 0.4 dl / g or more by L-lactide having a melting point of 94 ° C or higher obtained by the same method from L-lactic acid, There are many efforts and costs such as distillation and recrystallization.

한편, 락트산의 직접 중축합 반응은 이 염기산과 다가 알콜에 의한 에스테르화 반응시간에 비례하여 분자량이 증가하며 생성된 물은 가수분해 작용에 의해 중축합의 분자량을 저하시키는 작용을 하므로 생성되는 물을 계외로 제거하는 일이 고분자량 폴리락트산을 얻기 위해 필요하다.On the other hand, the direct polycondensation reaction of lactic acid increases the molecular weight in proportion to the esterification reaction time by the base acid and the polyhydric alcohol, and the produced water acts to lower the molecular weight of the polycondensation by hydrolysis, It is necessary to obtain a high molecular weight polylactic acid to remove the polylactic acid.

일본특허 특공소 59-96123호에는 촉매를 사용하여 반응온도 220∼260℃, 압력 10㎜Hg 이하에서 축합 반응을 행하여 분자량 4000 이상의 폴리락트산을 얻는 방법이 개시되어 있다.Japanese Patent Publication No. 59-96123 discloses a method for obtaining a polylactic acid having a molecular weight of 4000 or more by conducting a condensation reaction using a catalyst at a reaction temperature of 220 to 260 ° C and a pressure of 10 mmHg or less.

미국특허 제4,273,920호에는 이온 교환수지를 촉매와 함께 사용하여 탈수 축합 반응시킨 후 촉매를 제거하므로써 락트산과 글리콜산의 공중합체를 제조하는 방법이 제안되고 있다.U.S. Patent No. 4,273,920 proposes a process for producing a copolymer of lactic acid and glycolic acid by removing the catalyst after dehydration condensation using an ion exchange resin with a catalyst.

그러나, 위에서 설명한 방법들은 고분자량의 폴리락트산을 얻기 위해서는 여러 단계의 반응 과정을 거쳐야 할 뿐만 아니라 고온을 필요로 하며 이와 같은 방법으로 얻어진 고분자는 쉽게 착색되고 열분해에 의한 불순물을 함유하는 등의 문제가 있다.However, the above-described methods require not only a multi-step reaction process but also a high temperature in order to obtain a polylactic acid having a high molecular weight. The polymer obtained by such a method is easily colored and contains impurities due to thermal decomposition have.

그리고 이와같은 방법으로 얻어지는 고분자의 분자량에도 한계가 있다. 일반적으로 분자량이 250,000 정도의 고분자량의 폴리락트산을 얻어야만 의료용 재료로 사용할 수 있으나, 종래의 공지된 방법으로는 이와같은 고분자량의 폴리락트산을 얻는데에도 한계가 있었다.The molecular weight of the polymer obtained by such a method is also limited. Generally, a high molecular weight polylactic acid having a molecular weight of about 250,000 can be used as a medical material. However, conventional methods have limitations in obtaining such a high molecular weight polylactic acid.

본 발명은 락트산으로부터 환상 이량체를 얻고, 이를 개환 중합시키지 않고 직접 탈수 중축합반응에 의해 고분자의 폴리락트산을 간단한 방법으로 얻는 것을 그 목적으로 한다.The object of the present invention is to obtain a polylactic acid of a polymer by a simple method by directly obtaining a cyclic dimer from lactic acid and directly carrying out a dehydration polycondensation reaction without performing ring-opening polymerization.

본 발명은 락트산을 축합하여 분자량 3,000 이상, 더욱 바람직하게는 5,000 이상의 락트산 올리고머를 만든 후, 그 락트산 올리고머를 클로로포름 또는 메틸렌클로라이드에 용해한 후 메탄올에 침지시키거나 직접 이소프로필에테르로 정제한 후 미반응 락트산과 수분을 충분히 제거하여 미반응 락트산이 0.5중량%를 초과하지 않도록 충분히 제거하고 락트산 올리고머를 다시 축합 반응시키는 것을 특징으로 하는 폴리락트산의 제조방법에 관한 것이다.The present invention relates to a process for producing a lactic acid oligomer by condensing lactic acid to obtain a lactic acid oligomer having a molecular weight of 3,000 or more, more preferably 5,000 or more, dissolving the lactic acid oligomer in chloroform or methylene chloride and then immersing it in methanol or directly refining with isopropyl ether, And sufficient removal of moisture to sufficiently remove unreacted lactic acid in an amount not exceeding 0.5% by weight, and the lactic acid oligomer is subjected to condensation reaction again.

만약 충분히 정제되지 않은 락트산 올리고머를 사용할 경우 얻어지는 폴리락트산의 평균 분자량은 30,000 이하가 된다. 그러나 락트산 올리고머를 클로로포름 또는 메틸렌클로라이드에 녹인후 메탄올에 침지시키거나 직접 이소프로필에테르로 정제한 후 미 반응락트산 및 수분이 충분히 제거된 락트산 올리고머를 다시 축합하면 30,000 이상의 평균 분자량을 갖는 폴리락트산을 얻을 수 있다.If the lactic acid oligomer not sufficiently purified is used, the average molecular weight of the obtained polylactic acid is 30,000 or less. However, when the lactic acid oligomer is dissolved in chloroform or methylene chloride and then immersed in methanol or purified directly with isopropyl ether, the unreacted lactic acid and the lactic acid oligomer sufficiently removed from water are condensed again to obtain polylactic acid having an average molecular weight of 30,000 or more have.

락트산으로부터 직접 폴리락트산을 만드는 방법에서는 일차로 제조된 락트산 올리고머에 함유된 미반응 락트산 및 수분의 함량은 폴리락트산의 분자량에 큰 영향을 주게 된다.In the method for producing polylactic acid directly from lactic acid, the amount of unreacted lactic acid and water contained in the lactic acid oligomer prepared in the first place greatly affects the molecular weight of the polylactic acid.

특히, 미반응 락트산의 함량이 많으면 중합반응 속도가 매우 느려지거나 해중합을 촉진시키며 열분해가 촉진된다.In particular, when the content of unreacted lactic acid is large, the polymerization reaction rate is very slow, the depolymerization is promoted and the pyrolysis is promoted.

본 발명의 제조방법에서 반응온도는 90∼210℃, 바람직하게는 140∼190℃이다.In the production process of the present invention, the reaction temperature is 90 to 210 占 폚, preferably 140 to 190 占 폚.

본 발명에 사용한 락트산은 이성질체로 존재하며, L-락트산, D-락트산 또는 L-락트산과 D-락트산의 혼합체이다. 중축합 반응에 사용될 수 있는 촉매로는 산화아연, 산화안티몬, 염화안티몬, 산화납, 산화칼슘, 산화알루미늄, 산화철, 염화칼슘, 초산아연, 파라톨루엔 슬폰산, 염화 제1주석, 황산 제1주석, 산화제1주석, 산화제2주석, 옥탄산제1주석, 테트라페닐주석, 주석분말, 4염화 티탄 등이다.The lactic acid used in the present invention exists as an isomer and is a mixture of L-lactic acid, D-lactic acid or L-lactic acid and D-lactic acid. Examples of the catalyst that can be used in the polycondensation reaction include zinc oxide, antimony oxide, antimony chloride, lead oxide, calcium oxide, aluminum oxide, iron oxide, calcium chloride, zinc acetate, paratoluene sulfonic acid, stannous chloride, Tin oxide, tin oxide, stannous octanoate, tetraphenyltin, tin powder, titanium tetrachloride and the like.

촉매의 사용량은 사용한 락트산 또는 락트산올리고머 100중량%에 대하여 0.0005-5중량%, 더욱 바람직하게는 0.003∼1중량%이다. 만약 0.0005중량% 미만이거나 5중량%을 초과할 경우에는 폴리락트산으로 부터 제조된 필름 및 성형물이 실제 제품으로 사용하기에 적합한 강도를 가질 수 있는 30,000∼250,000의 분자량의 폴리락트산을 얻을 수 없게 된다.The amount of the catalyst to be used is 0.0005 to 5% by weight, more preferably 0.003 to 1% by weight, based on 100% by weight of the lactic acid or lactic acid oligomer used. If it is less than 0.0005% by weight or exceeds 5% by weight, films and moldings made of polylactic acid can not obtain a polylactic acid having a molecular weight of 30,000 to 250,000 which can have a strength suitable for use as an actual product.

본 발명의 방법에 의해 얻어진 폴리락트산의 평균 분자량은 락트산올리고머의 분자량, 락트산 올리고머내의 미반응 락트산의 함량, 촉매의 종류 및 사용량, 반응온도, 반응시간에 따라 다르며 약 30,000∼250,000 이었다. 또, 열분해 방지를 위해서는 산화방지제를 사용한다. 산화방지제의 사용량은 락트산 또는 락트산 올리고머에 대하여 0.0001∼5중량% 사용하며 더욱 바람직하게는 0.001∼2 중량%이다. 만약 0.001중량% 미만이거나 5중량% 초과할 경우는 필름 및 성형물의 충분한 강도를 가질 수 있는 30,000∼250,000의 분자량의 폴리락트산을 얻을 수 없었다.The average molecular weight of the polylactic acid obtained by the method of the present invention was about 30,000 to 250,000, depending on the molecular weight of the lactic acid oligomer, the content of the unreacted lactic acid in the lactic acid oligomer, the type and amount of the catalyst, the reaction temperature, and the reaction time. An antioxidant is used to prevent pyrolysis. The amount of the antioxidant to be used is 0.0001 to 5% by weight, more preferably 0.001 to 2% by weight, based on the weight of the lactic acid or the lactic acid oligomer. If it is less than 0.001% by weight or exceeds 5% by weight, polylactic acid having a molecular weight of 30,000 to 250,000, which can have sufficient strength of the film and the molded product, could not be obtained.

그리고 특히, 본 발명에 따르면 종래에 일반적으로 이용해 왔던 방법인 락티드등의 환상이량체를 사용하지 않고 평균분자량 30,000 이상의 폴리락트산을 쉽게 얻을 수 있었다.Particularly, according to the present invention, polylactic acid having an average molecular weight of 30,000 or more can be easily obtained without using a cyclic dimer such as lactide, which has been conventionally used conventionally.

이와같이 하여 얻어진 고분자량의 폴리락트산은 필름, 성형물 등으로 가공할 경우 충분한 강도를 가지므로, 포장재 및 용기등의 용도에 잘 이용할 수 있다. 그리고 본 발명의 제조방법에 의해 제조된 고분자로 필름을 성형할 경우, 평균분자량이 30,000 미만이거나 250,000 초과시에는 인장강도 및 신도가 충분하지 않아 필름으로써 사용하기가 어려웠다. 때문에 필름으로써 사용할 경우 강도와 신도면에서 이 고분자의 평균분자량은 30,000 이상이 요구되며, 더욱 바람직하게는 50,000이상의 평균분자량이 요구되나, 본 발명에 따른 제조방법에 의하면 필름 제조에 적합한 고분자량의 폴리락트산을 쉽게 얻을 수 있다. 또한, 본 발명에 따라 제조된 고분자량의 폴리락트산은 연신, 블로잉, 진공 성형등의 2차 가공이 가능하다. 따라서 본 발명에 따른 방법에 의해 얻어진 고분자량의 폴리락트산은 의료용 재료, 발포체, 망상체등 종래의 범용수지의 대체물로써 사용이 가능하다.The high molecular weight polylactic acid thus obtained has a sufficient strength when processed into a film, a molded product and the like, and thus can be suitably used for applications such as packaging materials and containers. When the average molecular weight is less than 30,000 or when the film has an average molecular weight of more than 250,000, it is difficult to use the film as a film due to insufficient tensile strength and elongation. Therefore, when used as a film, the average molecular weight of the polymer in terms of strength and elongation is required to be 30,000 or more, more preferably 50,000 or more. However, according to the production method of the present invention, a high molecular weight poly Lactic acid can be easily obtained. Further, the high molecular weight polylactic acid produced according to the present invention can be subjected to secondary processing such as stretching, blowing, and vacuum molding. Therefore, the high molecular weight polylactic acid obtained by the method according to the present invention can be used as a substitute for a conventional general resin such as a medical material, a foam, a mesh, and the like.

이하, 실시예에 의거 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

다음의 실시예는 본 발명의 범주를 한정하는 것은 아니다.The following examples do not limit the scope of the present invention.

또한, 본 발명의 폴리락트산의 평균분자량은 겔투과 크로마토그래피(컬럼온도 40℃, 용매 : 클로로 포름, WATERS사의 모델 150C 사용)에 의해 측정하였으면 폴리스티렌 표준시료와 비교하여 얻었다.The average molecular weight of the polylactic acid of the present invention was obtained by comparison with a polystyrene standard sample when measured by gel permeation chromatography (column temperature: 40 DEG C, solvent: chloroform, model 150C, manufactured by WATERS).

또 락트산 올리고머에 함유된 미반응 락트산 및 불순물의 함량은 비수적정전극을 이용한 메틀러사(METTLER Co.)의 DL 25 자동 적정 장치와 부르커사(BRUKER Co.)의 DRX-300 핵자기 공명 분광기를 사용하여 정량하였다.The content of unreacted lactic acid and impurities contained in the lactic acid oligomer was measured using a DL 25 automatic titration apparatus of METTLER Co. using a non-titrant electrode and a DRX-300 nuclear magnetic resonance spectrometer of BRUKER Co. Respectively.

또 제조된 필름시료의 인장강도와 신도는 인스트론사( INSTRON Co.)의 MODEL 4201을 사용하여 측정하였다.The tensile strength and elongation of the prepared film samples were measured using MODEL 4201 manufactured by INSTRON Co.,

[실시예 1][Example 1]

90% L-락트산 33.0g에 촉매로 삼산화안티몬 0.06g과 함께 반응기에 넣고 교반하면서 150℃, 30∼50㎜Hg의 감압하에서 3시간 동안 탈수 및 중축합 반응을 행하였다. 그런 다음 반응물을 염화메틸렌 100㎖에 충분히 녹여서 메탄올 100㎖에 부어 결정을 얻었다. 그 결정을 여과하여 메탄올로 3차례 이상 세정하고 충분히 건조하여 백색의 락트산 올리고머를 얻었다. 락트산 올리고머의 분자량은 12,500 이었으며 함유된 미반응 락트산의 함량을 측정하였더니 0.05중량%였다. 15g의 락트산 올리고머에 촉매로 삼산화안티몬 0.03g과 산화방지제로 시바 가이기사의 이르가녹스 1010(IRGANOX 1010) 0.0045g를 반응기에 넣고 교반하면서 180℃로 가열하며 2㎜Hg의 감압상태에서 7시간 동안 중합반응을 행하였다. 중합반응이 끝난 후 반응기에서 폴리락트산을 꺼내어 분쇄한 후 50℃의 진공오븐에 넣고 0.3㎜Hg의 감압 상태에서 24시간 이상 건조하였다. 제조된 폴리락트산의 분자량은 250,000 이었다. 그 폴리락트산을 클로로포름 용액에 용해시킨 다음 그 용액을 캐스팅 38∼40㎛의 필름을 만들어 기계적 물성을 측정하였더니 인장강도 550kg/㎠, 신도 6%로서 우수하였다.Lactic acid was added to 33.0 g of L-lactic acid as a catalyst together with 0.06 g of antimony trioxide, followed by dehydration and polycondensation reaction under reduced pressure of 30 to 50 mmHg at 150 DEG C for 3 hours while stirring. The reaction was then sufficiently dissolved in 100 ml of methylene chloride and poured into 100 ml of methanol to obtain crystals. The crystals were filtered, washed with methanol three times or more, and sufficiently dried to obtain a white lactic acid oligomer. The molecular weight of the lactic acid oligomer was 12,500 and the content of the unreacted lactic acid contained was determined to be 0.05% by weight. 0.03 g of antimony trioxide as a catalyst in 15 g of lactic acid oligomer and 0.0045 g of Irganox 1010 (IRGANOX 1010) as an antioxidant were charged in a reactor and heated to 180 DEG C under a reduced pressure of 2 mmHg for 7 hours Polymerization reaction was carried out. After completion of the polymerization reaction, the polylactic acid was taken out from the reactor, pulverized, and then placed in a vacuum oven at 50 ° C. and dried at a reduced pressure of 0.3 mmHg for 24 hours or more. The molecular weight of the prepared polylactic acid was 250,000. The polylactic acid was dissolved in a chloroform solution, and the solution was cast to a film having a thickness of 38 to 40 탆 to measure its mechanical properties. The tensile strength was 550 kg / cm 2 and the elongation was 6%.

[실시예 2][Example 2]

90% L-락트산 33.0g에 촉매로 삼산화안티몬 0.06g과 함께 반응기에 넣고 교반하면서 150℃, 30∼50㎜Hg의 감압하에서 2시간 동안 탈수 및 중축합 반응을 행하였다. 그런 다음 반응물을 염화메틸렌 100㎖에 충분히 녹여서 메탄올 100㎖에 부어 결정을 얻는다. 그 결정을 여과하여 메탄올로 3차례 이상 세정하고 충분히 건조하여 백색의 락트산 올리고머를 얻었다. 락트산 올리고머의 분자량은 3,500이었으며 함유된 미반응 락트산의 함량을 측정하였더니 0.4중량%였다. 그 다음은 실시예 1에서 행한 것과 같은 방법으로 폴리락트산을 제조하여 필름을 만들었더니 폴리락트산의 분자량은 40,000이었으며, 필름의 인장강도와 신도는 각각 370kg/㎠, 8%로서 우수하였다.Lactic acid was added to 33.0 g of L-lactic acid as a catalyst together with 0.06 g of antimony trioxide, followed by dehydration and polycondensation reaction under reduced pressure of 30 to 50 mmHg at 150 DEG C for 2 hours while stirring. The reaction is then sufficiently dissolved in 100 ml of methylene chloride and poured into 100 ml of methanol to obtain crystals. The crystals were filtered, washed with methanol three times or more, and sufficiently dried to obtain a white lactic acid oligomer. The molecular weight of the lactic acid oligomer was 3,500, and the content of the unreacted lactic acid contained was determined to be 0.4% by weight. Then, polylactic acid was produced in the same manner as in Example 1 to produce a film. The molecular weight of polylactic acid was 40,000, and the tensile strength and elongation of the film were excellent as 370 kg / cm 2 and 8%, respectively.

[실시예 3][Example 3]

90% L-락트산 33.0g에 촉매로 삼산화안티몬 0.06g과 함께 반응기에 넣고 교반하면서 150℃, 30∼50㎜Hg에서 3시간 동안 탈수 및 중축합 반응을 행하였다. 그런 다음 반응물을 분쇄하여 분말상태의 락트산올리고머를 만든 후 이소프로필렌에테르로 3차례 이상 세정한다. 그 분말을 충분히 건조하여 백색의 락트산 올리고머를 얻었다. 락트산 올리고머의 분자량은 3,300 이었으며 미반응 락트산의 함량은 0.5중량%였다. 그 다음은 실시예 1에서 행한 것과 같은 방법으로 폴리락트산을 제조하여 필름을 만들었더니 폴리락트산의 분자량은 30,000이었으며, 필름의 인장강도와 신도는 각각 350kg/㎠, 10%로서 우수하였다.Lactic acid was added to 33.0 g of L-lactic acid as a catalyst together with 0.06 g of antimony trioxide, and dehydration and polycondensation reaction were carried out at 150 ° C. and 30 to 50 mmHg for 3 hours while stirring. The reactants are then pulverized to produce the lactic acid oligomer in powder form and then washed three more times with isopropylene ether. The powder was sufficiently dried to obtain a white lactic acid oligomer. The molecular weight of the lactic acid oligomer was 3,300 and the content of unreacted lactic acid was 0.5% by weight. Then, polylactic acid was produced in the same manner as in Example 1 to produce a film. The polylactic acid had a molecular weight of 30,000, and the tensile strength and elongation of the film were excellent at 350 kg / cm 2 and 10%, respectively.

[실시예 4][Example 4]

90% L-락트산 33.0g에 촉매로 삼산화안티몬 0.06g과 함께 반응기에 넣고 교반하면서 90℃, 10∼20㎜Hg에서 3시간 동안 탈수 및 중축합 반응을 행하였다. 그런 다음 반응물을 염화메틸렌 100㎖에 충분히 녹여서 메탄올 100㎖에 부어 결정을 얻었다. 그 결정을 여과하여 메탄올로 3차례 이상 세정하고 충분히 건조하여 백색의 락트산올리고머를 얻었다. 락트산 올리고머의 분자량은 3,800이었으며 미반응 락트산의 함량은 0.3중량%였다. 그 다음은 실시예 1에서 행한 것과 같은 방법으로 하되, 다만 중축합반응을 90℃에서 30시간동안 해서 폴리락트산을 제조하여 필름을 만들었더니, 폴리락트산의 분자량은 50,000이었으며, 필름의 인장강도와 신도는 각각 410kg/㎠, 10%로서 우수하였다.Lactic acid was added to 33.0 g of L-lactic acid as a catalyst together with 0.06 g of antimony trioxide, followed by dehydration and polycondensation reaction at 90 ° C. and 10 to 20 mmHg for 3 hours while stirring. The reaction was then sufficiently dissolved in 100 ml of methylene chloride and poured into 100 ml of methanol to obtain crystals. The crystals were filtered, washed with methanol three times or more, and sufficiently dried to obtain a white lactic acid oligomer. The molecular weight of the lactic acid oligomer was 3,800 and the content of unreacted lactic acid was 0.3% by weight. The polylactic acid was produced in the same manner as in Example 1 except that the polylactic acid was produced by a polycondensation reaction at 90 DEG C for 30 hours. The molecular weight of the polylactic acid was 50,000, and the tensile strength and elongation Were respectively excellent at 410 kg / cm 2 and 10%.

[실시예 5][Example 5]

90% L-락트산 33.0g에 촉매로 삼산화안티몬 0.06g과 함께 반응기에 넣고 교반하면서 150℃, 30∼50㎜Hg에서 3시간 동안 탈수 및 중축합 반응을 행하였다. 그런 다음 반응물을 염화메틸렌 100㎖에 충분히 녹여서 메탄올 100㎖에 부어 결정을 얻었다. 그 결정을 여과하여 메탄올로 3차례 이상 세정하고 충분히 건조하여 백색의 락트산올리고머를 얻었다. 락트산 올리고머의 분자량은 12,000이었으며 미반응 락트산의 함량은 0.2중량%였다. 그 다음은 중축합 반응을 210℃에서 5시간 동안 행하는 것을 제외하고는 실시예 1에서 행한 것과 같은 방법으로 폴리락트산을 제조하여 필름을 만들었더니 , 폴리락트산의 분자량은 89,000이었으며, 강도와 신도는 각각 430kg/㎠, 8%로서 우수하였다.Lactic acid was added to 33.0 g of L-lactic acid as a catalyst together with 0.06 g of antimony trioxide, and dehydration and polycondensation reaction were carried out at 150 ° C. and 30 to 50 mmHg for 3 hours while stirring. The reaction was then sufficiently dissolved in 100 ml of methylene chloride and poured into 100 ml of methanol to obtain crystals. The crystals were filtered, washed with methanol three times or more, and sufficiently dried to obtain a white lactic acid oligomer. The molecular weight of the lactic acid oligomer was 12,000 and the content of unreacted lactic acid was 0.2% by weight. Next, a polylactic acid was produced in the same manner as in Example 1 except that the polycondensation reaction was carried out at 210 캜 for 5 hours, and a film was produced. The molecular weight of the polylactic acid was 89,000, and the strength and elongation were 430kg / ㎠, and 8%, respectively.

[실시예 6][Example 6]

90% L-락트산 33.0g에 촉매로 삼산화안티몬 0.03g과 산화제1주석 0.03g을 함께 반응기에 넣고 교반하면서 150℃에서 3시간 동안 탈수 및 중축합 반응을 행하였다.그런 다음 반응물을 염화메틸렌 100㎖에 충분히 녹여서 메탄올 100㎖에 부어 결정을 얻었다. 그 결정을 여과하여 메탄올로 3차례 이상 세정하고 충분히 건조하여 백색의 락트산올리고머를 얻었다. 락트산 올리고머의 분자량은 12,500이었으며 미반응 락트산의 함량은 0.1중량%였다. 그 다음은 중축합 반응을 190℃에서 8시간 동안 행하는 것을 제외하고는 실시예 1에서 행한 것과 같은 방법으로 폴리락트산을 제조하여 필름을 만들었더니, 폴리락트산의 분자량은 170,000이었으며, 필름의 인장강도와 신도는 각각 510kg/㎠, 10%로서 우수하였다.L-lactic acid, 0.03 g of antimony trioxide and 0.03 g of 1-tin oxide were fed together as a catalyst, and dehydration and polycondensation reaction were carried out for 3 hours at 150 ° C with stirring. 100 ml of methylene chloride And poured into 100 ml of methanol to obtain crystals. The crystals were filtered, washed with methanol three times or more, and sufficiently dried to obtain a white lactic acid oligomer. The molecular weight of the lactic acid oligomer was 12,500 and the content of unreacted lactic acid was 0.1% by weight. Next, a polylactic acid was produced in the same manner as in Example 1, except that the polycondensation reaction was carried out at 190 캜 for 8 hours, and a film was produced. The molecular weight of polylactic acid was 170,000, and the tensile strength The elongation was excellent as 510 kg / ㎠ and 10%, respectively.

[실시예 7][Example 7]

90% L-락트산 33.0g에 촉매로 삼산화안티몬 0.06g과 함께 반응기에 넣고 교반하면서 150℃에서 3시간동안 탈수 및 중축합반응을 행하였다. 그런 다음 반응물을 염화메틸렌 100㎖에 충분히 녹여서 메탄올 100㎖에 부어 결정을 얻었다. 그 결정을 여과하여 메탄올로 3차례이상 세정하고 충분히 건조하여 백색의 락트산올리고머를 얻었다. 락트산올리고머의 분자량은 11,000이었으며 락트산의 함량은 0.1중량%였다. 그 다음은 실시예1에서 행한 것과 같은 방법으로 행하되, 다만 촉매는 산화제1주석을 사용하였다. 이와 같은 방법으로 폴리락트산을 제조하여 필름을 만들었더니 폴리락트산의 분자량은 190,000이었으며, 필름의 인장강도와 신도는 각각 525kg/㎠, 5%로서 우수하였다.Lactic acid was added to 33.0 g of L-lactic acid as a catalyst together with 0.06 g of antimony trioxide in a reactor, followed by dehydration and polycondensation reaction at 150 ° C for 3 hours while stirring. The reaction was then sufficiently dissolved in 100 ml of methylene chloride and poured into 100 ml of methanol to obtain crystals. The crystals were filtered, washed with methanol three times or more, and sufficiently dried to obtain a white lactic acid oligomer. The molecular weight of the lactic acid oligomer was 11,000 and the content of lactic acid was 0.1% by weight. Then, the same procedure as in Example 1 was carried out except that tin oxide was used as the catalyst. When polylactic acid was prepared by this method, the molecular weight of polylactic acid was 190,000, and the tensile strength and elongation of the film were excellent as 525 kg / cm 2 and 5%, respectively.

[실시예 8][Example 8]

90% L-락트산 33.0g 및 90% D,L-락트산 3.0g을 반응기에 넣고 실시예 1에서 행한 것과 동일한 조건으로 탈수 및 중축합반응을 행하여 백색의 락트산 올리고머를 얻었다. 락트산 올리고머의 분자량은 7,000이었으며 미반응 락트산의 함량은 0.4중량%였다. 그 다음은 실시예 1에서 행한 것과 같은 방법으로 폴리락트산을 제조하여 필름을 만들었더니 폴리락트산의 분자량은 90,000이었으며, 필름의 인장강도와 신도는 각각 420kg/㎠, 11%로서 우수하였다.33.0 g of 90% L-lactic acid and 3.0 g of 90% D, L-lactic acid were placed in a reactor and dehydration and polycondensation reaction were carried out under the same conditions as in Example 1 to obtain a white lactic acid oligomer. The molecular weight of the lactic acid oligomer was 7,000 and the content of unreacted lactic acid was 0.4% by weight. Then, polylactic acid was produced in the same manner as in Example 1 to produce a film. The molecular weight of polylactic acid was 90,000, and the tensile strength and elongation of the film were excellent as 420 kg / cm 2 and 11%, respectively.

[비교실시예 1][Comparative Example 1]

실시예 1에서 얻어진 락트산 올리고머에 대하여 0.5중량%의 락트산을 추가로 첨가하여 실시예 1에서 행한 것과 동일한 방법으로 폴리락트산을 제조하여 필름을 만들었더니, 폴리락트산의 분자량은 15,000이었으며, 필름의 인장강도와 신도는 각각 120kg/㎠, 11%로서 좋지 못하였다.Polylactic acid was produced in the same manner as in Example 1 except that 0.5% by weight of lactic acid was added to the lactic acid oligomer obtained in Example 1 to prepare a film. The molecular weight of the polylactic acid was 15,000, and the tensile strength And shindo were 120kg / ㎠ and 11%, respectively.

[비교실시예 2][Comparative Example 2]

90% L-락트산 33.0g에 촉매로 삼산화안티몬 0.06g과 함께 반응기에 넣고 교반하면서 150℃, 30∼50㎜Hg의 감압하에서 1시간 30분동안 탈수 및 중축합 반응을 행하였다. 그런 다음 반응물을 염화메틸렌 100㎖에 충분히 녹여서 메탄올 100㎖에 부어 결정을 얻었다. 그 결정을 여과하여 메탄올로 3차례 이상 세정하고 충분히 건조하여 백색의 락트산 올리고머를 얻었다. 락트산 올리고머의 분자량은 2,900이었으며 미반응 락트산함량은 0.4중량%였다. 그 다음은 실시예 1에서 행한 것과 같은 방법으로 폴리락트산을 제조하여 필름을 만들었더니 폴리락트산의 분자량은 25,000이었으며, 필름의 인장강도와 신도는 각각 150kg/㎠, 6%로서 좋지 못하였다.Lactic acid was added to 33.0 g of L-lactic acid as a catalyst together with 0.06 g of antimony trioxide, followed by dehydration and polycondensation reaction at 150 DEG C under a reduced pressure of 30 to 50 mmHg for 1 hour and 30 minutes. The reaction was then sufficiently dissolved in 100 ml of methylene chloride and poured into 100 ml of methanol to obtain crystals. The crystals were filtered, washed with methanol three times or more, and sufficiently dried to obtain a white lactic acid oligomer. The molecular weight of the lactic acid oligomer was 2,900 and the unreacted lactic acid content was 0.4% by weight. Then, polylactic acid was produced in the same manner as in Example 1 to prepare a film. The molecular weight of the polylactic acid was 25,000, and the tensile strength and elongation of the film were 150 kg / cm 2 and 6%, respectively.

[비교실시예 3][Comparative Example 3]

90% L-락트산 33.0g에 촉매로 삼산화안티몬 0.0001g과 함께 반응기에 넣고 교반하면서 150℃, 3시간동안 탈수 및 중축합 반응을 행하였다. 그런 다음 반응물을 염화메틸렌 100㎖에 충분히 녹여서 메탄올 100㎖에 부어 결정을 얻었다. 그 결정을 여과하여 메탄올로 3차례 이상 세정하고 충분히 건조하여 백색의 락트산 올리고머를 얻었다. 락트산 올리고머의 분자량은 2,500이었으며 미반응 락트산의 함량은 0.1중량%였다. 그 다음은 실시예 1에서 행한 것과 같은 방법으로, 촉매의 사용량만 0.0001g으로 바꾸어 폴리락트산을 제조하여 필름을 만들었더니 폴리락트산의 분자량은 5,000 이었으며 , 필름의 인장강도와 신도는 각각 50kg/㎠, 6%로서 좋지 못하였다.Lactic acid was added to 33.0 g of L-lactic acid as a catalyst together with 0.0001 g of antimony trioxide as a catalyst, followed by dehydration and polycondensation reaction at 150 占 폚 for 3 hours while stirring. The reaction was then sufficiently dissolved in 100 ml of methylene chloride and poured into 100 ml of methanol to obtain crystals. The crystals were filtered, washed with methanol three times or more, and sufficiently dried to obtain a white lactic acid oligomer. The molecular weight of the lactic acid oligomer was 2,500 and the content of unreacted lactic acid was 0.1% by weight. Then, polylactic acid was produced in the same manner as in Example 1 except that the amount of catalyst used was changed to 0.0001 g, and the molecular weight of the polylactic acid was 5,000. The tensile strength and elongation of the film were 50 kg / 6%.

[비교실시예 4][Comparative Example 4]

90% L-락트산 33.0g에 촉매로 삼산화안티몬 1.55g과 함께 반응기에 넣고 교반하면서 150℃에서 3시간동안 탈수 및 중축합 반응을 행하였다. 그런 다음 반응물을 염화메틸렌 100㎖에 충분히 녹여서 메탄올 100㎖에 부어 결정을 얻었다. 그 결정을 여과하여 메탄올로 3차례 이상 세정하고 충분히 건조하여 백색의 락트산 올리고머를 얻었다. 락트산 올리고머의 분자량은 6,000이었으며 미반응 락트산의 함량은 0.2중량%였다. 그 다음은 실시예 1에서 행한 것과 같은 방법으로 행하되, 다만 촉매의 사용량만 1.55g으로 바꾸어 폴리락트산을 제조하여 필름을 만들었더니 폴리락트산의 분자량은 13,000이었으며, 필름의 인장강도와 신도는 각각 110㎏/㎠, 9%로서 좋지 못하였다.Lactic acid was added to 33.0 g of 90% L-lactic acid together with 1.55 g of antimony trioxide as a catalyst, followed by dehydration and polycondensation reaction at 150 ° C for 3 hours while stirring. The reaction was then sufficiently dissolved in 100 ml of methylene chloride and poured into 100 ml of methanol to obtain crystals. The crystals were filtered, washed with methanol three times or more, and sufficiently dried to obtain a white lactic acid oligomer. The molecular weight of the lactic acid oligomer was 6,000 and the content of unreacted lactic acid was 0.2% by weight. The polylactic acid was produced in the same manner as in Example 1 except that the amount of catalyst used was changed to 1.55 g. The molecular weight of the polylactic acid was 13,000, and the tensile strength and elongation of the film were 110 kg / ㎠, 9%.

[비교실시예 5][Comparative Example 5]

90% L-락트산 33.0g에 촉매로 산화제1주석 0.0001g과 함께 반응기에 넣고 교반하면서 150℃, 3시간동안 탈수 및 중축합 반응을 행하였다. 그런 다음 반응물을 염화메틸렌 100㎖에 충분히 녹여서 메탄올 100㎖ 부어 결정을 얻었다. 그 결정을 여과하여 메탄올로 3차례 이상 세정하고 충분히 건조하여 백색의 락트산 올리고머를 얻었다. 락트산 올리고머의 분자량은 2,800이었으며 미 반응 락트산의 함량은 0.1중량%였다. 그 다음은 실시예 1에서 행한 것과 같은 방법으로 행하되, 다만 촉매로써 산화제1주석의 사용량만 0.0001g으로 바꾸어 폴리락트산을 제조하여 필름을 만들었더니 폴리락트산의 분자량은 18,000이었으며, 필름의 인장강도와 신도는 각각 130kg/㎠, 5%로서 좋지 못하였다.To 33.0 g of 90% L-lactic acid was added 0.0001 g of 1 tin oxidizing agent as a catalyst, followed by dehydration and polycondensation reaction at 150 占 폚 for 3 hours while stirring. Then, the reaction mixture was sufficiently dissolved in 100 ml of methylene chloride, and 100 ml of methanol was poured to obtain crystals. The crystals were filtered, washed with methanol three times or more, and sufficiently dried to obtain a white lactic acid oligomer. The molecular weight of the lactic acid oligomer was 2,800 and the content of unreacted lactic acid was 0.1% by weight. The polylactic acid was produced in the same manner as in Example 1 except that the amount of tin oxide used was changed to 0.0001 g as a catalyst. The polylactic acid had a molecular weight of 18,000, and the tensile strength and elongation Were 130 kg / cm 2 and 5%, respectively.

[비교실시예 6][Comparative Example 6]

90% L-락트산 33.0g에 촉매로 산화제1주석 1.55g과 함께 반응기에 넣고 교반하면서 150℃에서 3시간동안 탈수 및 중축합 반응을 행하였다. 그런 다음 반응물을 염화메틸렌 100㎖에 충분히 녹여서 메탄올 100㎖에 부어 결정을 얻었다. 그 결정을 여과하여 메탄올로 3차례 이상 세정하고 충분히 건조하여 백색의 락트산 올리고머를 얻었다. 락트산 올리고머의 분자량은 8,000이었으며 미반응 락트산의 함량은 0.2중량%였다. 그 다음은 실시예 1에서 행한 것과 같은 방법으로 행하되, 다만 촉매의 사용량만 1.55g으로 바꾸어 폴리락트산을 제조하여 필름을 만들었더니 폴리락트산의 분자량은 28,000이었으며, 필름의 인장강도와 신도는 각각 210kg/㎠, 7%로서 좋지 못하였다.To 33.0 g of 90% L-lactic acid, 1.55 g of 1 tin oxidizing agent was added to the reactor, followed by dehydration and polycondensation reaction at 150 ° C. for 3 hours while stirring. The reaction was then sufficiently dissolved in 100 ml of methylene chloride and poured into 100 ml of methanol to obtain crystals. The crystals were filtered, washed with methanol three times or more, and sufficiently dried to obtain a white lactic acid oligomer. The molecular weight of the lactic acid oligomer was 8,000 and the content of unreacted lactic acid was 0.2% by weight. The polylactic acid was produced in the same manner as in Example 1 except that the amount of catalyst used was changed to 1.55 g. The molecular weight of polylactic acid was 28,000, and the tensile strength and elongation of the film were 210 kg / ㎠, and 7%, respectively.

[비교실시예 7][Comparative Example 7]

90% L-락트산 33.0g에 촉매로 삼산화안티몬 0.06g과 함께 반응기에 넣고 교반하면서 150℃에서 3시간동안 탈수 및 중축합 반응을 행하였다. 그런 다음 반응물을 염화메틸렌 100㎖에 충분히 녹여서 메탄올 100㎖에 부어 결정을 얻었다. 그 결정을 여과하여 메탄올로 3차례 이상 세정하고 충분히 건조하여 백색의 락트산 올리고머를 얻었다. 락트산 올리고머의 분자량은 12,500이었으며 미반응 락트산의 함량은 0.1중량%였다. 15g의 락트산 올리고머에 촉매로 삼산화안티몬 0.045g과 산화방지제로 이르가녹스 1010을 0.0001g 반응기에 넣고, 그 다음은 실시예 1에서 행한 것과 같은 방법으로 행하되, 사용량만 0.0001g으로 바꾸어 폴리락트산을 제조하여 필름을 만들었더니 폴리락트산의 분자량은 22,000이었으며, 필름의 인장강도와 신도는 175kg/㎠, 6%로서 좋지 못하였다.Lactic acid was added to 33.0 g of L-lactic acid as a catalyst together with 0.06 g of antimony trioxide in a reactor, followed by dehydration and polycondensation reaction at 150 ° C for 3 hours while stirring. The reaction was then sufficiently dissolved in 100 ml of methylene chloride and poured into 100 ml of methanol to obtain crystals. The crystals were filtered, washed with methanol three times or more, and sufficiently dried to obtain a white lactic acid oligomer. The molecular weight of the lactic acid oligomer was 12,500 and the content of unreacted lactic acid was 0.1% by weight. 0.045 g of antimony trioxide as a catalyst in 15 g of lactic acid oligomer and 0.0001 g of Irganox 1010 as an antioxidant were placed in a reactor and then the same procedure as in Example 1 was carried out to prepare polylactic acid The molecular weight of the polylactic acid was 22,000, and the tensile strength and elongation of the film were 175 kg / cm 2 and 6%, which was not good.

[비교실시예 8][Comparative Example 8]

90% L-락트산 33.0g에 촉매로 삼산화안티몬 0.06g과 함께 반응기에 넣고 교반하면서 150℃에서 3시간동안 탈수 및 중축합 반응을 행하였다. 그런 다음 반응물을 염화메틸렌 100㎖에 충분히 녹여서 메탄올 100㎖에 부어 결정을 얻었다. 그 결정을 여과하여 메탄올로 3차례 이상 세정하고 충분히 건조하여 백색의 락트산 올리고머를 얻었다. 락트산 올리고머의 분자량은 12,500이었으며 미반응 락트산의 함량은 0.1중량%였다. 15g의 락트산 올리고머에 촉매로 삼산화안티몬 0.045g과 산화방지제로 이르가녹스 1010을 0.8g 반응기에 넣고, 그 다음은 실시예 1에서 행한 것과 같은 방법으로 폴리락트산을 제조하여 필름을 만들었더니 폴리락트산의 분자량은 26,000이었으며, 필름의 인장강도와 신도는 205kg/㎠, 6%로서 좋지 못하였다.Lactic acid was added to 33.0 g of L-lactic acid as a catalyst together with 0.06 g of antimony trioxide in a reactor, followed by dehydration and polycondensation reaction at 150 ° C for 3 hours while stirring. The reaction was then sufficiently dissolved in 100 ml of methylene chloride and poured into 100 ml of methanol to obtain crystals. The crystals were filtered, washed with methanol three times or more, and sufficiently dried to obtain a white lactic acid oligomer. The molecular weight of the lactic acid oligomer was 12,500 and the content of unreacted lactic acid was 0.1% by weight. 0.045 g of antimony trioxide as a catalyst in 15 g of lactic acid oligomer and 0.8 g of Irganox 1010 as a catalyst were placed in a reactor and then polylactic acid was produced in the same manner as in Example 1 to prepare a film, The molecular weight was 26,000, and the tensile strength and elongation of the film were 205 kg / cm 2, 6%, which was not good.

Claims (1)

락트산을 1차로 탈수, 중축합 반응시켜 평균분자량이 3,000 이상인 락트산 올리고머를 얻은 다음 미반응 락트산의 함량이 0.5중량%를 초과하지 않도록 미반응 락트산을 충분히 제거하고, 2차로 다시 중축합 반응시켜 폴리락트산을 제조하되, 락트산 또는 락트산 올리고머 100중량부에 대해 중축합 반응시 촉매를 0.0005∼5중량%, 산화방지제 0.0001∼5중량%를 첨가하여 제조함을 특징으로 하는 생분해성 폴리락트산의 제조방법.Lactic acid is firstly subjected to dehydration and polycondensation reaction to obtain a lactic acid oligomer having an average molecular weight of 3,000 or more and then the unreacted lactic acid is sufficiently removed so that the content of unreacted lactic acid does not exceed 0.5 wt% Wherein the catalyst is prepared by adding 0.0005 to 5 wt% of a catalyst and 0.0001 to 5 wt% of an antioxidant to 100 parts by weight of lactic acid or lactic acid oligomer in the polycondensation reaction.
KR1019960022245A 1996-06-19 1996-06-19 Method for producing biodegradable polylactic acid Expired - Fee Related KR100190230B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960022245A KR100190230B1 (en) 1996-06-19 1996-06-19 Method for producing biodegradable polylactic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960022245A KR100190230B1 (en) 1996-06-19 1996-06-19 Method for producing biodegradable polylactic acid

Publications (2)

Publication Number Publication Date
KR980002098A KR980002098A (en) 1998-03-30
KR100190230B1 true KR100190230B1 (en) 1999-06-01

Family

ID=19462447

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960022245A Expired - Fee Related KR100190230B1 (en) 1996-06-19 1996-06-19 Method for producing biodegradable polylactic acid

Country Status (1)

Country Link
KR (1) KR100190230B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020022160A (en) * 2000-09-19 2002-03-27 이찬우 Melt/Solid Polycondensation of L-Lactic Acid:An Alternative Route to Poly(L-lactic acid)with High Molecular Weight
KR100517253B1 (en) * 2001-10-18 2005-09-28 주식회사 삼양사 pH responsive biodegradable polylactic acid forming polymeric micelle and their use for poorly water soluble drug delivery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020022160A (en) * 2000-09-19 2002-03-27 이찬우 Melt/Solid Polycondensation of L-Lactic Acid:An Alternative Route to Poly(L-lactic acid)with High Molecular Weight
KR100517253B1 (en) * 2001-10-18 2005-09-28 주식회사 삼양사 pH responsive biodegradable polylactic acid forming polymeric micelle and their use for poorly water soluble drug delivery

Also Published As

Publication number Publication date
KR980002098A (en) 1998-03-30

Similar Documents

Publication Publication Date Title
DE69434579T2 (en) Aliphatic polyesters and process for its preparation
US9683075B2 (en) Process for the continuous production of polyesters
FI108142B (en) Melt-stable lactide polymer composition and process for its preparation
US6063895A (en) Polyester resin and a process for preparing the same
US5386004A (en) Polyhydroxycarboxylic acid and purification process thereof
JPH09505323A (en) Polylactic acid production method
EA031024B1 (en) Polylactic acid and method of its manufacture
US6096855A (en) Process for the preparation of polyhydroxy acids
KR100190230B1 (en) Method for producing biodegradable polylactic acid
Moon et al. Synthesis of polyglactin by melt/solid polycondensation of glycolic/L‐lactic acids
JP3350605B2 (en) Method for producing polylactic acid
CN111087596A (en) Method for preparing polyglycolide by continuous ring opening, catalyst and preparation method
Paszkiewicz et al. Synthesis, structure, and physical properties of poly (trimethylene terephthalate)‐block‐poly (caprolactone) copolymers
US5616783A (en) Purification process of polyhydroxycarboxylic acid
KR100212968B1 (en) Method for preparing polylactic acid-polyglycolic acid copolymer
JP4390273B2 (en) Biodegradable resin composition
CN114773581B (en) Polylactic acid composition and preparation method thereof
DE69713477T2 (en) Process for the preparation of polyhydroxycarboxylic acid
JP3248597B2 (en) Method for producing aliphatic polyester
KR0134938B1 (en) Biodegradable polymeric film and process for the preparation thereof
KR100255038B1 (en) Preparation of Poly(lactic acid-co-caprolactone)
JPH0543665A (en) Production of aliphatic polyester
US5268507A (en) Preparation of amide derivatives of hydroxy acids
JP3752776B2 (en) POLYLACTIC ACID COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND MOLDED ARTICLE OF THE COMPOSITION
Khan et al. Synthesis and characterization of high molecular weight poly (L-lactic acid) using stannous octoate/maleic anhydride binary catalyst system

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 19960619

PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 19960619

Comment text: Request for Examination of Application

PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 19980826

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 19981130

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 19990119

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 19990120

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20011228

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20021230

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20031230

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20040331

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20051230

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20061229

Start annual number: 9

End annual number: 9

PR1001 Payment of annual fee

Payment date: 20071231

Start annual number: 10

End annual number: 10

PR1001 Payment of annual fee

Payment date: 20090105

Start annual number: 11

End annual number: 11

PR1001 Payment of annual fee

Payment date: 20091130

Start annual number: 12

End annual number: 12

PR1001 Payment of annual fee

Payment date: 20101130

Start annual number: 13

End annual number: 13

PR1001 Payment of annual fee

Payment date: 20111230

Start annual number: 14

End annual number: 14

PR1001 Payment of annual fee

Payment date: 20121130

Start annual number: 15

End annual number: 15

FPAY Annual fee payment

Payment date: 20131209

Year of fee payment: 16

PR1001 Payment of annual fee

Payment date: 20131209

Start annual number: 16

End annual number: 16

FPAY Annual fee payment

Payment date: 20141217

Year of fee payment: 17

PR1001 Payment of annual fee

Payment date: 20141217

Start annual number: 17

End annual number: 17

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee