KR0162964B1 - The manufacturing of hydraulic breaker chisel material - Google Patents
The manufacturing of hydraulic breaker chisel material Download PDFInfo
- Publication number
- KR0162964B1 KR0162964B1 KR1019950069221A KR19950069221A KR0162964B1 KR 0162964 B1 KR0162964 B1 KR 0162964B1 KR 1019950069221 A KR1019950069221 A KR 1019950069221A KR 19950069221 A KR19950069221 A KR 19950069221A KR 0162964 B1 KR0162964 B1 KR 0162964B1
- Authority
- KR
- South Korea
- Prior art keywords
- hours
- hydraulic breaker
- heat treatment
- manufacturing
- nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D5/00—Heat treatments of cast-iron
- C21D5/02—Heat treatments of cast-iron improving the malleability of grey cast-iron
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/19—Hardening; Quenching with or without subsequent tempering by interrupted quenching
- C21D1/20—Isothermal quenching, e.g. bainitic hardening
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/22—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for drills; for milling cutters; for machine cutting tools
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/08—Making cast-iron alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C37/00—Cast-iron alloys
- C22C37/04—Cast-iron alloys containing spheroidal graphite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Articles (AREA)
- Percussive Tools And Related Accessories (AREA)
Abstract
본 발명은 유압브레이커 치즐용 재료의 제조방법에 관한 것으로, 화학조성이 탄소 : 2.8-3.4wt%, 규소 : 2.0-2.5wt%, 망간 : 0.3wt%이하, 니켈 : 1.0-3.0wt%, 몰리브덴 : 0.1-0.3wt%, 구리 : 0.5-2.0wt%를 함유하고, 잔부는 Fe로 이루어진 구상흑연주철 원소재를 소정의 열처리 과정을 하게 된 것으로, 상부베이나이트와 잔류오스테나이트가 혼합된 기지조직중에 구상흑연조직을 갖게 되어, 고강도/고인성과 내마모특성을 동시에 얻을 수 있어 유압브레이커용 치즐로 사용하기에 적당한 것이다.The present invention relates to a method for manufacturing a hydraulic breaker chisel material, the chemical composition of carbon: 2.8-3.4wt%, silicon: 2.0-2.5wt%, manganese: 0.3wt% or less, nickel: 1.0-3.0wt%, molybdenum : 0.1-0.3wt%, copper: 0.5-2.0wt%, the remainder is subjected to a predetermined heat treatment process of the spheroidal graphite iron raw material consisting of Fe, the base structure mixed with the upper bainite and residual austenite It has a spherical graphite structure in the middle, so that high strength / toughness and abrasion resistance can be obtained at the same time.
Description
제1도는 종래의 유압브레이커 치즐용 재료의 조직단면을 400배로 확대한 사진.1 is an enlarged photograph of a tissue cross section of a conventional hydraulic breaker chisel material 400 times.
제2도는 본 발명에 따른 유압브레이커 치즐용 재료의 조직단면을 400배로 확대한 사진이다.2 is an enlarged photograph 400 times the tissue cross section of the material for the hydraulic breaker chisel according to the present invention.
본 발명은 유압브레이커의 치즐(chisel)용 재료의 제조방법에 관한 것으로, 특히 암반 또는 토사의 파쇄작업에 사용되는 유압브레이커 치즐의 소재로 사용하기에 알맞은 강도와 내마모특성을 갖는 구상흑연 주철의 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a chisel material for a hydraulic breaker, and more particularly, to a spherical graphite cast iron having strength and abrasion resistance suitable for use as a material for a hydraulic breaker chisel used for crushing rock or soil. It relates to a manufacturing method.
일반적으로 유압브레이커는 굴삭기의 아암 끝부분에 장착되어 굴착작업에 사용되는 것으로 유압에 의해 작동되는 피스톤로드가 상하 반복운동을 하면서 치즐의 상단부를 계속 타격하므로써 발생되는 충격력에 의해 파쇄작업이 이루어지는 것이다.In general, the hydraulic breaker is used for the excavation work is mounted on the arm end of the excavator is to be crushed by the impact force generated by continuously hitting the upper end of the chisel while the piston rod actuated by the hydraulic up and down repeated movement.
이때 치즐은 피스톤로드로 부터 계속되는 굴삭기등 건설중장비의 유압브레이커 치즐용 재료에 요구되는 특성은 높은 내마모성과, 파쇄작업시 고하중에 견딜 수 있는 높은 강도 및, 파쇄작업시 치즐에 작용하는 높은 충격력에 견딜 수 있는 내충격성이 요구된다.At this time, the chisel has the characteristics required for the hydraulic breaker chisel material of heavy construction equipment such as excavators from the piston rod, which can withstand high wear resistance, high strength to withstand high loads during crushing work, and high impact force acting on the chisel during crushing work. Impact resistance is required.
이와 같은 특성은 발휘하기 위해 종래 사용되어온 대표적인 실용재료의 화학성분을 표 1에 나타내었다.Table 1 shows the chemical constituents of representative practical materials that have been conventionally used to exhibit such characteristics.
상기한 표 1에서 종래재1은 Ni, Cr, Mo등의 합금원소를 소량 첨가된 SCM440계의 합금강으로 담금질과 뜨임 열처리하여 경화능을 높인 것이며, 종래재2는 종래재1에 비해 인성, 피로강도, 내마모성 향상을 위해 기존의 SCM440강재에 C, Si의 성분을 증가시키고, Ni, V, Al 등을 첨가시킨 것이다.In Table 1, prior art material 1 is SCM440-based alloy steel to which a small amount of alloying elements such as Ni, Cr, and Mo is added to increase hardenability by quenching and tempering heat treatment. In order to improve the strength and abrasion resistance, the conventional SCM440 steels have increased the components of C and Si, and Ni, V, and Al are added.
그러나 종래의 치즐재료는 주지하는 바와 같이, 암반파쇄 작업시 파손이 쉽게 일어날 뿐 아니라 내마모성도 낮아 수명이 3개월이하에 불과하여 사용자의 경제적 부담을 크게하는 문제점이 있다.However, the conventional chisel material, as well known, not only breakage easily occurs during rock crushing operation but also low wear resistance has a problem of increasing the economic burden of the user only 3 months or less.
더욱이 최근에는 중장비의 성능향상도 요구되고 있어, 종래재보다 더욱 내마모성이 우수하고 특히 암반파쇄작업등에서도 파손되기 어려운 고인성 재료의 필요성이 높아지고 있다.In addition, in recent years, the performance of heavy equipment is also required, and the need for highly tough materials that are more wear-resistant than conventional materials and particularly difficult to break even in rock crushing operations is increasing.
이에 본 발명은 상기한 문제점을 해결하기 위한 것으로, 굴삭기등 건설중장비의 치즐재료에 요구되는 특성인 높은 내마모성과, 굴삭작없시의 고충격하중에 견딜 수 있는 높은 강도와 인성을 갖는 유압브레이커 치즐용 재료의 제조방법을 제공하는 데 그 목적이 있다.Accordingly, the present invention is to solve the above problems, the hydraulic breaker for chisels having high strength and toughness that can withstand high impact loads, which is required for the chisel material of heavy equipment such as excavators It is an object to provide a method for producing a material.
상기한 목적을 달성하기 위한 본 발명의 고강도, 내마모재료의 제조방법은, 구상흑연주철 원소재를 500-600℃에서 2 내지 3시간동안 염욕로 또는 불활성분위기로에서 예열하고, 900-930℃로 소정시간동안 염욕로 또는 불활성분위기로에서 오스테나이트화 가열하며, 이어서 염욕로내에서 380-420℃로 급랭시켜 오스템퍼링 항온 열처리를 하게 된 것을 특징으로 한다.In order to achieve the above object, the method for producing a high strength, wear resistant material of the present invention comprises preheating spherical graphite iron material at 500-600 ° C. for 2 to 3 hours in a salt bath or in an inert atmosphere, and 900-930 ° C. Austenitic heating in a salt bath or in an inert atmosphere for a predetermined time, followed by rapid cooling to 380-420 ° C. in a salt bath to perform an ostempering constant temperature heat treatment.
본 발명의 또 다른 실시예에서는 상기 구상흑연주철 원소재가, 탄소 : 2.8-3.4wt%, 규소 : 2.0-2.5wt%, 망간 : 0.3wt%이하, 니켈 : 1.0-3.0wt%, 몰리브덴 : 0.1-0.3wt%을 함유하고, 잔부는 Fe로 이루어진 구상 흑연주철 원소재인 것을 특징으로 한다.In another embodiment of the present invention, the spheroidal graphite iron raw material, carbon: 2.8-3.4wt%, silicon: 2.0-2.5wt%, manganese: 0.3wt% or less, nickel: 1.0-3.0wt%, molybdenum: 0.1 It contains -0.3wt%, and remainder is a spherical graphite cast iron raw material consisting of Fe.
또 다른 실시예에서는 상기 원소재의 화학성분이 구리를 0.5-2.0wt%를 추가로 포함하는 것을 특징으로 한다.In another embodiment, the chemical composition of the raw material is characterized in that it further comprises 0.5-2.0wt% copper.
이때 상기의 화학성분에 P을 0.03%이하, S을 0.02%이하로 미량 함유시킨 화학조성의 구상흑연주철 원소재를 사용하여 열처리하는 것이 바람직하다.At this time, it is preferable to heat-treat using the spherical graphite cast iron raw material of the chemical composition which contained a trace amount of P below 0.03% and S below 0.02% in the said chemical component.
이와 같은 본 발명에 따라 제조된 구상흑연주철은 상부베이나이트와 잔류오스테나이트가 혼합된 기지조직중에 구상흑연조직을 갖게 되어, 고강도, 고인성과 내마모특성을 동시에 얻을 수 있어 유압브레이커용 치즐로 사용하기에 적당한 것이다.Spheroidal graphite cast iron prepared according to the present invention has a spherical graphite structure in the base structure mixed with the upper bainite and residual austenite, can be obtained simultaneously with high strength, high toughness and wear resistance characteristics used as a hydraulic breaker chisel It is suitable to do.
다음은 본 발명의 고강도 내마모재료를 제조하기위한 열처리공정 및 조건에 대해 설명한다.The following describes a heat treatment process and conditions for producing a high strength wear resistant material of the present invention.
구상흑연주철의 원소재를 아래와 같이 예열공정과, 오스테나이트 가열 공정 및 오스템퍼링공정으로 열처리하게 되는 바, 이하에서 그 조건을 상세히 설명한다.The raw material of spherical graphite iron is heat-treated in the following preheating step, austenite heating step, and austempering step, and the conditions thereof will be described in detail below.
1) 예열공정1) Preheating process
예열공정은 제품의 변형방지를 위해 필요한 공정으로 500-600℃의 온도에서 2-3시간 유지하게 되는 바, 600℃를 초과하면 흑연조직의 성장이 일어나므로 온도를 500-600℃로 제한한다.Preheating process is necessary to prevent deformation of the product is maintained for 2-3 hours at the temperature of 500-600 ℃ bar temperature is limited to 500-600 ℃ because the growth of the graphite structure occurs above 600 ℃.
이때 유지시간은 제품의 크기와 두께에 따라 달라지나 제품두께 25mm당 40분을 기준으로 한다.The retention time depends on the size and thickness of the product, but is based on 40 minutes per 25mm product thickness.
또한 예열시에는 표면의 탈탄을 방지하기 위해 염욕(salt bath)로 또는 불활성분위기로에서 실시한다.In addition, during preheating, a salt bath or an inert atmosphere is used to prevent decarburization of the surface.
2) 가열공정2) heating process
가열공정은 조직을 오스테나이트시키는 공정으로 880-900℃의 온도에서 2-3시간 이상 유지하게 되는 바, 가열온도가 930℃를 초과하면 기지조직의 조대화현상등이 일어나므로 온도를 880-900℃로 제한한다.The heating process is a process of austenite tissue, which is maintained at a temperature of 880-900 ° C. for 2-3 hours or more. If the heating temperature exceeds 930 ° C., coarsening of the base structure occurs, and thus the temperature is 880-900 ° C. Limit to ℃.
이때 유지시간은 제품의 크기와 두께에 따라 달라지나 제품두께 25mm당 40분을 기준으로 한다.The retention time depends on the size and thickness of the product, but is based on 40 minutes per 25mm product thickness.
한편 가열은 표면의 탈탄을 방지하기 위해 염욕로 또는 불활성분위기로에서 실시한다.On the other hand, heating is performed in a salt bath or in an inert atmosphere to prevent decarburization of the surface.
3) 오스템퍼링 공정3) Ostempering process
본 공정은 오스테나이트화한 조직을 템퍼링온도인 380-420℃염욕에 급랭시켜, 이 온도범위에서 항온변태 열처리를 실시함으로써 기지조직을 오스테나이트에서 치밀하고 인성이 좋은 상부베이나이트조직으로 변화시키는 공정이다.In this step, the austenitic tissue is quenched in a tempering temperature of 380-420 ° C. salt bath, and constant temperature transformation is performed in this temperature range to change the matrix structure from austenite to a dense, tough upper bainite structure. to be.
이때 항온변태의 유지온도를 380℃이하로 하는 경우 베이나이트 조직의 인성이 낮아지며, 420℃이상으로 하는 경우는 퍼얼라이트라고 하는 조직이 형성되어 강도 및 내마모성의 확보가 곤란하므로, 본 발명에서는 온도를 380-420℃범위로 제한한다.In this case, when the holding temperature of the constant temperature transformation is 380 ° C. or lower, the toughness of the bainite structure is lowered. When the temperature is set to 420 ° C. or higher, a structure called a pearlite is formed, which makes it difficult to secure strength and wear resistance. Limit to 380-420 ° C.
다음은 본 발명의 화학성분 및 각 합금원소의 함유량의 범위 및 한정이유에 대해서 설명한다.Next, the range and limitation reason of content of the chemical component of this invention and each alloying element are demonstrated.
1) 탄소1) carbon
탄소는 규소와 함께 작용하여 구상흑연의 정출에 영향을 주는 원소로서, 주조성, Chill화경향, 구상흑연의 크기분포 및 기지조직에 영향을 미치게 되는 것이서 3.4wt%이상 함유시에는 치즐과 같은 두꺼운 주물에서는 조대한 흑연의 정출이 일어나기 쉽고, 2.8wt%이하함유시에는 주조성이 좋지 못하므로, 그 범위를 3.4-2.8 wt%로 한정하였다.Carbon is an element that affects the determination of spheroidal graphite by working with silicon. It affects castability, Chilling tendency, size distribution of spheroidal graphite and matrix structure. In thick castings, coarse crystallization of coarse graphite easily occurs, and castability is poor when the content is 2.8 wt% or less, and therefore the range is limited to 3.4 to 2.8 wt%.
2) 규소2) silicon
규소는 원소재의 기지조직을 페라이트화시키고 구상흑연의 정출을 촉진하는 원소로서, 2.0wt%이하에서는 Chill화 경향이 커지고, 2.5wt%이상에서는 치즐과 같은 두꺼운 주물에서는 냉각속도가 느려 조직내에 주조결함의 일종인 부상흑연(Graphite flotation)결함을 발생시킬 수 있는 유리페라이트를 형성할 수 있어, 그 함량을 2.0-2.5st%로 제한한다.Silicon is an element that ferrites the matrix structure of raw materials and promotes the crystallization of spheroidal graphite.In the case of thicker castings such as chisels, the casting rate is lower than 2.0wt% and the cooling rate is slower than 2.5wt%. It is possible to form a glass ferrite that can cause a graphite flotation defect, which is a kind of defect, and its content is limited to 2.0-2.5st%.
3) 망간3) manganese
망간은 탄화물 생성원소로써, 유황과 결합하여 MnS라는 화합물을 형성하여 유해원소인 S를 제거해줌으로써 흑연화에 유효한 작용을 하나, 결정립계에 편석하여 장시간의 항온변태 열처리후에도 변태되지 못하고 잔류하게 되는 립계오스테나이트(grain boundry Austenite)의 형성을 조장하게 되므로, 그 함량을 가급적 낮추어 0.3wt%이내로 제한한다.Manganese is a carbide-forming element, which forms a compound called MnS to remove sulfur, forming a compound called MnS, which is effective for graphitization. Since it promotes the formation of nit (grain boundry Austenite), the content is lowered as much as possible and limited to within 0.3wt%.
4) 유황4) sulfur
유황은 본 발명의 구상흑연주철 원소재의 제조에 유해한 원소로서, Mg과의 친화력이 크기때문에 구상흑연화에 필요한 Mg량을 소모시키므로 0.03wt%이하로 제한한다.Sulfur is an element harmful to the production of the spheroidal graphite iron raw material of the present invention, and because of its high affinity with Mg, sulfur is limited to 0.03wt% or less.
5) 인5) phosphorus
인은 원재료중에 혼입되는 미량원소로서 0.04wt%이상 함유시 스테아다이트(steadite)조직의 Fe-FeC-FeP라는 저융점의 3원공정을 형성하여 열간 강도저하 및 취성을 일으키므로 본 발명에서는 0.04wt%이하로 그 함량을 제한한다.Phosphorus is a trace element incorporated in raw materials, and when it contains 0.04 wt% or more, it forms a low melting three-way process called Fe-FeC-FeP in a steadite structure, causing hot strength reduction and brittleness. The content is limited to below wt%.
6) 구리6) copper
구리는 항온변태 열처리시의 경화능을 향상시키는 것으로, 열처리 경화능 향상에 유효한 함량범위는 0.5wt%이고, 2.0wt%이상일 때는 주물주조시 Chill발생경향이 커지므로, 그 함량범위를 0.5-2.0wt%로 제한한다.Copper improves the hardenability during constant temperature transformation heat treatment, and the effective content range for improving the hardenability of heat treatment is 0.5wt%, and when it is more than 2.0wt%, the tendency of chill is increased during casting, so the content range is 0.5-2.0. Limit to wt%.
7) 니켈7) nickel
본 발명의 고강도 내마모재료의 제조에 유효한 효과를 갖는 원소로서, 항온변태 열처리시의 경화능을 향상시키며 탄화물 형성을 억제하고 편석을 일으키지 않는 것으로, 열처리 경화능 향상에 유효한 범위는 1.0-3.0wt%이다.As an element having an effective effect in the production of high strength wear-resistant material of the present invention, it improves the curing ability during constant temperature transformation heat treatment, suppresses the formation of carbides and does not cause segregation, the effective range for improving the heat treatment curing ability is 1.0-3.0wt %to be.
8) 몰리브덴8) Molybdenum
몰리브덴은 항온변태 열처리시의 경화능을 향상시키나, 0.3wt%이상에서는 치즐과 같은 두꺼운 주물에서는 주물주조시 입계편석에 의해 조직의 취성이 증대되므로, 그 함량범위를 0.1-0.3wt%로 제한한다.Molybdenum improves the hardenability in constant temperature transformation heat treatment, but in the case of thicker castings such as chisel above 0.3wt%, the brittleness of the tissue is increased by grain boundary segregation during casting, so the content range is limited to 0.1-0.3wt%. .
[실시예]EXAMPLE
전기로(고주파유도로)에서 장입재료를 융해하여 1520℃로 용해한 후, 1500℃에서 용탕을 출탕하고, 이 온도에서 구상화처리를 실시하여 구상흑연주철재 치즐원소재를 주조하였다.The charged material was melted in an electric furnace (high frequency induction furnace), melted at 1520 ° C, melted at 1500 ° C, and spheroidized at this temperature to cast a spherical graphite cast chisel material.
이때 원소재의 화학성분은 다음 표 2에 나타낸다.The chemical composition of the raw material is shown in Table 2 below.
이때 실시예 1은 구리 1.0wt%, 니켈 1.0wt%를 포함하게 되고, 실시예 2에서는 니켈 2.0wt%를 포함하고 구리는 공정상에 불가피하게 혼입되어 들어간 것으로, 니켈과 구리의 함량변화에 따른 효과를 알기위한 것이다.In this case, Example 1 includes 1.0 wt% of copper and 1.0 wt% of nickel. In Example 2, it contains 2.0 wt% of nickel, and copper is inevitably mixed in the process. To know the effect.
그리고, 상기 표 2에서 실시예 1, 2는 각각 인, 황 및 마그네슘을 소량포함하고 있으나 이는 제조공정중 불가피하게 혼입된 것이고, 특히 인과 유황은 상기 성분함량을 제한하는 이유에서 설명했듯이 그 함량을 각각 0.04wt%, 0.03wt%이하로 제한하고 있으나, 마그네슘은 구상흑연화에 필요하므로 그 함량은 특별히 제한하지 않는다.In Table 2, Examples 1 and 2 each contain a small amount of phosphorus, sulfur, and magnesium, which are inevitably incorporated in the manufacturing process, and in particular, the phosphorus and sulfur have their contents as described in the above reason for limiting the ingredient content. It is limited to 0.04wt% and 0.03wt% or less, respectively, but magnesium is required for spherical graphite, the content is not particularly limited.
상기와 같은 화학성분의 치즐원소재를 표 3에 나타낸 열처리조건으로 각각 열처리하여 치즐용 고강도 고인성 내마모재료를 제작하였다.The chisel material of the chemical composition was heat-treated under the heat treatment conditions shown in Table 3 to prepare a high-strength, high toughness wear resistant material for the chisel.
이와같이 하여 얻어진 실시예 1, 2의 기계적성질을 종래예와 비교하여 다음 표 4에 나타낸다.The mechanical properties of Examples 1 and 2 thus obtained are shown in Table 4 below in comparison with the conventional examples.
상기한 표 4로 부터 구리를 포함하고 니켈을 적게 포함한 실시예 1이 구리를 적게 포함하고 니켈을 많이 포함한 실시예 2보다 인장강도, 항복강도 및 경도가 우수한 것을 알 수 있고 단지 신율에 있어서만 실시예 2가 높으므로 구리를 포함하고 니켈을 적게 포함하는 것이 기계적 성직이 좋아지는 것을 알 수 있다.From Table 4, it can be seen that Example 1 containing less copper and less nickel has better tensile strength, yield strength and hardness than Example 2 containing less copper and more nickel, and it is carried out only at elongation. Since Example 2 is high, it can be seen that including copper and containing less nickel improves mechanical cleavage.
또한 실시예 1, 2는 종래의 재료에 비해 내마모성과 내충격성이 우수한 고강도 고인성임을 알 수 있다.In addition, it can be seen that Examples 1 and 2 have high strength and high toughness which are excellent in wear resistance and impact resistance compared to conventional materials.
이상에서 서술된 것은 모든 점에서 단순한 예시에 불과한 것이고, 이를 가지고 한정적으로 해석해서는 안되며, 단지 본 발명의 진정한 정신 및 범위내에 존재하는 변형예는 모두 본 발명의 청구범위에 속하는 것이다.What has been described above is merely a mere example in all respects, and should not be construed as limited thereto, and all modifications existing within the true spirit and scope of the present invention shall fall within the claims of the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019950069221A KR0162964B1 (en) | 1995-12-30 | 1995-12-30 | The manufacturing of hydraulic breaker chisel material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019950069221A KR0162964B1 (en) | 1995-12-30 | 1995-12-30 | The manufacturing of hydraulic breaker chisel material |
Publications (2)
Publication Number | Publication Date |
---|---|
KR970043140A KR970043140A (en) | 1997-07-26 |
KR0162964B1 true KR0162964B1 (en) | 1999-01-15 |
Family
ID=19448357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019950069221A Expired - Lifetime KR0162964B1 (en) | 1995-12-30 | 1995-12-30 | The manufacturing of hydraulic breaker chisel material |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR0162964B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101899093B1 (en) | 2012-02-03 | 2018-09-17 | 삼성디스플레이 주식회사 | Manufacturing device of deposition mask |
-
1995
- 1995-12-30 KR KR1019950069221A patent/KR0162964B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
KR970043140A (en) | 1997-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1384794B1 (en) | Spheroidal cast iron particulary for piston rings and method for its production | |
US7662247B2 (en) | Method of producing martensite wear-resistant cast steel with film austenite for enhancement of toughness | |
CN104831189B (en) | HB600 level Micro Alloying wear-resisting steel plate and manufacture method thereof | |
AU2013302197B2 (en) | Method for producing molten steel having high wear resistance and steel having said characteristics | |
CN101240402B (en) | Cast high-boron high-speed steel for composite ring roller and heat treatment method thereof | |
CN100532619C (en) | High-boron and low-carbon wear-resistant cast steel and its heat treatment method | |
EP0174087B1 (en) | A method of making compacted graphite iron | |
KR100619841B1 (en) | High silicon / low alloy high impact resistance and wear resistance | |
US2485761A (en) | Gray cast iron having improved properties | |
CN101016603A (en) | High-boron cast steel containing granular boride and preparing method thereof | |
EP0752016B1 (en) | Deep hardening boron steel article having improved fracture toughness and wear characteristics | |
KR101883290B1 (en) | Method for manufacturing for austempered ductile cast iron | |
US5900077A (en) | Hardness, strength, and fracture toughness steel | |
CN106893941B (en) | A kind of low-alloy wear-resistant steel and its heat treatment method | |
CN111218540B (en) | High-boron iron-based wear-resistant alloy, preparation method and part thereof | |
US5525167A (en) | Elevated nitrogen high toughness steel article | |
EP0272788B1 (en) | A method of making wear resistant gray cast iron | |
JPH073386A (en) | Non-heat treated steel for hot forging excellent in fatigue strength and method for manufacturing non-heat treated hot forged product using the steel | |
DE102008050152B4 (en) | High-strength, ductile cast iron alloy with nodular graphite and process for its production | |
KR0162964B1 (en) | The manufacturing of hydraulic breaker chisel material | |
JPH0238645B2 (en) | KOKYODOKYUJOKOKUENCHUTETSUNOSEIZOHOHO | |
RU2753397C1 (en) | Casting of high-strength wear-resistant steel and methods for heat treatment of castings of high-strength wear-resistant steel | |
JP4232242B2 (en) | High strength high toughness non-tempered steel | |
CN107217212B (en) | A kind of high toughness wear resistant Jaw plate bainitic steel and preparation method thereof | |
JP3719664B2 (en) | High chromium cast iron castings for large products and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 19951230 |
|
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 19951230 Comment text: Request for Examination of Application |
|
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 19980205 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 19980617 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 19980902 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 19980902 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20010702 Start annual number: 4 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20040701 Start annual number: 7 End annual number: 7 |
|
N234 | Change of applicant [patent]: notification of change of applicant and registration of full transfer of right | ||
PN2301 | Change of applicant |
Patent event date: 20041117 Comment text: Notification of Change of Applicant and Registration of Full Transfer of Right Patent event code: PN23012R02D |
|
PR1001 | Payment of annual fee |
Payment date: 20050902 Start annual number: 8 End annual number: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20060818 Start annual number: 9 End annual number: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20070618 Start annual number: 10 End annual number: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20080625 Start annual number: 11 End annual number: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20090917 Start annual number: 12 End annual number: 12 |
|
PR1001 | Payment of annual fee |
Payment date: 20100614 Start annual number: 13 End annual number: 13 |
|
PR1001 | Payment of annual fee |
Payment date: 20110622 Start annual number: 14 End annual number: 14 |
|
PR1001 | Payment of annual fee |
Payment date: 20120613 Start annual number: 15 End annual number: 15 |
|
FPAY | Annual fee payment |
Payment date: 20130612 Year of fee payment: 16 |
|
PR1001 | Payment of annual fee |
Payment date: 20130612 Start annual number: 16 End annual number: 16 |
|
FPAY | Annual fee payment |
Payment date: 20140624 Year of fee payment: 17 |
|
PR1001 | Payment of annual fee |
Payment date: 20140624 Start annual number: 17 End annual number: 17 |
|
FPAY | Annual fee payment |
Payment date: 20150622 Year of fee payment: 18 |
|
PR1001 | Payment of annual fee |
Payment date: 20150622 Start annual number: 18 End annual number: 18 |
|
EXPY | Expiration of term | ||
PC1801 | Expiration of term |