KR0149935B1 - Manufacturing method of cecium oxide - Google Patents
Manufacturing method of cecium oxide Download PDFInfo
- Publication number
- KR0149935B1 KR0149935B1 KR1019950020838A KR19950020838A KR0149935B1 KR 0149935 B1 KR0149935 B1 KR 0149935B1 KR 1019950020838 A KR1019950020838 A KR 1019950020838A KR 19950020838 A KR19950020838 A KR 19950020838A KR 0149935 B1 KR0149935 B1 KR 0149935B1
- Authority
- KR
- South Korea
- Prior art keywords
- ceo
- sol
- cerium
- cerium oxide
- catalyst
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title abstract description 8
- 239000003054 catalyst Substances 0.000 claims abstract description 25
- 229910000420 cerium oxide Inorganic materials 0.000 claims abstract description 19
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims abstract description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 12
- -1 cerium ions Chemical class 0.000 claims abstract description 8
- 239000012153 distilled water Substances 0.000 claims abstract description 7
- 239000002245 particle Substances 0.000 claims abstract description 7
- 239000002244 precipitate Substances 0.000 claims abstract description 6
- 230000002378 acidificating effect Effects 0.000 claims abstract description 5
- 230000029087 digestion Effects 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 15
- 230000008569 process Effects 0.000 claims description 11
- 238000000746 purification Methods 0.000 claims description 6
- 230000000694 effects Effects 0.000 claims description 5
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 claims description 4
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 3
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 239000000084 colloidal system Substances 0.000 claims description 2
- 238000001035 drying Methods 0.000 abstract description 3
- 238000005406 washing Methods 0.000 abstract description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 16
- 239000007789 gas Substances 0.000 description 6
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 4
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229910017604 nitric acid Inorganic materials 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 239000010970 precious metal Substances 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- 238000010792 warming Methods 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- UNJPQTDTZAKTFK-UHFFFAOYSA-K cerium(iii) hydroxide Chemical compound [OH-].[OH-].[OH-].[Ce+3] UNJPQTDTZAKTFK-UHFFFAOYSA-K 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- DRVWBEJJZZTIGJ-UHFFFAOYSA-N cerium(3+);oxygen(2-) Chemical class [O-2].[O-2].[O-2].[Ce+3].[Ce+3] DRVWBEJJZZTIGJ-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910002089 NOx Inorganic materials 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 150000005323 carbonate salts Chemical class 0.000 description 1
- 150000001785 cerium compounds Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 210000000582 semen Anatomy 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/10—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9413—Processes characterised by a specific catalyst
- B01D53/9422—Processes characterised by a specific catalyst for removing nitrogen oxides by NOx storage or reduction by cyclic switching between lean and rich exhaust gases (LNT, NSC, NSR)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/03—Precipitation; Co-precipitation
- B01J37/031—Precipitation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/06—Washing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/206—Rare earth metals
- B01D2255/2065—Cerium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Environmental & Geological Engineering (AREA)
- Biomedical Technology (AREA)
- Combustion & Propulsion (AREA)
- Catalysts (AREA)
Abstract
본 발명은 자동차 배기가스 등의 촉매로 사용되는 산화세륨의 제조에 관한 것으로, 특히 고온에서도 높은 비표면적을 갖게하는데 적합한 산화세륨(CeO2)제조방법에 관한 것으로, Ce(OH)4또는 CeO2에 산성매질을 가하여 용해시키는 제1공정과, 100~150℃ 온도에서 온침화(Digestion)시켜 겔(Gel)상태로 하는 제2공정과, 상기한 겔에 증류수를 가해 콜로이드 입자 형성군(群)인 졸(Sol)상태로 하는 제3공정과, 염기성 매질을 가해 세륨이 온을 침전시키고, 이 침전물을 세척, 건조함을 특징으로 하는 산화세륨(CeO2)의 제조방법에 관한 기술이다.The present invention relates to that, in particular, method of manufacturing a suitable cerium oxide (CeO 2) to have a high specific surface area even at a high temperature for the production of the cerium oxide is used as a catalyst for automobile exhaust gas, Ce (OH) 4 or CeO 2 A first step of adding an acidic medium to the solution to dissolve it; a second step of digestion at a temperature of 100 to 150 ° C. to a gel state; and distilled water added to the gel to form colloidal particles. The third step of the sol (Sol) state, and a method for producing a cerium oxide (CeO 2 ) characterized by the addition of a basic medium to precipitate cerium ions, washing and drying the precipitate.
Description
첨부도면은 본 발명의 제조공정도.The accompanying drawings show a manufacturing process of the present invention.
본 발명은 산화세륨(CeO2)의 제조방법에 관한 것으로, 특히 고온에서도 높은 비표면적을 갖게하는데 적합한 제조방법에 관한 것이다.The present invention relates to a method for producing cerium oxide (CeO 2 ), and more particularly to a manufacturing method suitable for having a high specific surface area even at high temperatures.
산화 제2세륨은 충전재, 결합제, 분산제, 특히 자동차 배기가스 정화용 등의 촉매나 촉매의 담체로 사용될 수 있음은 잘 알려져 있다.It is well known that cerium oxide can be used as a filler, a binder, a dispersant, especially a catalyst or a carrier for catalysts for automobile exhaust purification.
그 예로서, 백금족 촉매를 산화 제2세륨에 담지한 촉매에서 CO + H2로부터 메탄올의 합성에 관한 논문(Meriaudeau et al, C.R.Acad.Sc.Parist 297-Serie II-471-1983)과 잔류가스 처리법(일본 특히출원 76-62616 호)에서 사용되는 촉매를 언급할 수 있다.For example, a paper on the synthesis of methanol from CO + H 2 in a catalyst in which a platinum group catalyst is supported on cerium oxide (Meriaudeau et al, CRAcad. Sc. Parist 297-Serie II-471-1983) and residual gas treatment Mention may be made of the catalysts used in (Japanese Patent Application No. 76-62616).
일예로서 자동차와 같은 내연기관에서는 미연소 탄화수소, 일산화탄소, 질소산화물 [일반적으로 NOx 로 표기되는데 주로 일산화질소(NO) 및 이산화질소(NO2)임] 과 같은 배기가스가 방출되는데 이런 배기가스를 정화하기 위한 촉매 및 내연기관 작동립(Operating Particies)들이 개발되어 있다.For example, internal combustion engines such as automobiles emit exhaust gases such as unburned hydrocarbons, carbon monoxide, and nitrogen oxides (typically referred to as NOx, mainly nitrogen monoxide (NO) and nitrogen dioxide (NO 2 )). Catalysts and operating parts for internal combustion engines have been developed.
배기가스 성분들의 성공적인 전환처리는 함유 일산화탄소를 무해한 이산화탄소로 산화시킴과 동시에 재빨리 질소산화물(NO 등)을 질소로 환원시키는 것이 요구됨으로써 매우 까다로운 일이다.Successful conversion of exhaust gas components is very demanding, as it requires the rapid reduction of nitrogen oxides (NO, etc.) to nitrogen while oxidizing the containing carbon monoxide to harmless carbon dioxide.
일반적으로 산화반응은 충분한 산소에 의하여 촉진되는데 반하여 환원반응은 그에 의하여 방해된다.In general, the oxidation reaction is promoted by sufficient oxygen, while the reduction reaction is interrupted thereby.
이러한 작동조건을 만족시키기 위하여 소위 삼원촉매(Three-Way Catalysts)라 불리는 촉매들이 다른 촉매에 비하여 우세하여 다수 개발되어 왔다.In order to satisfy these operating conditions, so-called three-way catalysts have been developed in a number of ways over other catalysts.
상기 배기가스 정화용 촉매는 주로 담체 및 촉매적으로 활성인 시드(Seed)로 구성되어 있다.The exhaust gas purification catalyst mainly consists of a carrier and a catalytically active seed.
촉매활성 물질로는 백금(Pt), 팔라듐(Pd) 및 로듐(Rh)과 같은 귀금속이 주로 사용되는데 이러한 귀금속의 촉매활성을 가속 및 안정화시키기 위하여 세륨(Ce), 란타늄(La)과 같은 VIII 족 원소의 화합물, 나트륨(Na), 칼륨(K) 및 세슘(Cs)과 같은 알칼리토금속의 화합물에서 선택된 화합물이 일반적으로 사용되고 있으나, 이중에서 특히 세륨의 산화물이 유용하다.Precious metals such as platinum (Pt), palladium (Pd) and rhodium (Rh) are mainly used as catalytically active materials. Group VIII such as cerium (Ce) and lanthanum (La) are used to accelerate and stabilize the catalytic activity of these precious metals. Compounds selected from compounds of elements, compounds of alkaline earth metals such as sodium (Na), potassium (K) and cesium (Cs) are generally used, among which oxides of cerium are particularly useful.
세륨의 산화물은 일반적으로 산소저장의 효과, 수증기의 변환반응 촉진효과(CO + H2O = CO2+ H2) 귀금속의 분산성을 강화시키는 효과 및 활성알루미나의 고온에서의 열적안정성을 향상시키는 효과를 갖는다고 알려져 있다.The oxides of cerium generally improve the effect of oxygen storage, promote the conversion reaction of water vapor (CO + H 2 O = CO 2 + H 2 ), enhance the dispersibility of precious metals, and improve the thermal stability of activated alumina at high temperatures. It is known to have an effect.
이런 이유로 세류의 산화물을 효과적으로 이용하는 것은 그 자체가 매우 중요한 문제이다.For this reason, the effective use of trickle oxides is a very important issue in itself.
또한, 세륨의 산화물은 활성 알루미나의 내열성을 향상시키고, 활성을 높여주는 촉매의 역할을 하므로 귀금속의 사용량을 절감시키고, 특히 산화세륨이 산소의 량을 조절하여 촉매의 산화/환원 반응을 적절히 조절하므로 자동차 배기가스 정화용 촉매 중 특히 삼원촉매(Three-Way Catalyst)에의 첨가는 필수적이다.In addition, cerium oxide improves the heat resistance of activated alumina and acts as a catalyst to increase activity, thereby reducing the amount of precious metal used, and in particular, since cerium oxide regulates the amount of oxygen, the oxidation / reduction reaction of the catalyst is properly controlled. Among the catalysts for automobile exhaust purification, addition to the three-way catalyst is essential.
촉매의 효능은 일반적으로 촉매와 반응물질이 접촉하는 표면이 클수록 커진다는 점도 잘 알려져 있는데, 촉매효능을 크게하기 위하여는 촉매입자들이 가능한한 미세하고 하나하나 떨어져 있을수록 좋은 것이다.It is also well known that the effectiveness of a catalyst generally increases as the surface of the catalyst and the reactant contact with each other. In order to increase the catalytic efficiency, the catalyst particles are as fine as possible and separated from each other.
즉, 단분산 상태의 입자형태를 가지고 있어야 한다.That is, they must have a monodisperse particle form.
따라서, 담체의 기본적인 역할은 촉매입자나 결정이 반응물과의 접촉에서 가능한한 분산된 상태로 유지시키는 것이다.Thus, the basic role of the carrier is to keep the catalyst particles or crystals as dispersed as possible in contact with the reactants.
상기와 같은 이유로 우수한 촉매반응성을 나타내기 위해서는 가능한 한 큰 비표면을 갖는 산화 제2세륨을 사용하는 것이 바람직하다.In order to exhibit excellent catalytic reactivity for the above reasons, it is preferable to use a second cerium oxide having a specific surface as large as possible.
현재의 자동차 촉매의 추세는 자동차엔진 가까이엔 촉매를 장착하려는 시도와 배기가스 온도의 상승 및 더욱더 엄격해지는 환경 규제로 인한 이유등으로 고온에서의 정화율을 향상시키기 위한 노력으로 고온 비표면적 값의 향상이 중요하게 대두되고 있다.The current trend of automotive catalysts is the improvement of high temperature specific surface area values in an effort to improve the purification rate at high temperatures, for example due to attempts to install catalysts near automotive engines, due to rising exhaust gas temperatures and increasingly stringent environmental regulations. This is important.
지금까지 알려진 방법으로 제조된 대부분의 산화 제2세륨은 500℃ 이상의 작동온도에 대해서는 급속히 감소되는 비표면적 값을 나타내고 있는데, 기존의 촉매용 산화세륨으로 제품화되어 있는 옥살레이트와 카보네이트염에 의해 만들어진 미국 몰리코프(Molycorp)사의 산화세륨은 800℃ 이상에서의 비표면적값(Specific Surface Area : BET 값)이 10㎡/g 이하로 고온에서의 배기가스 정화율이 현저하게 낮아지는 경향이 있다.Most of the cerium oxides produced by the known methods show rapidly decreasing specific surface area values for operating temperatures above 500 ° C. The US is made from oxalates and carbonate salts commercialized with conventional cerium oxides for catalysts. Molycorp's cerium oxide has a specific surface area (BET value) of 800 m < 2 >
상기 몰리코프(Molycorp)사 중에서 제안되고 있는 미국특허(4,356,106)에서는 수산화세륨을 도가니에 넣고 공기중의 머플로(muffle furnace)에서 300℃이상 가열하여 건조분산성 세륨화합물을 얻고, 이를 열수중 또는 상온수중에서 교반하여 콜로이드 상인 졸(Sol)을 형성하거나 또는 고순도로 시판되는 수산화세륨을 산성매질로 처리하고 건조하여 산화세륨(IV)수화물을 얻고, 이를 머플로에서 고온가열 하여 분산성 분말을 얻고 분산하여 콜로이드상인 졸을 얻고 있다.In the US Patent (4,356, 106) proposed by Molycorp (Molycorp), the cerium hydroxide is placed in the crucible and heated to 300 ℃ or more in a muffle furnace in the air to obtain a dry dispersible cerium compound, which is in the hot water or Agitated in normal temperature water to form a sol (Sol) as a colloidal phase or treating cerium hydroxide with high purity with an acidic medium and drying to obtain cerium oxide (IV) hydrate, which was heated at high temperature in a muffle to obtain a dispersible powder and dispersion To obtain a colloidal sol.
상기한 방법은 고온에서 내식성에 강한 반응로의 선정과 이를 이용한 연속공정이 어려워 대량생산이 곤란하다는 등의 문제점도 포함하고 있다.The above-mentioned method also includes problems such as the selection of a strong reactor for corrosion resistance at high temperature and the continuous process using the same, which makes it difficult to mass-produce.
그리고 프랑스 롱프랑(Rhone-Poulenc)사의 특허 91-10126~91-10132 등에 의하여 고온(800~900℃) 비표면값을 10㎡/g 이상으로 제조할 수 있으나, 공정상에 문제점들이 나타난다.In addition, the high temperature (800-900 ° C.) specific surface value may be manufactured to 10 m 2 / g or more by patents Rheone-Poulenc of Co., Ltd., 91-10126 to 91-10132, but problems appear in the process.
즉, 상기 프랑스 롱프랑에서는 산화 제2세륨을 얻기 위해 수산화세륨을 질산으로 용해하여 질산세륨용액을 얻고, 이를 100℃의 열수중에서 가수분해한 후 오토크레이브(Autoclave)를 통하여 콜로이드상인 졸(Sol)을 얻고 있다.That is, in France, France, to obtain a second cerium oxide, cerium hydroxide is dissolved with nitric acid to obtain a cerium nitrate solution, which is hydrolyzed in hot water at 100 ° C., and then colloidal through a autoclave. Is getting.
그러나 상기한 오토크레이브(Autoclave)에 의한 공정은 고온 가압이 필요하므로 설비가 많이 필요하고, 가수분해에 의한 공정에서는 10~20% 정도의 세륨이온의 손실이 발생되므로 수율이 떨어지며, 정액공정의 제어가 난해하다.However, the above-described process by autoclave requires a lot of equipment since high temperature pressurization is required. In the process by hydrolysis, the yield decreases because the loss of about 10-20% of cerium ions occurs, thus controlling the semen process. Is difficult.
따라서, 반응매질의 산도 및 세륨의 농도, 산화상태 그리고 그 비율을 조건에 알맞게 조정해야 하는 어려움이 따른다.Therefore, there is a difficulty in adjusting the acidity of the reaction medium, the concentration of cerium, the oxidation state and the ratio thereof to the conditions.
본 발명은 상기한 종래의 문제점을 해결하기 위해 안출한 것으로, 저온에서 간단한 설비로 온침처리하여 연속생산이 가능하고 특히, 배기가스 온도 상승에 따른 고온에서의 비표면적 값을 향상시키는데 적합한 산화세륨을 제공하고자 하는데 그 목적이 있다.The present invention has been made in order to solve the above-mentioned problems, and it is possible to continuously produce by thermally immersing in a simple facility at low temperature, and in particular, a cerium oxide suitable for improving the specific surface area value at high temperature according to the rise of exhaust gas temperature. The purpose is to provide.
이하 본 발명을 설명한다.Hereinafter, the present invention will be described.
본 발명은 Ce(OH4) 또는 CeO2분말을 산성매질을 이용하여 용해시키는 제1공정과, 100~150℃ 온도에서 온침화(Digestion)시켜 겔(Gel)상태로하는 제2공정과, 상기한 겔에 증류수를 가해 콜로이드 입자들의 형상군인 졸(Sol)상태로 하는 제3공정과, 염기성 매질을 가해 세륨이온을 침전시키고, 이 침전물을 수세 및 건조하여 산화세륨(CeO2)을 얻게된다.The present invention is a first step of dissolving Ce (OH 4 ) or CeO 2 powder using an acidic medium, a second step of digestion at a temperature of 100 ~ 150 ℃ to a gel (Gel) state, and Distilled water was added to one gel to form a sol (Sol), which is a shape group of colloidal particles, and a basic medium was added to precipitate cerium ions. The precipitate was washed with water and dried to obtain cerium oxide (CeO 2 ).
본 발명은 또한 겔 상태로 하는 제2공정을 마친 후 다시 온침화시키고 (즉, 온침화공정을 반복)다시 겔 상태로 한 후 염기성 매질첨가, 수세 및 건조공정으로 할 수 있으며, 이 경우 고온 비표면적이 더욱 증대된다.The present invention can also be subjected to a basic step of adding a medium, washing with water and drying after the second step of gelling is completed by warming again (that is, repeating the warming step) and then gelling again. The surface area is further increased.
첨부된 도면은 본 발명의 제조공정도를 나타낸 것으로, 이에 따라 상세히 설명한다.The accompanying drawings show the manufacturing process diagram of the present invention, will be described in detail accordingly.
출발물질인 Ce(OH)4또는 CeO2를 산성매질로 용해시키되 특히, 질산으로 하여 일정한 초기산도를 나타내고 0.5N~5N 사이의 노르말 농도를 갖도록 용해시킨 후 이와같이 하여서 얻어진 질산 제2세륨 수용액을 (a)와같이 히터(1)가 매설되고 교반기(2)가 설치된 탱크내에 넣고 100~150℃ 온도에서 온침(Digestion)시켜 Ce(NO3)4·XH2O 형태의 겔(Gel)상태로 하고, 이어서 (b)와 같이 증류수를 첨가하여 0.1N~0.5N의 유리산도를 나타내는 콜로이드 입자들의 형상군(群)인 졸(Sol)로 만든 후, (c)에서 염기성 매질인 침전제를 이용하여 세륨이온을 완전 침전시키고, 이 침전물을 세척 건조하므로서 고온 비표면적을 갖는 산화세륨(CeO2)을 얻게된다.The starting material Ce (OH) 4 or CeO 2 was dissolved in an acidic medium, and in particular, nitric acid was dissolved to have a constant initial acidity and a normal concentration of 0.5N to 5N. As in a), the heater 1 is embedded and placed in a tank equipped with the stirrer 2 and digested at a temperature of 100 to 150 ° C. to a gel state of Ce (NO 3 ) 4 · X H 2 O. Then, distilled water was added to form a sol (Sol) of a colloidal particle having a free acidity of 0.1 N to 0.5 N, as shown in (b), followed by using a precipitant as a basic medium in (c). Cerium ions are completely precipitated and the precipitate is washed and dried to obtain cerium oxide (CeO 2 ) having a high specific surface area.
또한, 본 발명은 상기한 공정에서 졸 상태를 얻는 (b)공정을 마친 후 처음 공정으로 다시 돌려 (d)와같이 온침공정(겔상태)처리하고 다시 (e)와 같이 증류수 첨가시켜 졸 상태를 얻고, (f)와같이 염기성 매질첨가, 세척, 건조할 수 있다.In the present invention, after the step (b) of obtaining the sol state in the above-described process, the process is returned to the first process, followed by a warming process (gel state) as shown in (d), and distilled water is added as shown in (e) again to obtain the sol state. The basic medium can be added, washed and dried as shown in (f).
이와 같이, 온침 공정과 졸을 얻는 공정을 반복적으로 함에따라 고온 비표면적을 더욱 향상시킬 수 있다.In this way, the high temperature specific surface area can be further improved by repeating the warming step and the step of obtaining the sol.
다음은 실시예에 따라 설명한다.The following is described according to the embodiment.
[실시예 1]Example 1
출발물질로서 순도 99% 이상인 Ce(OH)4또는 CeO2형태의 원료를 사용하였다.A starting material of Ce (OH) 4 or CeO 2 type having a purity of 99% or more was used as a starting material.
1 l Teflon 비이커 내에 60% 공업용 질산 200ml에 100g의 Ce(OH)4분말을 넣고 수용액 형태로 용해시킨 후 교반하여 온침시키면 겔(Gel)상태로 만든다.100 g of Ce (OH) 4 powder is added to 200 ml of 60% industrial nitric acid in a 1 l Teflon beaker, dissolved in an aqueous solution, stirred and warmed to a gel state.
이때의 가열온도는 100~150℃ 에서 행하였다.The heating temperature at this time was performed at 100-150 degreeC.
겔 화가 된 상태에서 증류수 800ml를 첨가하여 졸(Sol)상태로 클로이드화 시킨 후 10 N 암모니아 수용액으로 세륨 이온이 완전하게 침전이 되는 영역인 pH = 9 까지 침전시킨 후 수세하여 얻은 침전물을 열처리 하여 비표면적 값을 측정하였다.In the gelled state, 800 ml of distilled water was added to form a sol, and then precipitated to pH = 9, where cerium ions were completely precipitated with 10 N ammonia solution, followed by heat treatment of the precipitate obtained by washing with water. Specific surface area values were measured.
그 결과 이 생성물을 800℃ 에서 2~4시간 열처리한 비표면적 값은 23~26㎡/g 이었으며, 특히 900℃ 에서도 16㎡/g의 값을 가졌다.As a result, the specific surface area of the product after heat treatment at 800 ° C. for 2 to 4 hours was 23 to 26 m 2 / g, and especially at 900 ° C., having a value of 16 m 2 / g.
이때의 비표면적 값의 측정은 퀸타크롬(QUANTACHROME)사의 오토저브(AUTOSORB)-1 타입의 분석 장비를 이용하여 측정하였다.The specific surface area value at this time was measured using an AUTOSORB-1 type of analytical equipment of QUANTACHROME.
[실시예 2]Example 2
실시예 1과 동일한 방법으로 행하였으나 출발물질을 고순도(99% 이상)Ce(OH)4가 아닌 CeO2순도 95% (4% Ce 이외의 희토류 이온)정도의 원료를 사용하였다.Of Example 1, but a row in the same manner starting material of high purity (99%) Ce (OH) CeO 2 purity of 95% (rare earth ions other than the 4% Ce) was used instead of 4, the raw material level.
그 결과 최종 생성물을 800℃에서 2~4시간 열처리한 비표면적 값은 15~20㎡/g 정도의 실시예 1에 비해서는 약간 낮은 값을 나타내었다.As a result, the specific surface area value of the final product heat-treated at 800 ° C. for 2 to 4 hours was slightly lower than that of Example 1 of about 15 to 20 m 2 / g.
[실시예 3]Example 3
실시예 1과 동일한 방법으로 실행하였으나, Ce(OH)4100g 과 60% 공업용 질산을 300ml 사용하여 NO3/CeO3비를 변화시켜 실시한 바, 고온(800~900℃)에서의 비표면적 값에는 크게 변화가 없었다.In the same manner as in Example 1, but using a 100g Ce (OH) 4 and 300ml of 60% industrial nitric acid to change the NO 3 / CeO 3 ratio, the specific surface area value at high temperatures (800 ~ 900 ℃) There was no significant change.
[실시예 4]Example 4
실시예 1과 동일한 방법으로 수행하여 졸(Sol)상태로까지 행한 후 다시 한번 더 온침(digestion)을 시켜, 즉 2 회의 온침공정을 거쳐 겔(Gel)상태로 만들어 증류수를 첨가하여 콜로이드와 시킨 후 10N 아모니아 수용액으로 pH = 9 까지 침전시킨 다음 수세하여 얻은 침전물을 열처리하여 비표면적 값을 측정하였다.After performing in the same manner as in Example 1 to the sol (Sol) state, and then again digestion, that is, through a two-time impregnation process to make a gel (Gel) state by adding distilled water to colloid and then The specific surface area value was measured by precipitating to pH = 9 with 10N aqueous ammonia solution and then heat treating the precipitate.
그 결과, 이 생성물을 800℃ 에서 2~4시간 열처리한 비표면적 값은 27㎡/g 이상이었으며, 900℃ 에서 열처리한 경우에도 17㎡/g 을 유지하였다.As a result, the specific surface area after heat treatment of the product at 800 ° C. for 2 to 4 hours was 27 m 2 / g or more, and 17 m 2 / g was maintained even when the product was heat treated at 900 ° C.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019950020838A KR0149935B1 (en) | 1995-07-14 | 1995-07-14 | Manufacturing method of cecium oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019950020838A KR0149935B1 (en) | 1995-07-14 | 1995-07-14 | Manufacturing method of cecium oxide |
Publications (2)
Publication Number | Publication Date |
---|---|
KR970006170A KR970006170A (en) | 1997-02-19 |
KR0149935B1 true KR0149935B1 (en) | 1999-04-15 |
Family
ID=19420685
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019950020838A KR0149935B1 (en) | 1995-07-14 | 1995-07-14 | Manufacturing method of cecium oxide |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR0149935B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020022309A (en) * | 2000-09-19 | 2002-03-27 | 정지완 | Ceric ammonium nitrate manufacture method |
KR100556046B1 (en) * | 1997-04-09 | 2006-07-06 | 우미코레 아게 운트 코 카게 | Manufacturing method of oxygen storage material with high thermal stability |
KR101041272B1 (en) * | 2006-09-22 | 2011-06-14 | 주식회사 엘지화학 | Method for producing cerium oxide nano powder |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100421536B1 (en) * | 2001-06-09 | 2004-03-09 | 정인 | Separation method of cerium oxide from wasted iron oxide catalysts |
-
1995
- 1995-07-14 KR KR1019950020838A patent/KR0149935B1/en not_active IP Right Cessation
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100556046B1 (en) * | 1997-04-09 | 2006-07-06 | 우미코레 아게 운트 코 카게 | Manufacturing method of oxygen storage material with high thermal stability |
KR20020022309A (en) * | 2000-09-19 | 2002-03-27 | 정지완 | Ceric ammonium nitrate manufacture method |
KR101041272B1 (en) * | 2006-09-22 | 2011-06-14 | 주식회사 엘지화학 | Method for producing cerium oxide nano powder |
Also Published As
Publication number | Publication date |
---|---|
KR970006170A (en) | 1997-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4041106B2 (en) | Composition based on cerium oxide and zirconium oxide and having high specific surface area and high oxygen storage capacity, and method for producing the same | |
KR100338005B1 (en) | Method for Treating Exhaust Gas of Internal Combustion Engines Functioning with Sulfur-Containing Fuel | |
KR100693956B1 (en) | Compositions of oxide bases of zirconium oxide and cerium, lanthanum and other rare earths, methods for their preparation and their use as catalysts | |
KR100237812B1 (en) | Catalytic Composition Based on Cerium Oxide and Manganese, Iron or Praseodymium Oxide, Method for Preparing Same and Use Thereof in Motor Vehicle Post-Combustion Catalysis | |
KR100304508B1 (en) | Mixed oxide base composition of cerium and zirconium and its use | |
JP2651993B2 (en) | Compositions, processes and uses based on ceric oxide | |
KR100814304B1 (en) | Reduced maximum reductibility temperature zirconium oxide and cerium oxide based composition, method for the production and use thereof as a catalyst | |
JP4503603B2 (en) | Composition and catalyst having improved reducing ability and specific surface area mainly composed of cerium oxide and zirconium oxide | |
JPWO2003022740A1 (en) | Cerium oxide, its production method and exhaust gas purifying catalyst | |
AU642937B2 (en) | Process for the preparation of a colloidal dispersion of a cerium IV compound in an aqueous medium and dispersions obtained | |
EP2077253B1 (en) | Composite oxide for use as exhaust gas clean-up catalyst, and filter | |
US6204219B1 (en) | Thermally stable support material and method for making the same | |
KR0149935B1 (en) | Manufacturing method of cecium oxide | |
CN114870865A (en) | A supported Pd-based bimetallic nanocatalyst for CO reduction of NO | |
US3316057A (en) | Method of treating exhaust gases of internal combustion engines | |
JP3251009B2 (en) | Exhaust gas purification catalyst | |
CN114713217B (en) | Modified cerium oxide carrier, modification method, palladium cerium catalyst, preparation method and application thereof | |
JPH0576341B2 (en) | ||
JP2642657B2 (en) | Heat-resistant composite oxide and method for producing the same | |
JP5628049B2 (en) | Compositions based on zirconium oxide, titanium oxide or mixed zirconium titanium oxide on a silica support, preparation methods and use as catalysts | |
JP4534351B2 (en) | NOx storage reduction catalyst and method for producing the same | |
JPH06262074A (en) | Catalyst for exhaust gas purification and its prep-aration | |
JPH0796139A (en) | Exhaust gas purification method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 19950714 |
|
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 19950714 Comment text: Request for Examination of Application |
|
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 19980220 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 19980520 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 19980610 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 19980610 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20010515 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20020531 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20030520 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20040528 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20050526 Start annual number: 8 End annual number: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20060518 Start annual number: 9 End annual number: 9 |
|
FPAY | Annual fee payment |
Payment date: 20070423 Year of fee payment: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20070423 Start annual number: 10 End annual number: 10 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20090509 |