KR0164100B1 - Thermally stable organic optoelectronic compound for optical device and method of manufacturing same - Google Patents
Thermally stable organic optoelectronic compound for optical device and method of manufacturing same Download PDFInfo
- Publication number
- KR0164100B1 KR0164100B1 KR1019940030626A KR19940030626A KR0164100B1 KR 0164100 B1 KR0164100 B1 KR 0164100B1 KR 1019940030626 A KR1019940030626 A KR 1019940030626A KR 19940030626 A KR19940030626 A KR 19940030626A KR 0164100 B1 KR0164100 B1 KR 0164100B1
- Authority
- KR
- South Korea
- Prior art keywords
- group
- thermally stable
- organic optoelectronic
- monomer
- stable organic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/34—Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/14—Methyl esters, e.g. methyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/38—Esters containing sulfur
- C08F220/387—Esters containing sulfur and containing nitrogen and oxygen
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
본 발명은 열적으로 안정한 광소자용 유기 광전자 화합물 및 이의 제조방법에 관한 것으로, 좀 더 상세하게는 OH기가 설폰기 말단에 부착된 다이알킬아미노 알킬설폰 스틸벤과 메타크릴로일크롤라이드를 반응시켜 단량체를 제조하고, 상기 단량체와 메틸메타아크릴레이트를 공중합시켜 제조된 일반식(I)로 표현되는 열적으로 안정한 광소자용 유기 광전자 화합물에 관한 것이다.The present invention relates to a thermally stable organic optoelectronic compound for a photonic device and a method for preparing the same, and more particularly, a monomer by reacting a dialkylamino alkylsulfone stilbene and methacryloyl chloride having an OH group attached to a sulfone group end. The present invention relates to a thermally stable organic optoelectronic compound represented by formula (I) prepared by copolymerizing the monomer and methyl methacrylate.
상기 일반식(I)에서, x 대 y의 비가 0.1 내지 0.7이고, n은 2 내지 20인 정수이며, R1및 R2는 서로 같거나 다른 것으로 탄소수가 1 내지 20인 알킬기, 알켄기 또는 알킨기, 페닐기, 알킬기가 치환된 페닐, 나프탈렌기, 또는 알킬기가 치환된 나프탈렌기이다.In the general formula (I), the ratio of x to y is 0.1 to 0.7, n is an integer of 2 to 20, and R 1 and R 2 are the same or different and have an alkyl group, alkene group or alkyne having 1 to 20 carbon atoms. Group, a phenyl group, a phenyl substituted with an alkyl group, a naphthalene group, or a naphthalene group substituted with an alkyl group.
Description
본 발명은 열적으로 안정한 광소자용 유기 광전자 화합물 및 이의 제조방법에 관한 것으로, 좀 더 상세하게는 열적으로 안정한 전기광학적인 성질을 지니고, 광전송 손실이 아주 낮은 옆사슬(side chain) 비선형 광학 고분자재료로 사용되는 유기 광전자 화합물 및 이의 제조방법에 관한 것이다.The present invention relates to a thermally stable organic optoelectronic compound and a method for manufacturing the same, and more particularly to a side chain nonlinear optical polymer material having thermally stable electro-optic properties and very low light transmission loss. It relates to an organic optoelectronic compound used and a method for producing the same.
정보통신에 사용되는 광교환 소자는 이제까지 주로 LiNbO3를 이용하여 제조되어 왔다. LiNbO3를 이용한 광소자의 대역폭은 10GHz-cm이하이기 때문에 차세대 정보통신을 위한 광소자에서는 LiNbO3로서는 한계에 부딪칠 것으로 예상된다. 현재 LiNbO3의 한계점을 해결하고자 전기 광학적 성질을 가지는 유기고분자 물질을 이용한 광교환 소자의 연구가 전세계적으로 활발히 진행되고 있다.Optical exchange devices used for information communication have been manufactured mainly using LiNbO 3 so far. Since the bandwidth of an optical device using LiNbO 3 is 10 GHz-cm or less, it is expected that the optical device for next-generation information communication will face a limit as LiNbO 3 . In order to solve the limitations of LiNbO 3 , the research of the light exchange device using the organic polymer material having electro-optic properties is being actively conducted worldwide.
유기 광전자 고분자 물질은 특히 비선형 광학 성질이 아주 뛰어나 LiNbO3와 반도체 물질에 비하여 스위칭(switching) 속도가 아주 빠르고 (2 nanosec. 대 50 picosec.), 광대역 폭이 아주 높으며(10 GHz 대 400 CHz), 기존 광섬유 어레이의 접속 등이 용이한 장점이 있다. 또한 유기고분자 물질은 가공성이 우수하기 때문에 여러 가지의 광소자 즉, 직선 광도파로 배선, 위상변조기, 마하-젠더(Mach-Zender) 간섭계, 빔스플리터(beam splitter), 다이렉션널 커플러(directional coupler), X-스위치(X-switch) 등의 집적화가 훨씬 용이하여 차세대에 필요한 광소자에 매우 유리한 장점을 지니고 있다.Organic optoelectronic polymers have particularly good nonlinear optical properties, resulting in very fast switching speeds (2 nanosec. Vs. 50 picosec.) And very high bandwidth (10 GHz vs. 400 CHz) compared to LiNbO 3 and semiconductor materials. It is easy to connect existing fiber arrays. In addition, organic polymer materials have excellent processability, which means that a variety of optical devices such as linear optical waveguide wiring, phase modulators, Mach-Zender interferometers, beam splitters, and directional couplers are used. It is much easier to integrate X-switch, X-switch, etc., which is very advantageous for optical devices required for next generation.
그러나, 유기 고분자 물질로 제조된 광소자가 현재 사용되고 있는 LiNbO3의 광소자보다 월등함에도 불구하고 지금까지 실용화되지 못하는 이유는 고분자 물질의 전기광학적 성질이 열적으로 안정하지 못한 것과 광전송 손실이 크기 때문이다.However, even though the optical device made of the organic polymer material is superior to the LiNbO 3 optical device currently used, the reason why it is not practical until now is that the electro-optical properties of the polymer material are not thermally stable and the light transmission loss is large.
지금까지 연구된 유기 고분자 물질들은 고분자 매질에 비선형 광전자 유기물을 주입시켜 극화(poling)시킨 호스트-게스트(host-guest)계, 비선형 광전자 유기물을 고분자 매질에 공유결합시킨 옆사슬계 고분자, 주사슬에 붙힌 주사슬계 고분자 또는 고분자를 가교시킨 가교고분자(cross-linked polymer) 등이 있고, 특히 가교고분자의 경우 전기광학적 성질이 100℃이상에서도 안정한 물질이 보고 되었다. 이 가교고분자 물질은 열적으로 안정한 전기광학적인 성질은 해결하였으나, 광전송 손실(10dB/㎝)이 아주 높아서 실용화하는데는 큰 문제가 있다. 그리고 비선형 광전자 유기물을 주입시켜 극화시킨 호스트-게스트계의 광소자용 유기고분자 재료가 최근들어 고분자 물질의 전기 광학적 성질이 150℃에서도 안정하다고 보고되었으나, 상기 계 또한 비선형 유기물들의 용해도가 낮아서 전기광학 효과가 아주 작기 때문에 광소자 제조에 이용할 수 없는 결점이 있다.The organic polymers studied so far are host-guest type polarized by injecting a nonlinear optoelectronic organic material into the polymer medium, and a side chain type polymer which covalently bonds the nonlinear optoelectronic organic material to the polymer medium and the main chain. There is a cross-linked polymer (cross-linked polymer), such as a cross-linked polymer or a cross-linked polymer attached to the polymer, in particular in the case of the cross-linked polymer has been reported to be stable even if the electro-optic properties above 100 ℃. This crosslinked polymer material has solved the thermally stable electro-optic property, but there is a big problem in practical use because the optical transmission loss (10dB / cm) is very high. In addition, the organic polymer material of the host-guest type optical device polarized by injecting a nonlinear optoelectronic organic material has recently been reported to have stable electro-optic properties of a polymer material at 150 ° C. There is a drawback that it cannot be used to manufacture an optical device because it is very small.
이러한 문제점을 해결하고자 비선형 광학 유기물을 도핑(doping)시키는 대신에 스페이서(spacer)를 이용하여 주사슬에 비선형 광학 유기물을 공유결합시켜 연결시킨 옆사슬(side chain) 비선형 광학 고분자 재료가 개발되었다. 이 방법에 의하여 비서니형 광학 유기물 밀도를 높여 전기 광학 계수를 증가시킬 수 있었고 열적 안정도를 향상시킬 수 있었다. 하지만 열적 안정도가 60-70℃정도의 한계를 지니고 있어 소자의 신뢰성에 문제가 야기되고 있는 실정이다.In order to solve this problem, instead of doping the nonlinear optical organic material, a side chain nonlinear optical polymer material has been developed in which a nonlinear optical organic material is covalently coupled to the main chain by using a spacer. By this method, the density of non-sunny optical organic materials can be increased to increase the electro-optic coefficient and the thermal stability can be improved. However, the thermal stability has a limit of about 60-70 ℃, causing a problem in the reliability of the device.
따라서, 본 발명의 목적은 상술한 문제점을 해결할 수 있는 광소장용 유기 광전자 화합물을 제공하는데 있다.Accordingly, it is an object of the present invention to provide an organic optoelectronic compound for photolithography that can solve the above problems.
본 발명의 다른 목적은 상기 화합물을 제조하는 방법을 제공하는데 있다.Another object of the present invention is to provide a method for preparing the compound.
상기 목적을 달성하기 위한 본 발명의 화합물은 하기 일반식 (I)로 표시된다.The compound of the present invention for achieving the above object is represented by the following general formula (I).
상기 일반식(I)에서, x 대 y의 비가 0.1 내지 0.7이고, n은 2 내지 20인 정수이며, R1및 R2는 서로 같거나 다른 것으로 탄소수가 1 내지 20인 알킬기, 알켄기 또는 알킨기, 페닐기, 알킬기가 치환된 페닐, 나프탈렌기, 또는 알킬기가 치환된 나프탈렌기이다.In the general formula (I), the ratio of x to y is 0.1 to 0.7, n is an integer of 2 to 20, and R 1 and R 2 are the same or different and have an alkyl group, alkene group or alkyne having 1 to 20 carbon atoms. Group, a phenyl group, a phenyl substituted with an alkyl group, a naphthalene group, or a naphthalene group substituted with an alkyl group.
본 발명의 다른 목적을 달성하기 위한 제조방법은 OH기가 설폰기 말단에 붙착된 다이알킬아미노 알킬설폰 스틸벤과 메타크릴로일크롤라이드를 반응시켜 단량체를 제조하고, 상기 단량체와 메틸메타아크릴레이트를 공중합시키는 것으로 이루어진다.The production method for achieving another object of the present invention is to prepare a monomer by reacting a dialkylamino alkylsulfone stilbene and methacryloyl chloride with an OH group attached to the end of the sulfone group, to prepare a monomer and methyl methacrylate It is made to copolymerize.
이하, 본 발명을 좀 더 구체적으로 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.
전술한 바와 같이, 기존의 옆사슬 비선형 광학 고분자 재료는 미국의 Heochst-Celanese사와 네덜란드의 Akzo회사에서 광소자 제조에 사용되고 있는 스틸벤계의 비선형 광학 유기물(DANS ; diamino nitro stilbene)를 스페이서로 이용하여 주사슬 폴리메틸메타크릴레이트(PMMA)에 비선형 광학 유기물을 공유결합으로 연결시킨 옆사슬 비선형 광학 고분자 재료였다. 상기 방법에 의하여 비선형 광학 유기물의 밀도를 높여 전기 광학 계수를 증가시킬 수 있었고 열적 안정도를 향상시킬 수 있었다. 하지만 열적 안정도가 60-70℃ 정도의 한계를 지닌다. 이것은 고분자의 유리전이온도(Tg)가 낮은 이유에서 기인되고, 현재의 추세는 고분자의 유리 전이 온도를 150℃이상인 옆사슬 비선형 광학 고분자 재료의 개발에 중점을 두고 있다.As described above, the conventional side chain nonlinear optical polymer material is mainly made of stilbene nonlinear optical organic material (DANS; diamino nitro stilbene), which is used for manufacturing optical devices by Heochst-Celanese of USA and Akzo of the Netherlands, as a spacer. It was a side chain nonlinear optical polymer material in which a nonlinear optical organic material was covalently linked to a chain polymethyl methacrylate (PMMA). By this method, the density of the nonlinear optical organic material was increased to increase the electro-optic coefficient and the thermal stability was improved. However, thermal stability has a limit of 60-70 ℃. This is due to the low glass transition temperature (Tg) of the polymer, and the current trend is focused on the development of a side chain nonlinear optical polymer material having a glass transition temperature of 150 ° C or higher.
이에 본 발명에서는 미국의 Heochst-Celanese사와 네덜란드의 Akzo사에서 사용되고 있는 DANS계와 달리 알킬설폰기을 수용기로 하는 디아미노설폰스틸벤(DASS)계의 비선형 광학 유기물을 개발하여 하기 일반식(I)로 표시되는 화합물과 같이 알킬설폰기의 말단에 하이드록시 그룹을 도입시켜 이것을 메타크릴로일크롤라이드(methacryloylchoride)와 반응시켜 전기 광학 특성을 갖는 단량체를 제조하였고, 상기 단량체와 여러 조성비를 가지는 메틸메타아크릴레이트(MMA)를 공중합시켜서 주사슬 PMMA에 OH기가 설폰기 말단에 부착된 스틸벤이 공유결합으로 연결된 옆사슬 비선형 광학 고분자 재료를 제조하였다. 이때, 상기 단량체와 MMA의 반응 몰비는 어느 한 성분이 0.2 내지 2.5배, 바람직하게는 1 : 1이다.In the present invention, unlike the DANS system used by Heochst-Celanese in the United States and Akzo in the Netherlands, a non-linear optical organic compound of diaminosulfone- stilbene (DASS) having an alkyl sulfone group as a general formula (I) was developed. A hydroxy group was introduced at the end of the alkylsulfone group as shown in the compound to react with methacryloylcholide to prepare a monomer having electro-optic properties, and methyl methacryl having various composition ratios with the monomer. By copolymerizing the rate (MMA), a side chain nonlinear optical polymer material in which stilbene having an OH group attached to the sulfone group end was covalently bonded to the main chain PMMA was prepared. At this time, the reaction molar ratio of the monomer and MMA is any component of 0.2 to 2.5 times, preferably 1: 1.
상기 일반식(I)에서, x 대 y의 비가 0.1 내지 0.7이고, n은 2 내지 20인 정수이며, R1및 R2는 서로 같거나 다른 것으로 탄소수가 1 내지 20인 알킬기, 알켄기 또는 알킨기, 페닐기, 알킬기가 치환된 페닐, 나프탈렌기, 또는 알킬기가 치환된 나프탈렌기이다.In the general formula (I), the ratio of x to y is 0.1 to 0.7, n is an integer of 2 to 20, and R 1 and R 2 are the same or different and have an alkyl group, alkene group or alkyne having 1 to 20 carbon atoms. Group, a phenyl group, a phenyl substituted with an alkyl group, a naphthalene group, or a naphthalene group substituted with an alkyl group.
이러한 방법으로 제조된 본 발명의 DASS계 옆사슬 비선형 광학 고분자 재료는 비선형 광학 유기물 밀도를 높여 전기 광학 계수를 증가 시킬 수 있었고, 지금까지 보고된 옆사슬 폴리머에 비해 높은 Tg값 (150℃이상)을 가져서 전기 광학 효과의 열적 안정도를 향상시킬 수 있다.The DASS-based side chain nonlinear optical polymer material of the present invention prepared in this manner was able to increase the electro-optic coefficient by increasing the density of nonlinear optical organic matter, and has a higher Tg value (150 ° C. or higher) than the side chain polymer reported so far. It is possible to improve the thermal stability of the electro-optic effect.
이하, 실시예를 통하여 본 발명을 좀 더 구체적으로 살펴보지만, 하기 예에 본 발명의 범주가 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the scope of the present invention is not limited to the following Examples.
[실시예 1]Example 1
4'-[(6-메타크릴록시 헥실)설폰]-4-디메틸아미노스틸벤의 단량체와 메틸메타크릴레이트(MMA)와의 공중합으로 상기 일반식(I)로 표시되는 광소자용 비선형 광학 고분자 재료의 합성법은 하기 반응식 1과 같고, 각 단계별 반응성분 및 조건은 다음과 같다.Of the nonlinear optical polymer material for an optical device represented by the general formula (I) by copolymerization of a monomer of 4 '-[(6-methacryloxyhexyl) sulfone] -4-dimethylaminostilbene and methyl methacrylate (MMA) Synthesis method is the same as in Scheme 1, the reactive components and conditions for each step are as follows.
1-1. 4-메틸페닐-6-아세톡시 헥실 설파이드1-1. 4-methylphenyl-6-acetoxy hexyl sulfide
p-톨루엔 치올(44.54g, 0.36mol)을 DMF(250mol)에 녹이고 74.52g의 K2CO3를 플라스크에 넣는다. 여기에 6-클로로-1-헥사놀(40.86g, 0.3mol)을 천천히 적하한 후, 반응 온도를 70℃로 올려 24시간 동안 교반시킨다. 반응혼합물을 300ml물에 붓고 에틸아세테이트(EA)로 추출한 다음, MgSO4로 건조한 후 용매를 제거하고 얻어진 생성물을 반응 용기 속에 넣고 30g의 피리딘과 37.7g(0.35mol) 무수초산을 첨가하고 80℃에서 10시간 동안 반응시킨다. 반응온도를 내리고 200ml 물에 부어 에틸아세테이트(EA)로 추출한 후 MgSO4로 건조하고 나서 진공 증류시켜 정제한다.P-toluene thiol (44.54 g, 0.36 mol) is dissolved in DMF (250 mol) and 74.52 g of K 2 CO 3 is added to the flask. 6-chloro-1-hexanol (40.86 g, 0.3 mol) was slowly added dropwise thereto, and the reaction temperature was raised to 70 ° C. and stirred for 24 hours. The reaction mixture was poured into 300 ml of water, extracted with ethyl acetate (EA), dried over MgSO 4 , the solvent was removed, and the obtained product was placed in a reaction vessel. Reaction for 10 hours. The reaction temperature was lowered, poured into 200 ml water, extracted with ethyl acetate (EA), dried over MgSO 4 , and purified by vacuum distillation.
끊는점 = 165℃/0.1 mmHg. 수율 = 81.5%Breaking point = 165 ° C./0.1 mmHg. Yield = 81.5%
1-2. 4-메틸페닐-6-아세톡시 헥실 설폰1-2. 4-methylphenyl-6-acetoxy hexyl sulfone
65g(0.24 mol)의 상기 (1-1)을 300ml 아세트산에 용해시킨후 H2O2(30%, 69.21g)을 천천히 부어서 4시간 동안 환류시킨다. 반응온도를 내린 후 물과 아세트산을 제거하고 400ml 클로로포름에 희석시켜서 NaOH 수용액으로 3번 세척한 후 MgSO4로 건조시킨다. 생성된 원료를 진공증류시켜 정제한다.After dissolving 65 g (0.24 mol) of (1-1) in 300 ml of acetic acid, H 2 O 2 (30%, 69.21 g) was poured slowly to reflux for 4 hours. After the reaction temperature was lowered, water and acetic acid were removed, diluted in 400 ml chloroform, washed three times with an aqueous NaOH solution, and dried over MgSO 4 . The resulting raw material is purified by vacuum distillation.
끊는점 = 190℃/0.1 mmHg. 수율 = 84 %Breaking point = 190 ° C./0.1 mmHg. Yield = 84%
1-3. 4'-[(6-아세톡시 헥실)설포닐]벤질 브로마이드1-3. 4 '-[(6-acetoxy hexyl) sulfonyl] benzyl bromide
61g(0.2mol)의 상기 (1-2)을 400ml CCl4에 녹여서, N-브로모 썩시니마이드(NBS, 35.6g, 0.2mol)와 0.4g의 벤조닐 퍼옥사이드(BPO)을 섞어 천천히 넣어준다. 12시간동안 환류시키면서 교반시키면 썩시니마이드가 플라스크 벽면에 떠오른다. 반응 혼합물을 완전히 냉각시킨 후 썩시니마이드를 여과시켜 제거하고 여과된 용액을 물로 세척한 후 MgSO4로 건조한 후 용매를 제거한다. 얻어진 생성물은 70% 수율의 4'-[(6-아세톡시 헥실)설포닐]벤질 브로마이드와 나머지는 상기 (1-2)가 얻어졌다. 이것을 더 이상의 정제없이 다음 반응에 이용했다.61 g (0.2 mol) of (1-2) was dissolved in 400 ml CCl 4 , and N-bromo rotsinimide (NBS, 35.6 g, 0.2 mol) and 0.4 g benzoyl peroxide (BPO) were slowly added. give. After stirring for 12 hours under reflux, rotsinide floats on the flask wall. After the reaction mixture is completely cooled down, the rosinimide is filtered off and the filtered solution is washed with water, dried over MgSO 4 and then the solvent is removed. The obtained product obtained 70% yield of 4 '-[(6-acetoxy hexyl) sulfonyl] benzyl bromide, and the rest (1-2) was obtained. This was used for the next reaction without further purification.
1-4. 4'-[(6-아세톡시 헥실)설포닐]벤질 포스포네이트1-4. 4 '-[(6-acetoxy hexyl) sulfonyl] benzyl phosphonate
27g(0.16 mol)의 트리에틸 포스파이트를 500ml 플라스크에 넣고 환류시킨다. 이 상태에서 45g(0.12 mol)의 상기 (1-3)을 10ml THF에 희석시켜서 천천히 적가(dropping)시킨다. 이때 온도를 환류온도로 유지시킨다. 완전히 적가시킨 후 4시간 동안 환류 상태로 유지한 후 온도를 내리고 휘발성 물질은 증류를 이용하여 완전히 제거한다. 얻어진 점성의 액체를 크로마토그래피(용출액, EA/Hex.; 3 : 1)로 분리 정제하였다. 수율 = 81%Add 27 g (0.16 mol) of triethyl phosphite into a 500 ml flask and reflux. In this state, 45 g (0.12 mol) of (1-3) is diluted in 10 ml THF and slowly dropped. At this time, the temperature is maintained at the reflux temperature. After complete dropwise addition, the mixture is kept at reflux for 4 hours, then the temperature is lowered, and volatiles are completely removed by distillation. The viscous liquid obtained was separated and purified by chromatography (eluent, EA / Hex .; 3: 1). Yield = 81%
1-5. 4-(디메틸 아미노)-4'-(6-하이드록시 헥실 설포닐)스틸벤1-5. 4- (dimethyl amino) -4 '-(6-hydroxy hexyl sulfonyl) stilbene
250ml 플라스크에 100ml DME와 3.36g 소듐 하이드라이드를 넣고 교반하면서 7.5g(50 mmol)의 N,N-디메틸 아미노 벤즈알데히드를 넣어준다. 5분후에 40ml DMF에 희석시킨 상기 (1-4)를 천천히 적가시킨다. 완전히 적가된 후에 온도를 110℃로 유지하면서 4시간 동안 반응시킨다. 그후 열을 완전히 내리고 얼음물을 적가 깔데기을 통해 천천히 붓는다. 이때 노란색의 분말가 생긴다. 이 분말을 여과시키고 완전히 공기건조시킨다. 얻어진 고형물을 100ml 에탄올과 80ml 물 및 20ml HCl 용액에 녹여 약하게 환류시켜 약 16시간 동안 반응시킨 후, 차가운 암모니아수에 붓는다. 이때 미세한 노란분말이 생성되고, 이것을 여과시켜 완전히 공기 건조한 후 에탄올과 피리딘을 이용하여 재결정시킨다. 녹는점은 188℃이고, 수율은 57%이었다.Into a 250ml flask, add 100ml DME and 3.36g sodium hydride and add 7.5g (50 mmol) of N, N-dimethyl amino benzaldehyde while stirring. After 5 minutes, (1-4) diluted in 40 ml DMF was slowly added dropwise. After complete dropping, the reaction is carried out for 4 hours while maintaining the temperature at 110 ° C. Then heat down completely and slowly pour ice water through the funnel. At this time, yellow powder is formed. This powder is filtered and air dried. The obtained solid is dissolved in 100 ml ethanol, 80 ml water and 20 ml HCl solution, refluxed slightly for about 16 hours, and then poured into cold ammonia water. At this time, a fine yellow powder is produced, which is filtered and completely air dried and then recrystallized with ethanol and pyridine. The melting point was 188 占 폚 and the yield was 57%.
1-6. 4'-[(6-메타크릴록시 헥실)설폰]-4-디메틸 아미노 스틸벤1-6. 4 '-[(6-methacryloxyhexyl) sulfone] -4-dimethyl amino stilbene
3g(7.8 mmol)의 상기 (1-5)을 10ml THF에 녹이고 2g의 피리딘을 첨가한다. 메타크릴록시 클로라이드(1.2g, 11.7 mmol)을 천천히 적가시킨다. 반응온도를 50℃로 유지하면서 48시간 동안 반응시킨 후 1.2g의 메타크릴록시 클로라이드를 더 첨가해 주고, 12시간동안 교반시킨 후, 100ml물에 붓고 얻어진 고형물을 여과시킨다. 공기건조된 고형물을 메틸렌 클로라이드(MC) 및 에탄올을 이용하여 재결정시킨다. 녹는점은 143℃이고, 수율은 52%이었다.3 g (7.8 mmol) of (1-5) above are dissolved in 10 ml THF and 2 g pyridine is added. Methacrylooxy chloride (1.2 g, 11.7 mmol) is slowly added dropwise. After reacting for 48 hours while maintaining the reaction temperature at 50 ℃, 1.2g of methacryloxy chloride was further added, stirred for 12 hours, poured into 100ml water and the obtained solid was filtered. The air dried solid is recrystallized with methylene chloride (MC) and ethanol. Melting point was 143 degreeC and yield was 52%.
1-7. 4'-[(6-메타크릴록시 헥실)설폰]-4-디메틸 아미노 스틸벤 및 MMA와의 공중합으로 상기 일반식(I)로 표시되는 광소자용 비선형 광학 고분자재료의 합성1-7. Synthesis of Nonlinear Optical Polymer Material for Optical Devices Represented by General Formula (I) by Copolymerization of 4 ′-[(6-Methylacryloxyhexyl) Sulfone] -4-dimethyl Amino Stilbene and MMA
상기 (1-6)에서 합성한 4'-[(6-메타크릴록시 헥실)설폰]-4-디메틸 아미노 스틸벤(2g)을 20ml 클로로벤젠에 용해시킨 후 0.44g의 메틸메타크릴레이트 및 21.6mg(3mole%비)의 아조비스이소부틸노니트릴(AIBN)을 반응용기에 놓고 나서 액체 질소로 얼린 후 한시간 동안 탈가스시킨다. 이 반응용기를 60℃ 오일중탕에서 48시간 동안 중합시킨다. 얻어진 고분자 물질을 메탄올에 침전시킨 후 여과시켜 진공건조시킨다. 얻어진 공중합체의 중량 평균 분자량은 60,000 - 80,000이며, 유리전이온도가 133℃이었다.4 '-[(6-methacryloxyhexyl) sulfone] -4-dimethylamino stilbene (2 g) synthesized in the above (1-6) was dissolved in 20 ml chlorobenzene, and then 0.44 g of methyl methacrylate and 21.6. mg (3 mole% ratio) of azobisisobutylnonnitrile (AIBN) is placed in a reaction vessel, frozen in liquid nitrogen and degassed for one hour. The reaction vessel was polymerized for 48 hours in a 60 ℃ oil bath. The polymer obtained is precipitated in methanol, filtered and dried in vacuo. The weight average molecular weight of the obtained copolymer was 60,000-80,000, and glass transition temperature was 133 degreeC.
[실시예 2]Example 2
4'-[(6-메타크릴록시 프로필)설폰]-4-디메틸 아미노 스틸벤의 단량체와 MMA와의 공중합으로 상기 일반식(I)로 표시되는 광소자용 비선형 광학 고분자재료를 합성하는 방법은 하기 반응식 2와 같고, 각 단계별 반응성분 및 조건은 다음과 같다.A method of synthesizing a nonlinear optical polymer material for an optical device represented by the general formula (I) by copolymerization of a monomer of 4 '-[(6-methacryloxypropyl) sulfone] -4-dimethylamino stilbene with MMA is shown in the following scheme. 2, and the reactive components and conditions for each step are as follows.
2-1. 4-[(3-클로로 프로필)설포닐] 톨루엔2-1. 4-[(3-chloropropyl) sulfonyl] toluene
p-톨루엔 설피닉엑시드 소듐염(17.8g, 0.1mol)과 1g의 테트라부틸 암모니움 브로마이드(TBAB)를 60ml 물에 넣고 60ml 톨루엔에 희석시킨 1-브로모-3-클로로프로판(31g, 0.2mol)을 첨가시킨다. 이 반응혼합물을 80℃에서 24시간 동안 교반시킨후 온도를 내리고 유기층을 톨루엔으로 추출한다. 추출된 용액을 MgSO4로 건조 시킨 후 톨루엔을 제거하고 생성물을 톨루엔 및 헥산에서 재결정시켜 정제하였다. 녹는점은 97℃이었고, 수율은 89%이었다.1-bromo-3-chloropropane (31g, 0.2mol) diluted in 60ml toluene with p-toluene sulfinic acid sodium salt (17.8g, 0.1mol) and 1g tetrabutyl ammonium bromide (TBAB) in 60ml water ) Is added. The reaction mixture was stirred at 80 ° C. for 24 hours, then the temperature was lowered and the organic layer was extracted with toluene. The extracted solution was dried over MgSO 4 , toluene was removed, and the product was purified by recrystallization from toluene and hexane. The melting point was 97 ° C. and the yield was 89%.
2-2. 4-[(3-아세톡시 프로필)설포닐] 톨루엔2-2. 4-[(3-acetoxy propyl) sulfonyl] toluene
70mL 물에 35g의 소듐 아세테이트와 3g의 TBAB을 녹인 후 70mL 톨루엔에 녹인 상기 (2-1) 20g(0.09 mol)을 첨가해 준 후 80℃에서 20시간 동안 반응시킨 후 200mL의물에 반응 혼합물을 붓는다. 유기층을 EA로 추출한 후 MgSO4로 건조하고 나서 생성물을 진공 증류하여 정재하였다. 끊는점 = 155℃/0.1mmHg, 수율 = 82%After dissolving 35 g of sodium acetate and 3 g of TBAB in 70 mL water, add 20 g (0.09 mol) of (2-1) dissolved in 70 mL toluene, react for 20 hours at 80 ° C., and then pour the reaction mixture into 200 mL of water. . The organic layer was extracted with EA, dried over MgSO 4 , and the product was purified by vacuum distillation. Breaking point = 155 ° C / 0.1mmHg, yield = 82%
2-3. 4-[(3-아세톡시 프로필)설포닐] 벤질 브로마이드2-3. 4-[(3-acetoxy propyl) sulfonyl] benzyl bromide
50g(0.195mol)의 상기 (2-2)와 NBS(35.6g, 0.2mol) 및 0.4g의 BPO를 이용하여 상기 (1-3)과 동일한 과정을 거쳐 반응물을 얻었다. 수율 = 69%Using 50 g (0.195 mol) of (2-2), NBS (35.6 g, 0.2 mol) and 0.4 g of BPO, the reaction product was obtained in the same manner as in (1-3). Yield = 69%
2-4. 4-[(3-아세톡시 프로필)설포닐] 벤질 포스페이트2-4. 4-[(3-acetoxy propyl) sulfonyl] benzyl phosphate
25g(0.15mol)의 트리에틸 포스파이트와 33g(0.1mol)의 상기 (2-3)을 이용하여 상기 (1- 4)과 같은 방법을 통해 얻었다. 수율 = 81%25 g (0.15 mol) of triethyl phosphite and 33 g (0.1 mol) of (2-3) were obtained by the same method as in (1-4). Yield = 81%
2-5. 4-(디에틸아미노)-4'-(3-하이드록시 프로필 설포닐)스틸벤2-5. 4- (diethylamino) -4 '-(3-hydroxy propyl sulfonyl) stilbene
1.2g의 소듐하이드라이드 및 3.72g의 N,N-디에틸아미노 벤즈알데하이드와 10.2g의 상기(2-4)을 이용하여 (1-5)와 같은 방법으로 생성물을 얻었다. 수율 = 65%The product was obtained by the same method as (1-5) using 1.2g sodium hydride, 3.72g N, N-diethylamino benzaldehyde, and 10.2g of said (2-4). Yield = 65%
2-6. 4'-[(3-메타아크릴록시 프로필)설폰]-4-디에틸아미노 스틸벤2-6. 4 '-[(3-methacryloxypropyl) sulfone] -4-diethylamino stilbene
2.5g(6.7 mmol)의 상기 (2-5)와 피리딘 및 메타크릴로일 클로라이드(1.4g, 13.4mmol)을 이용하여 상기 (1-6)과 같은 방법으로 얻었다. 수율 = 72%2.5 g (6.7 mmol) of (2-5) and pyridine and methacryloyl chloride (1.4 g, 13.4 mmol) were obtained in the same manner as in (1-6). Yield = 72%
2-7. 4'-[(6-메타크릴록시 헥실)설폰]-4-디메틸아미노 스틸벤과 MMA와의 공중합으로 상기 일반식(I)로 표시되는 광소자용 비선형 광학 고분자재료의 합성2-7. Synthesis of 4 '-[(6-methacryloxyhexyl) sulfone] -4-dimethylamino stilbene with non-linear optical polymer material for an optical device represented by general formula (I) by copolymerization with MMA
상기 (2-6)에서 합성한 4'-[(3-메타크릴록시 프로필)설폰]-4-디에틸아미노 스틸벤(2g)을 20mL 클로로벤젠에 녹인 후 0.45g의 메틸메타크릴레이트와 22.3mg(3 mole% 비)의 아조비스이소부티로니트릴(AIBN)을 반응용기에 놓고 나서 액체질소로 얼린 후, 한시간 동안 탈가스시킨다. 이 반응용기를 60℃ 오일중탕에서 48시간 동안 중합시킨다. 얻어진 고분자 물질을 메탄올에 침전시킨 후 여과하여 진공 건조시킨다. 얻어진 공중합체의 중량 평균 분자량은 60,000 ∼ 80,000이며, 유리전이 온도(Tg)가 155℃이었다.4 '-[(3-methacryloxypropyl) sulfone] -4-diethylamino stilbene (2 g) synthesized in the above (2-6) was dissolved in 20 mL chlorobenzene, followed by 0.45 g of methyl methacrylate and 22.3. Azobisisobutyronitrile (AIBN) in mg (3 mole% ratio) is placed in a reaction vessel, frozen in liquid nitrogen, and degassed for one hour. The reaction vessel was polymerized for 48 hours in a 60 ℃ oil bath. The polymer obtained is precipitated in methanol, filtered and dried in vacuo. The weight average molecular weight of the obtained copolymer was 60,000-80,000, and glass transition temperature (Tg) was 155 degreeC.
상기 실시예들로부터 알수 있는 바와 같이, 본 발명에 따라 제조된 DASS계 옆사슬 비선형 광학 고분자 재료는 비선형 광학 유기물 밀도를 높여 전기 광학 계수를 증가 시킬 수 있었고, 지금까지 보고된 옆사슬 폴리머에 비해 높은 Tg값 (150℃이상)을 가져서 전기 광학 효과의 열적 안정도를 향상시킬 수 있었다. 이 재료를 이용하여 제조된 광소자는 신뢰도가 아주 우수할 것으로 예상된다.As can be seen from the above examples, the DASS-based side chain nonlinear optical polymer material prepared according to the present invention was able to increase the electro-optic coefficient by increasing the density of nonlinear optical organic matter, and was higher than the side chain polymer reported so far. By having a Tg value (above 150 ° C.), the thermal stability of the electro-optic effect could be improved. Optical devices manufactured using this material are expected to have very good reliability.
Claims (3)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019940030626A KR0164100B1 (en) | 1994-11-21 | 1994-11-21 | Thermally stable organic optoelectronic compound for optical device and method of manufacturing same |
KR1019980015718A KR0164102B1 (en) | 1994-11-21 | 1998-04-30 | Thermally stable organic optoelectronic compounds for optical devices and methods for their preparation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019940030626A KR0164100B1 (en) | 1994-11-21 | 1994-11-21 | Thermally stable organic optoelectronic compound for optical device and method of manufacturing same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019980015718A Division KR0164102B1 (en) | 1994-11-21 | 1998-04-30 | Thermally stable organic optoelectronic compounds for optical devices and methods for their preparation |
Publications (2)
Publication Number | Publication Date |
---|---|
KR960017634A KR960017634A (en) | 1996-06-17 |
KR0164100B1 true KR0164100B1 (en) | 1999-01-15 |
Family
ID=19398511
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019940030626A Expired - Fee Related KR0164100B1 (en) | 1994-11-21 | 1994-11-21 | Thermally stable organic optoelectronic compound for optical device and method of manufacturing same |
KR1019980015718A Expired - Fee Related KR0164102B1 (en) | 1994-11-21 | 1998-04-30 | Thermally stable organic optoelectronic compounds for optical devices and methods for their preparation |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019980015718A Expired - Fee Related KR0164102B1 (en) | 1994-11-21 | 1998-04-30 | Thermally stable organic optoelectronic compounds for optical devices and methods for their preparation |
Country Status (1)
Country | Link |
---|---|
KR (2) | KR0164100B1 (en) |
-
1994
- 1994-11-21 KR KR1019940030626A patent/KR0164100B1/en not_active Expired - Fee Related
-
1998
- 1998-04-30 KR KR1019980015718A patent/KR0164102B1/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
KR960017634A (en) | 1996-06-17 |
KR0164102B1 (en) | 1999-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6393190B1 (en) | Chromophores for polymeric thin films and optical waveguides and devices comprising the same | |
US6995884B2 (en) | Fluorinated crosslinked electro-optic materials and electro-optic devices therefrom | |
EP1289981A4 (en) | Novel electro-optic chromophore bridge compounds and donor-bridge compounds for polymeric thin film waveguides | |
Liu et al. | Design and synthesis of organic optical nonlinear multichromophore dendrimers based on double-donor structures | |
US7019453B2 (en) | Polymers having pendant nonlinear optical chromophores and electro-optic devices therefrom | |
ZHou et al. | Synthesis of a new class of side chain liquid crystal polymers—polymers with mesogens laterally attached via short linkages to polymer backbones | |
US5041509A (en) | Side chain copolymers exhibiting nonlinear optical response | |
KR0164100B1 (en) | Thermally stable organic optoelectronic compound for optical device and method of manufacturing same | |
US7109355B2 (en) | Fluorinated π-bridge second order nonlinear optical chromophores and electro-optic devices therefrom | |
KR100445909B1 (en) | Organic dye molecular materials and nonlinear optical polymer compositions containing chromophore | |
US7601849B1 (en) | Nonlinear optical compounds and related macrostructures | |
EP1291679A1 (en) | Optical material and optical part each containing aromatic sulfide compound and aromatic sulfide compound | |
WO2023231529A1 (en) | Chromophore compound and preparation method therefor, and application of chromophore compound | |
CA2411963A1 (en) | Novel chromophores for polymeric thin films and optical waveguides and devices comprising the same | |
US20060049387A1 (en) | Crosslinkable side-chain polyimides for NLO applications | |
WO2007100369A2 (en) | Non-linear optical device material composition | |
US20060094845A1 (en) | (Meth)acrylate polymer and non-linear optical device material composition | |
KR100220875B1 (en) | Organic non-linear heat cross-linkable optically active polymer containing blocking groups and process for preparing the same | |
KR100194804B1 (en) | Aromatic polyester-based nonlinear optical polymer compound and optical device manufactured using the same | |
Kawakami et al. | Synthesis and polymerization of mono-p-alkoxy-substituted triphenylmethyl methacrylate | |
KR100226443B1 (en) | Fluorinated poly(arylene ether) containing NLO chromophores, preparation methods thereof, and optical devices using the same | |
Trollsås et al. | Synthesis of novel sulfonyl‐containing liquid‐crystalline side‐chain poly (vinyl ethers) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
St.27 status event code: A-0-1-A10-A12-nap-PA0109 |
|
PA0201 | Request for examination |
St.27 status event code: A-1-2-D10-D11-exm-PA0201 |
|
R17-X000 | Change to representative recorded |
St.27 status event code: A-3-3-R10-R17-oth-X000 |
|
PG1501 | Laying open of application |
St.27 status event code: A-1-1-Q10-Q12-nap-PG1501 |
|
R17-X000 | Change to representative recorded |
St.27 status event code: A-3-3-R10-R17-oth-X000 |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
St.27 status event code: A-1-2-D10-D21-exm-PE0902 |
|
P11-X000 | Amendment of application requested |
St.27 status event code: A-2-2-P10-P11-nap-X000 |
|
P13-X000 | Application amended |
St.27 status event code: A-2-2-P10-P13-nap-X000 |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
St.27 status event code: A-1-2-D10-D22-exm-PE0701 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
St.27 status event code: A-2-4-F10-F11-exm-PR0701 |
|
PR1002 | Payment of registration fee |
Fee payment year number: 1 St.27 status event code: A-2-2-U10-U11-oth-PR1002 |
|
PG1601 | Publication of registration |
St.27 status event code: A-4-4-Q10-Q13-nap-PG1601 |
|
PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R11-asn-PN2301 St.27 status event code: A-5-5-R10-R13-asn-PN2301 |
|
PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R11-asn-PN2301 St.27 status event code: A-5-5-R10-R13-asn-PN2301 |
|
R17-X000 | Change to representative recorded |
St.27 status event code: A-5-5-R10-R17-oth-X000 |
|
PR1001 | Payment of annual fee |
Fee payment year number: 4 St.27 status event code: A-4-4-U10-U11-oth-PR1001 |
|
PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R11-asn-PN2301 St.27 status event code: A-5-5-R10-R13-asn-PN2301 |
|
PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R11-asn-PN2301 St.27 status event code: A-5-5-R10-R13-asn-PN2301 |
|
PR1001 | Payment of annual fee |
Fee payment year number: 5 St.27 status event code: A-4-4-U10-U11-oth-PR1001 |
|
FPAY | Annual fee payment |
Payment date: 20030901 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Fee payment year number: 6 St.27 status event code: A-4-4-U10-U11-oth-PR1001 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |
Not in force date: 20040911 Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE St.27 status event code: A-4-4-U10-U13-oth-PC1903 |
|
PC1903 | Unpaid annual fee |
Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE Not in force date: 20040911 St.27 status event code: N-4-6-H10-H13-oth-PC1903 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R11-asn-PN2301 St.27 status event code: A-5-5-R10-R13-asn-PN2301 |
|
PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R11-asn-PN2301 St.27 status event code: A-5-5-R10-R13-asn-PN2301 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R11-asn-PN2301 St.27 status event code: A-5-5-R10-R13-asn-PN2301 |
|
P22-X000 | Classification modified |
St.27 status event code: A-4-4-P10-P22-nap-X000 |
|
P22-X000 | Classification modified |
St.27 status event code: A-4-4-P10-P22-nap-X000 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |