[go: up one dir, main page]

KR0181674B1 - Biodegradable resin compositions - Google Patents

Biodegradable resin compositions Download PDF

Info

Publication number
KR0181674B1
KR0181674B1 KR1019960008328A KR19960008328A KR0181674B1 KR 0181674 B1 KR0181674 B1 KR 0181674B1 KR 1019960008328 A KR1019960008328 A KR 1019960008328A KR 19960008328 A KR19960008328 A KR 19960008328A KR 0181674 B1 KR0181674 B1 KR 0181674B1
Authority
KR
South Korea
Prior art keywords
resin composition
biodegradable resin
acid
added
microorganisms
Prior art date
Application number
KR1019960008328A
Other languages
Korean (ko)
Other versions
KR970065593A (en
Inventor
임대우
김순식
김대진
이명섭
이창수
이영춘
정성구
Original Assignee
박홍기
주식회사새한
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박홍기, 주식회사새한 filed Critical 박홍기
Priority to KR1019960008328A priority Critical patent/KR0181674B1/en
Publication of KR970065593A publication Critical patent/KR970065593A/en
Application granted granted Critical
Publication of KR0181674B1 publication Critical patent/KR0181674B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing atoms other than carbon or hydrogen
    • C08L23/0853Ethene vinyl acetate copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2230/00Compositions for preparing biodegradable polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

본 발명은 기계적 물성이 뛰어나고 경시 변화가 작으며 도시쓰레기의 퇴비화 과정에서 무해할 물질로 빠르게 분해되는 생분해성 수지 조성물을 얻음을 목적으로 하며 그 기술구성은 디카르본산 성분으로 숙신산, 아디프산, 세바스산 중에서 1종 또는 2종을 혼합하고, 디올성분으로 에틸렌 글리콜, 1, 4-부탄디올 중 1종 또는 2종을 혼합한 성분을 주성분으로 하고 관능기로서 히드록시기 또는 카르복시기를 3개 이상 갖는 다 관능성 화합물을 산성분에 대해 0.01 내지 1몰% 반응시키고 에스테르화 반응이 끝난 후 에틸렌비닐아세테이트 코폴리머를 부가 투입하여 촉매의 존재하에서 축중합시킴을 특징으로 하는 생분해성 수지 조성물로써 본 발명에 의한 수지 조성물로서 이루어지는 성형물은 물이 존재하면 계속 분해되어 미생물이 섭취할 수 있을 정도의 저분자량 물질로 되고 궁극적으로는 미생물에 의해 가스, 물 또는 바이오 매스로 완전 분해되는 신규한 생분해성 수지 조성물이다.The present invention aims to obtain a biodegradable resin composition which has excellent mechanical properties, small changes over time, and quickly decomposes into a harmless substance during composting of municipal waste, and its technical composition is succinic acid, adipic acid, A multifunctional compound having one or two kinds of sebacic acids mixed with one or two of ethylene glycol, 1,4-butanediol as a main component, and three or more hydroxyl or carboxyl groups as a functional group. Resin composition according to the present invention as a biodegradable resin composition characterized in that the compound is reacted 0.01 to 1 mol% with respect to the acid component, and after the esterification reaction is added, ethylene vinyl acetate copolymer is added to polycondensate in the presence of a catalyst. Molded products are decomposed continuously in the presence of water and enough to be consumed by microorganisms. And a molecular weight substances, ultimately, a biodegradable resin composition that is a novel full decomposition with gas, water or biomass by microorganisms.

Description

생분해성 수지 조성물Biodegradable Resin Composition

본 발명은 지방족 폴리에스테르에 에틸렌-비닐아세테이트(이하 EVA라 약칭함)를 부가반응시켜서 얻은 필름용도로 사용 가능한 생분해성 수지 조성물에 관한 것이다.The present invention relates to a biodegradable resin composition which can be used for film applications obtained by addition reaction of ethylene-vinylacetate (hereinafter abbreviated as EVA) to aliphatic polyester.

본 발명에 의한 반응물은 지방족 폴리에스테르 자체만으로는 경시변화에 따른 물성저하가 심하므로 이와 같은 현상을 방지 하기 위하여 EVA를 투입시킴을 특징으로 한다.The reactant according to the present invention is characterized in that the EVA is added to prevent such a phenomenon because the physical property of the aliphatic polyester itself is severely degraded over time.

따라서 본 발명 수지조성물로 이루어진 필름은 도시쓰레기의 퇴비화 과정에서 무해한 물질로 빠르게 분해될 뿐만 아니라 종래의 생분해성 고분자 물질에 비해 가격이 현저하게 저렴한 특성을 갖게 된다.Therefore, the film made of the resin composition of the present invention not only quickly decomposes into a harmless material in the composting process of municipal waste, but also has properties that are significantly cheaper than conventional biodegradable polymer materials.

종래의 범용 플라스틱은 기계적 물성, 내화학성, 내구성 등이 우수하여 일상 생활에 많이 사용되고 있으나, 사용후 폐기시에는 자연으로 환원되지 못한다는 단점을 가지고 있다. 최근 수요가 급속히 증가되는 1회용 포장재는 소비가 많음에도 불구하고 회수가 원활히 이루어지지 않아 그대로 방치하는 경우가 많으며 농업용 필름은 완전한 회수가 어려워 토양에 묻혀 농작물 성장에 많은 지장을 주게 된다.Conventional general-purpose plastics are widely used in daily life because of excellent mechanical properties, chemical resistance, durability, etc., but have a disadvantage in that they cannot be reduced to nature when disposed after use. Disposable packaging materials, which are rapidly increasing in demand recently, are often left untouched because they are not recovered smoothly, and agricultural films are difficult to completely recover and are buried in the soil, which affects the growth of crops.

이와 같이 플라스틱 폐기물에 의한 환경오염이 사회문제로 대두됨에 따라 환경보호 차원에서 일정시간 사용후, 폐기시 자동으로 분해되는 분해성 수지의 개발이 활발히 진행되고 있다.As environmental pollution caused by plastic waste is a social problem, development of a degradable resin that automatically decomposes upon disposal after a certain period of time in order to protect the environment is actively progressing.

이러한 분해성 수지의 종류에는 토양에 존재하는 미생물에 의하여 분해되는 생분해성 수지와 태양광의 자외선에 의해 분해되는 광분해성 수지로 구분된다. 현재까지 개발된 광분해성 수지는 토양중에 묻힐 경우에는 빛을 받지 못하여 분해가 되지 않는다는 단점을 가지고 있다.Such degradable resins are classified into biodegradable resins decomposed by microorganisms present in the soil and photodegradable resins decomposed by ultraviolet rays of sunlight. Photodegradable resins developed to date have the disadvantage that they do not receive light when they are buried in soil.

생분해성 수지로는 천연고분자인 전분, 미생물에 의하여 생체내에서 합성된 폴리히드록시알카노에이트 수지, 합성 고분자계 생분해성 수지인 폴리카프로락톤 및 미생물이 생성해낸 원료를 화학합성하여 얻은 폴리락타이드 등이 알려져 있다. 그러나 이러한 수지는 분해성을 우수하나 단독으로는 응용 물성이 취약하고 고가이기 때문에 상업화되지 못하고 있다. 따라서, 가격이 저렴한 전분과 물성이 우수하고 저렴한 비생분해성 고분자인 폴리에틸렌 또는 전분과 생분해성 고분자인 폴리카프로락톤과의 블랜드가 상품화되고 있다. 그러나, 전자의 경우 자연계에 폐기했을 때 전분만이 분해되고 폴리에틸렌은 분해되지 않고 남아있게 되는 결함에 있고, 후자의 경우는 폴리카프로락톤이 고가일 뿐만 아니라 구성물질의 상용성 향상을 위해 추가로 비용이 들기 때문에 제조원가가 비싸다는 단점이 있다.Biodegradable resins include natural starch, polyhydroxyalkanoate resin synthesized in vivo by microorganisms, polycaprolactone synthetic synthetic biodegradable resins, and polylactide obtained by chemical synthesis of raw materials produced by microorganisms. Etc. are known. However, these resins are excellent in degradability, but are not commercialized because of their poor application properties and high price. Therefore, low-priced starch and blends of polyethylene or starch and polycaprolactone, which are biodegradable polymers, have been commercialized. However, the former has a defect in that only starch decomposes and polyethylene remains undecomposed when disposed in nature, while the latter is not only expensive in polycaprolactone but additionally expensive to improve the compatibility of components. Because of this, the manufacturing cost is expensive.

한편, 매립지에 매립되는 생활쓰레기의 적절치 못한 처리와 생활쓰레기와 플라스틱과 같은 비분해성 쓰레기의 증가는 매립비용을 증가시킬 뿐만 아니라 매립지의 소요면적을 증대시킨다. 따라서, 쓰레기중에서 다시 사용할 수 있는 플라스틱을 재활용하는 것이 가장 바람직한 방법이나, 수거가 어려운 플라스틱 예를 들면, 기저귀, 위생수건, 쓰레기 백 등을 재활용하는 것이 쉽지 않다. 최근 재활용할 수 없는 고체쓰레기를 퇴비화 하려는 움직임이 활발하게 진행되고 있다. 그러나, 도시 쓰레기의 퇴비화처리와 생산된 퇴비를 판매하는데 있어서 하나의 제한요소는 퇴비화 과정중에 분해되지 않고 원형대로 남아 있는 플라스틱 제품이 현저하게 눈에 띈다는 것이다.On the other hand, inadequate disposal of landfills at landfills and the increase of non-degradable waste such as household waste and plastics not only increases landfill costs but also increases landfill requirements. Therefore, recycling the plastic that can be reused in the waste is the most preferable method, but it is not easy to recycle the difficult to collect plastics such as diapers, sanitary towels, garbage bags, and the like. Recently, there is an active movement to compost non-recyclable solid waste. However, one limiting factor in composting municipal waste and selling the produced compost is that the plastic products that remain intact and remain intact during the composting process are remarkably noticeable.

본 발명은 토양중의 미생물에 의해 완전분해되어 환경오염을 전혀 일으키지 않을 뿐만 아니라 신도향상과 경시변화에 따른 물성저하가 없는 생분해성 수지 조성물을 얻음을 그 목적으로 한다.It is an object of the present invention to obtain a biodegradable resin composition which is completely decomposed by microorganisms in the soil, which does not cause any environmental pollution, and which has no property deterioration due to improvement in elongation and change over time.

본 발명은 지방족 폴리에스테르에 EVA(ethylene vinyl acetate copolymer)를 부가 반응시킨 것으로 여기에서 사용된 EVA는 지방족 폴리에스테르와 양호한 상용성을 보이며, 에틸렌과 비닐아세테이트의 램덤 공중합체로 두단량체가 다양한 조성을 가질 수 있다. 비닐아세테이트 함량이 높을수록 사슬의 불규칙성이 증가하여 결정화도가 낮아지며 고무상 거동을 나타낸다. 또 비닐아세테이트의 함량이 낮을 경우에는 LDPE와 유사한 물성을 나타내며 연신 필름으로 유용하다. EVA는 유연하므로 사슬 변형이 용이한 에틸렌 존재로 인하여 취약한 고분자에 가소제로 사용된다.According to the present invention, EVA (ethylene vinyl acetate copolymer) is added to aliphatic polyester, and the EVA used herein shows good compatibility with aliphatic polyester, and random monomers of ethylene and vinyl acetate have various compositions. Can be. The higher the vinyl acetate content, the more irregular the chains, the lower the crystallinity and the rubbery behavior. In addition, when the vinyl acetate content is low, it shows properties similar to those of LDPE and is useful as a stretched film. EVA is flexible and is used as a plasticizer in fragile polymers due to the presence of ethylene, which is easy to deform in chains.

본 발명에서 사용한 지방족 폴리에스테르와 EVA 부가 반응물은 고 용융점도 및 신도 특성을 지니고 있으며 다음과 같은 공정을 거쳐서 제조된다.The aliphatic polyester and EVA addition reactant used in the present invention have high melt viscosity and elongation properties and are prepared by the following process.

1) 지방족 디카르본산, 지방족 이가글리콜, 및 관능기로서 히드록시기 또는 카르복시기를 3개 이상 갖는 화합물을 직접에스테르와 하는 공정1) Process of making the aliphatic dicarboxylic acid, aliphatic diglycol, and the compound which has 3 or more of a hydroxyl group or a carboxy group as a functional group with direct ester

2) 에스테르화 공정말기에 EVA를 부가투입 반응시키는 공정2) Addition reaction of EVA at the end of esterification process

3) 에스테르화를 통하여 얻은 올리고머에 중축합 촉매 및 인계 화합물을 첨가하고 220℃이상, 1㎜Hg 이하의 진공하에서 축중합하여 지방족 폴리에스테르를 얻는다.3) A polycondensation catalyst and a phosphorus compound are added to the oligomer obtained through esterification and polycondensation is carried out in a vacuum of 220 ° C. or higher and 1 mm Hg or less to obtain an aliphatic polyester.

상기 지방족 폴리에스테르는 디카르본산 성분으로 숙신산, 아디프산, 세사바스산 중의 1성분 또는 2종을 일정비율로 혼합한 성분, 디올성분으로 에틸렌 글리콜, 1, 4-부탄이올중의 1성분 또는 2종을 일정비율로 혼합한 성분을 주성분으로 하고, 관능기로서 히드록시기 또는 카르복시기를 3개 이상 갖는 다 관능성 화학물을 산성분에 대해 0.01 내지 1몰% 반응시키며 특히 에스테르화 반응완료 후 EVA를 부가투입시켜 티탄계의 촉매 존재하에서 축중합 시킨다.The aliphatic polyester is a component obtained by mixing one component or two kinds of succinic acid, adipic acid and sesabas acid as a dicarboxylic acid component at a constant ratio, and a component of ethylene glycol, 1,4-butanediol as a diol component. Or a mixture of two species at a constant ratio as a main component, and 0.01 to 1 mol% of a polyfunctional chemical having three or more hydroxy groups or carboxyl groups as functional groups with respect to the acid component, and especially after completion of the esterification reaction, The addition is carried out by condensation polymerization in the presence of a titanium catalyst.

이 경우 지방족 폴리에스테르에 혼합할 EVA의 첨가량은 지방족 폴리에스테르에 대하여 2∼15중량%가 바람직하며 EVA의 부가비율이 15중량%를 초과하면 수지조성물의 신도 및 강도가 급격히 떨어지는 경향이 있으며 2중량% 미만인 경우에는 신도향상 효과가 없었다. 또 EVA중 비닐아세테이트의 함량은 바람직하게는 10wt% 내지 50중량% 이어야 한다. 비닐아세테이트의 함량이 10wt% 미만인 경우에는 신도향상이 떨어지고 50wt%를 초과하는 경우에는 고무상 거동으로 필름 성형이 어려워진다.In this case, the amount of EVA to be mixed with the aliphatic polyester is preferably 2 to 15% by weight relative to the aliphatic polyester, and when the addition ratio of EVA is more than 15% by weight, the elongation and strength of the resin composition tend to decrease sharply and 2% by weight. Less than% had no effect on elongation. In addition, the content of vinyl acetate in the EVA should preferably be 10wt% to 50% by weight. When the content of vinyl acetate is less than 10wt%, the elongation improvement is reduced, and when it exceeds 50wt%, it becomes difficult to form a film due to the rubbery behavior.

본 발명에 의한 생분해성 수지 조성물에서 얻어진 성형물은 도시쓰레기의 퇴비화 과정의 일반적인 조건(온도 50∼60℃, 상대습도 100%, 처리기간 2주∼3개월)에서 그 형체를 알아볼 수 없을 정도로 분해되기 때문에 위에서 언급한 문제를 야기시키지 않는다.The molded article obtained from the biodegradable resin composition according to the present invention is decomposed to an unrecognizable shape under the general conditions of composting process of municipal waste (temperature of 50 to 60 ° C., relative humidity of 100%, treatment period of 2 weeks to 3 months). This does not cause the problem mentioned above.

본 발명자는 생분해성 측정을 위하여 분해성 가속화 평가법(Composting method)에 따라 매질로서 우리나라에서 발생하는 일반 쓰레기의 구성비율에 부합되게 (표 1)과 같이 조성하고 내부환경은 (표 2)와 같이 조절하여 시료 필름을 삽입한 후 10주 동안 유지시켜 시료 필름의 무게 감소를 측정함으로써 분해도를 평가하였다.In order to measure biodegradability, the inventors set the composition according to the composition ratio of general waste generated in Korea as a medium according to the degradability acceleration evaluation method (Composting method) as shown in (Table 1) and adjust the internal environment as shown in (Table 2) The resolution was evaluated by holding the sample film for 10 weeks after insertion to measure the weight loss of the sample film.

이하, 실시예 의거 본 발명을 구체적으로 설명한다.Hereinafter, the present invention will be described in detail with reference to Examples.

[실시예 1]Example 1

교반기와 콘데서가 부착된 반응기내에 1, 4-부탄디올 140중량부, 숙신산 120중량부, 아디프산 30중량부, 트리메리트산 0.4 중량부를 투입하고 반응기내의 온도를 상온으로부터 30분에 걸쳐 120℃까지 승온시키고 교반하면서 120분에 걸쳐 210℃까지 승온 반응시켰다.140 parts by weight of 1,4-butanediol, 120 parts by weight of succinic acid, 30 parts by weight of adipic acid, and 0.4 parts by weight of trimellitic acid were added to a reactor equipped with a stirrer and a condenser, and the temperature in the reactor was increased to 120 ° C. over 30 minutes from room temperature. It heated up and stirred at 210 degreeC over 120 minutes, stirring.

이 때 생성된 부반응물인 물은 콘데서를 통하여 완전히 유출시켰다. 이렇게 하여 생성된 올리고머에 EVA를 지방족 폴리에스테르에 대해 5중량% 상당량 부가투입한 후 촉매로서 티타늄테트라부톡사이드 0.3중량부, 열안정제로서 인산을 0.04중량부 투입하고 160분 동안 감압하에서 교반응을 진행한 다음 교반을 중단하고 관내로 질소를 주입하여 중합체를 가압·토출하여 지방족 폴리에스테르와 EVA의 반응물을 얻었다.At this time, the generated side reaction water was completely discharged through the condenser. After adding 5 wt% of EVA to the aliphatic polyester, the resulting oligomer was added with 0.3 parts by weight of titanium tetrabutoxide as a catalyst and 0.04 parts by weight of phosphoric acid as a heat stabilizer, and the reaction was carried out under reduced pressure for 160 minutes. Then, the stirring was stopped and nitrogen was injected into the tube to pressurize and discharge the polymer to obtain a reaction product of the aliphatic polyester and EVA.

이와 같이 하여 얻은 수지조성물을 ASTM D412에 의거 측정한 기계적 물성과 매질의 분해성 평가치는 (표 3)에 나타내었다. 또한 대기중에서 필름샘플을 방치하여 시간 경과에 따른 기계적 물성저하 경향은 그림 1과 같다.The mechanical properties measured in accordance with ASTM D412 for the resin composition thus obtained and the degradation degradability evaluation of the medium are shown in (Table 3). In addition, the tendency of mechanical property deterioration with time after leaving the film sample in the air is shown in Fig. 1.

[실시예 2]Example 2

실시예 1에서 지방족 폴리에스테르에 대한 EVA의 부가비율을 11중량%로 한 것 이외는 실시예 1과 동일하며 그 결과는 (표 3)과 같다.Except that the addition ratio of EVA to aliphatic polyester in Example 1 to 11% by weight is the same as in Example 1 and the results are shown in Table 3.

[비교예 1]Comparative Example 1

실시예 1에서 지방족 폴리에스테르에 EVA를 부가하지 않은 것 이외는 동일한 조건으로 하였으며 그 결과는 (표 3)과 같다.Except that EVA was not added to the aliphatic polyester in Example 1 and the same conditions were obtained, the results are shown in Table 3.

[비교예 2]Comparative Example 2

실시예 1에서 지방족 폴리에스테르에 대한 EVA의 부가비율이 16중량%인 것 이외는 동일한 조건으로 하였으며 그 결과는 (표 3)과 같다.Except for the addition ratio of EVA to aliphatic polyester in Example 1 was 16% by weight under the same conditions and the results are shown in Table 3.

[비교예 3]Comparative Example 3

실시예 1에서 지방족 폴리에스테르에 대한 EVA의 부가비율이 25중량%인 것 이외는 동일한 조건으로 하였으며 그 결과는 (표 3)과 같다.Except for the addition ratio of EVA to the aliphatic polyester in Example 1 was 25% by weight under the same conditions and the results are shown in Table 3.

[그림 1. 공기 중 방치시 시간에 따른 기계적 물성저하 경향][Figure 1. Mechanical Property Degradation with Time in Air]

본 발명에 의한 수지조성물로 이루어진 성형물은 도시쓰레기의 퇴비화 과정에서 뿐만 아니라 물이 존재하면 계속 분해되어 미생물이 섭취할 수 있을 정도의 저분자량 물 또는 바이오매스로 완전 분해된다.The molded article made of the resin composition according to the present invention is not only decomposed during urban composting but also continues to decompose when water is present, and is completely decomposed into low molecular weight water or biomass enough to be ingested by microorganisms.

Claims (1)

디카르본산 성분으로 숙신산, 아디프산, 세바스산 중에서 1종 또는 2종을 혼합하고, 디올성분으로 에틸렌 글리콜, 1, 4-부탄디올 중 1종 또는 2종을 혼합한 성분을 주성분으로 하고 관능기로서 히드록시기 또는 카르복시기를 3개 이상 갖는 다 관능성 화합물을 산성분에 대해 0.01 내지 1몰% 반응시킨 다음 에스테르화 반응이 끝난 후 에틸렌비닐아세테이트 코폴리머를 지방족 폴리에스테르에 대해 2∼15중량% 부가투입하여 통상의 촉매 존재하에서 축중합시킴을 특징으로 하는 생분해성 수지 조성물.As the dicarboxylic acid component, one or two of succinic acid, adipic acid, and sebacic acid are mixed, and one or two of ethylene glycol, 1,4-butanediol is mixed as a diol component as a main component. 0.01 to 1 mol% of a polyfunctional compound having at least three hydroxyl groups or carboxyl groups is reacted with an acid component, and then 2-15 wt% of an ethylene vinyl acetate copolymer is added to the aliphatic polyester after the completion of the esterification reaction. A biodegradable resin composition characterized by condensation polymerization in the presence of a conventional catalyst.
KR1019960008328A 1996-03-26 1996-03-26 Biodegradable resin compositions KR0181674B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960008328A KR0181674B1 (en) 1996-03-26 1996-03-26 Biodegradable resin compositions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960008328A KR0181674B1 (en) 1996-03-26 1996-03-26 Biodegradable resin compositions

Publications (2)

Publication Number Publication Date
KR970065593A KR970065593A (en) 1997-10-13
KR0181674B1 true KR0181674B1 (en) 1999-05-15

Family

ID=19453948

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960008328A KR0181674B1 (en) 1996-03-26 1996-03-26 Biodegradable resin compositions

Country Status (1)

Country Link
KR (1) KR0181674B1 (en)

Also Published As

Publication number Publication date
KR970065593A (en) 1997-10-13

Similar Documents

Publication Publication Date Title
Bastioli Biodegradable materials—present situation and future perspectives
US5594068A (en) Cellulose ester blends
RU2480495C2 (en) Novel biodegradable polymer composition suitable for producing biodegradable plastic, and method of preparing said composition
CA2113521C (en) Melt processable biodegradable compositions and articles made therefrom
EP1725614B1 (en) Biodegradable compositions comprising polylactic polymers, adipat copolymers and magnesium silicate
EP4053207A1 (en) Renewable resin composition and product manufactured from same
JP3773335B2 (en) Biodegradable aliphatic polyester resin-starch composition
Sriroth et al. Biodegradable plastics from cassava starch in Thailand
KR0163495B1 (en) Method for preparing flat yarn of aliphatic copolyester
KR0181674B1 (en) Biodegradable resin compositions
KR0156895B1 (en) Biodegradable resin composition
KR0156892B1 (en) Manufacturing method of biodegradable resin
KR100523480B1 (en) Biodegradable Resin Composition
KR0156894B1 (en) Biodegradable Resin Composition
JP4587737B2 (en) Polylactic acid composition
KR0132262B1 (en) Biodegradable Resin Composition
KR0170069B1 (en) Compostable Aliphatic Copolyester Film
KR100255116B1 (en) Manufacturing method of biodegradable polymer
KR0181673B1 (en) Manufacturing method of polyester resin with excellent biodegradability
KR0146231B1 (en) Biodegradable Resin Composition
KR100489733B1 (en) Manufacturing method of chitosan-containing polyester resin
KR20120126936A (en) Method of manufacturing biodegradable polyester resin
JPH10120890A (en) Polylactic resin composition for transparent molding
KR0135211B1 (en) Degradable resin composition
JP3905569B2 (en) Biodegradable molded product

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 19960326

PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 19960326

Comment text: Request for Examination of Application

PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 19980826

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 19981130

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 19981208

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 19981208

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20011113

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20021002

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20030923

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20041005

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20051007

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20061013

Start annual number: 9

End annual number: 9

PR1001 Payment of annual fee

Payment date: 20071008

Start annual number: 10

End annual number: 10

PR1001 Payment of annual fee

Payment date: 20080327

Start annual number: 11

End annual number: 11

FPAY Annual fee payment

Payment date: 20091204

Year of fee payment: 12

PR1001 Payment of annual fee

Payment date: 20091204

Start annual number: 12

End annual number: 12

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

Termination category: Default of registration fee

Termination date: 20111110