KR0149200B1 - Manufacturing method of tin oxide-based semiconducting thick film for gas sensor - Google Patents
Manufacturing method of tin oxide-based semiconducting thick film for gas sensorInfo
- Publication number
- KR0149200B1 KR0149200B1 KR1019940040294A KR19940040294A KR0149200B1 KR 0149200 B1 KR0149200 B1 KR 0149200B1 KR 1019940040294 A KR1019940040294 A KR 1019940040294A KR 19940040294 A KR19940040294 A KR 19940040294A KR 0149200 B1 KR0149200 B1 KR 0149200B1
- Authority
- KR
- South Korea
- Prior art keywords
- powder
- thick film
- temperature
- tin oxide
- hours
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 title claims abstract description 17
- 229910001887 tin oxide Inorganic materials 0.000 title claims abstract description 17
- 239000000843 powder Substances 0.000 claims abstract description 46
- 238000000498 ball milling Methods 0.000 claims abstract description 21
- 238000010438 heat treatment Methods 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims abstract description 12
- 239000002994 raw material Substances 0.000 claims abstract description 12
- 239000002904 solvent Substances 0.000 claims abstract description 11
- 239000000758 substrate Substances 0.000 claims abstract description 11
- 239000011230 binding agent Substances 0.000 claims abstract description 10
- 230000000630 rising effect Effects 0.000 claims abstract description 9
- 238000001354 calcination Methods 0.000 claims abstract description 8
- 238000001035 drying Methods 0.000 claims abstract description 8
- 239000011247 coating layer Substances 0.000 claims abstract description 6
- 238000002156 mixing Methods 0.000 claims abstract description 3
- 239000004570 mortar (masonry) Substances 0.000 claims abstract description 3
- 238000010298 pulverizing process Methods 0.000 claims abstract 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims 1
- 230000003647 oxidation Effects 0.000 claims 1
- 238000007254 oxidation reaction Methods 0.000 claims 1
- 230000035945 sensitivity Effects 0.000 abstract description 15
- 238000007873 sieving Methods 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 15
- 239000000463 material Substances 0.000 description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 238000003921 particle size analysis Methods 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 241000005398 Figaro Species 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C24/00—Coating starting from inorganic powder
- C23C24/08—Coating starting from inorganic powder by application of heat or pressure and heat
- C23C24/10—Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/453—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
- C04B35/457—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
본 발명은 가스의 누출을 사전에 감지할 수 있는 가스센서용 산화주석계 반도성 후막의 제조방법에 관한 것으로써, 원료분말 제조공정과 열처리 공정을 적절히 설정함으로서 후막과 기판 사이에 완충막을 형성하지 않고서도 균열이 발생되지 않을 뿐만 아니라 가스감도가 우수한 가스센서의 반도성 후막을 제조하는 방법을 제공하고 있는데 그 목적이 있다.The present invention relates to a method for producing a tin oxide-based semiconducting thick film for a gas sensor that can detect a leak of gas in advance, and by appropriately setting the raw material powder manufacturing process and the heat treatment process, a buffer film is not formed between the thick film and the substrate. The present invention provides a method of manufacturing a semiconducting thick film of a gas sensor which is not only cracked but also excellent in gas sensitivity.
본 발명은 산화주석계 원료분말 제조단계, 원료분말과 유기결합제를 혼합하여 페이스트(paste)를 만드는 단계, 페이스트를 기판상에 도포하는 단계, 도포층의 건조단계 및 열처리단계를 포함하는 구성되는 가스센서용 산화주석계 반도성 후막의 제조방법에 있어서, 상기 원료분말 제조단계가 볼을 분말무게의 1배 이상이 되도록 넣고 분말과 용매의 무게비가 1:0.5∼3.0배가 되도록 용매를 투입하여 6∼24시간 동안 1차 볼밀링한 다음, 400∼600℃에서 0.5∼3시간 동안 하소시킨 후, 상기 1차 볼밀링 조건과 동일하게 2차 볼밀링한 다음, 유발로 최종분쇄하여 100∼250mesh 망체로 체질하여 원료분말을 제조하도록 구성되고; 그리고 상기 열처리단계가 도포층 건조후 2℃/min 이하의 승온속도로 300∼500℃의 온도구간까지 가열하고 이 온도에서 30분이상 유지한 후, 10℃/min 이하의 승온속도로 850∼1250℃의 온도구간까지 가열하고, 이 온도에서 10분∼3시간 유지하여 소결되도록 구성되는 가스센서용 산화주석계 반도성 후막의 제조방법을 그 요지로 한다.The present invention is a gas comprising a tin oxide-based raw material powder manufacturing step, mixing the raw material powder and the organic binder to form a paste, applying the paste on a substrate, drying the coating layer and heat treatment step In the method for manufacturing a tin oxide-based semiconducting thick film for a sensor, the step of preparing the raw material powder is performed so that the ball is at least 1 times the powder weight, and the solvent is added at a weight ratio of 0.5 to 3.0 times the powder and the solvent to 6 to 6 After first ball milling for 24 hours, calcining at 400 to 600 ° C. for 0.5 to 3 hours, second ball milling in the same manner as the first ball milling conditions, and then pulverizing with a mortar to 100 to 250 mesh network Sieving to produce a raw powder; After the heat treatment step is dried, the coating layer is heated to a temperature range of 300 to 500 ° C. at a temperature rising rate of 2 ° C./min or less, and maintained at this temperature for 30 minutes or more, and then 850 to 1250 at a temperature rising rate of 10 ° C./min or less. It is a summary of the method for producing a tin oxide based semiconducting thick film for a gas sensor, which is heated to a temperature range of 占 폚 and held at this temperature for 10 minutes to 3 hours to sinter.
Description
제1도는 본 발명법 및 본 발명을 벗어난 방법에 의해 제조된 반도성 후막의 표면사진.1 is a surface photograph of a semiconducting thick film prepared by the present invention method and a method outside the present invention.
본 발명은 가스의 누출을 검지할 수 있는 가스센서용 산화주석계 반도성 후막의 제조방법에 관한 것이다.The present invention relates to a method for producing a tin oxide based semiconducting thick film for a gas sensor capable of detecting a leak of gas.
가장 많이 쓰이는 반도체 방식의 가스센서는 반도성 세라믹 내부에 열선이 들어가 있는 방식이다. 즉, 열선을 반도체 내부에 삽입하고, 그 열선에 전류를 흘러줌으로써 발열시키고, 그로 인하여 반도체의 온도를 가스감지가 용이한 200∼300℃정도까지 승온시켜 왔다.The most popular type of semiconductor gas sensor is a type of heating wire inside a semiconducting ceramic. That is, the heating wire is inserted into the semiconductor, and heat is generated by flowing a current through the heating wire, thereby raising the temperature of the semiconductor to about 200 to 300 ° C, which is easy to detect gas.
최근에 발표된 센서의 특징은 수소가 공기중에 200ppm 일때의 전도도가 공기만 흐를 때의 전도도 보다 약 75배 정도된다.(Figaro TGS821)(이하, 이를 감도라 칭한다.) 이는 현재의 수소가스센서로서 최고의 감도를 갖는 소자이다.The characteristics of the recently released sensor are about 75 times higher than the conductivity when hydrogen is 200 ppm in air (Figaro TGS821) (hereinafter referred to as sensitivity). It is the device with the highest sensitivity.
그러나 센서의 감도를 높이면 높일수록 경보기의 기능은 더욱 향상되므로 감도를 올리고자 새로운 물질이 계속 만들어지고 있다.However, the higher the sensitivity of the sensor, the better the alarm's function, so new materials are being created to increase the sensitivity.
실제 센서의 감응은 표면에 가스가 닿는 면적과도 비례한다. 따라서 최종센서의 감도는 처음 출발물질의 미세구조에 민감하게 좌우된다.In practice, the sensor's response is also proportional to the area of gas on the surface. Therefore, the sensitivity of the final sensor is sensitively dependent on the microstructure of the starting material.
한편, 세라믹 후막이 20∼200㎛ 정도로 도포되면, 건조 또는 열처리시 균열이 발생하기 쉽다. 이렇게 되면 반도체 재료의 경우 그 전도도가 급격히 떨어지며 센서 소자로서의 기능을 할 수 없게 된다.On the other hand, when the ceramic thick film is applied on the order of 20 to 200 mu m, cracks are liable to occur during drying or heat treatment. In this case, the conductivity of the semiconductor material drops sharply, and it cannot function as a sensor element.
표면균열을 방지하기 위하여 통상 기판과 후막 사이에 완충막을 형성시키는 방법이 제안되었다.In order to prevent surface cracking, a method of forming a buffer film between a substrate and a thick film is generally proposed.
그러나, 이 경우 기계적인 특성만을 요구할 경우 크게 문제되지 않으나, 가스센서 등 화학적인 특성이 중요시되는 곳에선, 완충막의 화학작용으로 인하여 센서의 감도에 영향을 미치기 쉽다.However, in this case, if only the mechanical properties are required, it does not matter much, but where chemical properties such as gas sensors are important, the sensitivity of the sensor is likely to be affected by the chemical action of the buffer membrane.
따라서, 기판과 반도체 후막 사이에 어떠한 완충막도 입히지 않고, 기판 위에 목적으로 하는 반도성 후막을 입히는 방법이 요구된다.Therefore, there is a need for a method of coating a target semiconducting thick film on a substrate without applying any buffer film between the substrate and the semiconductor thick film.
본 발명자는 산화주석계 반도성 후막의 원료분말 및 코팅 후 열처리 공정에 대하여 연구 및 실험을 행하고, 그 결과에 근거하여 본 발명을 제안하게 된 것으로써, 본 발명은 원료분말 제조공정과 열처리공정을 적절히 설정함으로서 후막과 기판 사이에 완충막을 형성하지 않고서도 균열이 발생되지 않을 뿐만 아니라 가스 감도가 우수한 가스센서용 산화주석계 반도성 후막을 제조하는 방법을 제공하고자 하는데, 그 목적이 있다.The present inventors conducted research and experiments on the raw material powder of the tin oxide-based semiconducting thick film and the post-coating heat treatment process, and based on the results, the present invention proposes a raw material powder manufacturing process and a heat treatment process. It is an object of the present invention to provide a method for producing a tin oxide-based semiconducting thick film for a gas sensor which is excellent in gas sensitivity as well as no cracking without forming a buffer film between the thick film and the substrate.
이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.
본 발명은 산화주석계 원료분말 제조단계, 원료분말과 유기결합제를 혼합하여 페이스트(paste)를 만드는 단계, 페이스트를 기판상에 도포하는 단계, 도포층의 건조단계 및 열처리단계를 포함하여 구성되는 가스센서용 산화주석계 반도성 후막의 제조방법에 있어서, 상기 원료분말 제조단계가 볼을 분말무게의 1배 이상이 되도록 넣고 분말과 용매의 무게비가 1:0.5∼3.0배가 되도록 용매를 투입하여 6∼24시간 동안 1차 볼밀링한 다음, 400∼600℃에서 0.5∼3시간 동안 하소시킨 후, 상기 1차 볼밀링조건과 동일하게 2차 볼밀링한 다음, 유발로 최종 분쇄하여 100∼250mesh 망체로 체질하여 원료분말을 제조하도록 구성되고; 그리고 상기 열처리단계가 도포층 건조후 2℃/min 이하의 승온속도로 300∼500℃의 온도구간까지 가열하고 이 온도에서 30분이상 유지한 후, 10℃/min 이하의 승온속도로 850∼1250℃의 온도구간까지 가열하고, 이 온도에서 10분∼3시간 유지하며 소결되도록 구성되는 가스센서용 산화주석계 반도성 후막의 제조방법에 관한 것이다.The present invention provides a gas comprising a tin oxide-based raw material powder manufacturing step, a raw material powder and an organic binder are mixed to form a paste, a paste is applied onto a substrate, a drying step of a coating layer, and a heat treatment step. In the method for manufacturing a tin oxide-based semiconducting thick film for a sensor, the step of preparing the raw material powder is performed so that the ball is at least 1 times the powder weight, and the solvent is added at a weight ratio of 0.5 to 3.0 times the powder and the solvent to 6 to 6 After the first ball milling for 24 hours, calcining at 400 to 600 ℃ for 0.5 to 3 hours, the second ball milling in the same manner as the first ball milling conditions, and then pulverized by firing to 100 to 250 mesh mesh Sieving to produce a raw powder; After the heat treatment step is dried, the coating layer is heated to a temperature range of 300 to 500 ° C. at a temperature rising rate of 2 ° C./min or less, and maintained at this temperature for 30 minutes or more, and then 850 to 1250 at a temperature rising rate of 10 ° C./min or less. The present invention relates to a method for producing a tin oxide-based semiconducting thick film for a gas sensor, which is heated to a temperature range of 占 폚 and maintained at this temperature for 10 minutes to 3 hours.
이하, 본 발명에 대하여 상세한 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.
본 발명에 따라 산화주석계 반도성 후막을 제조하기 위해서는, 우선 출발원료인 산화주석계 분말을 제조하여야 하는데 그 제조공정은 다음과 같다.In order to manufacture a tin oxide-based semiconducting thick film according to the present invention, first, a tin oxide-based powder which is a starting material should be prepared. The manufacturing process is as follows.
즉, 볼을 분말무게의 1배 이상이 되도록 넣고 분말과 용매의 무게비가 1:0.5∼3.0 배가 되도록 용매를 투입하여 6∼24시간 동안 1차 볼밀링한 다음, 400∼600℃에서 0.5∼3시간 동안 하소시킨 후, 상기 1차 볼밀링 조건과 동일하게 2차 볼밀링한 다음, 유발로 최종 분쇄하여 100∼250mesh 망체로 체질하여 원료분말을 제조한다.That is, the ball is put at least 1 times the powder weight, and the solvent is added so that the weight ratio of the powder and the solvent is 1: 0.5 to 3.0 times, followed by the first ball milling for 6 to 24 hours, and then 0.5 to 3 at 400 to 600 ° C. After calcining for a period of time, the second ball milling in the same manner as the first ball milling conditions, and then pulverized with a mortar and sieved to 100 ~ 250mesh mesh to prepare a raw powder.
상기 1, 2차 볼밀링시 볼을 분말무게의 1.0배 이하로 넣은 경우에는 분쇄효과가 적어 균일한 입도의 분말을 얻기가 곤란하기 때문에 볼의 투입량은 분말무게의 1.0배 이상으로 해야 하며, 바람직하게는 1.0∼4배이다.When the ball is put at 1.0 times or less of the powder weight during the first and second ball milling, it is difficult to obtain a powder having a uniform particle size since the grinding effect is small, so the amount of the ball should be 1.0 times or more of the powder weight. It is 1.0-4 times.
그리고 1, 2차 볼밀링시 용매의 첨가량은 분말무게의 0.5∼3.0배 정도가 바람직한데, 그 이유는 용매의 양이 너무 적은 경우에는 분체의 분산효과가 미흡하고, 너무 많은 경우에는 볼에 의한 분쇄 효과가 적고, 건조시간이 길어지고, 이로 인하여 분말의 조성이 불균일해지기 때문이다. 상기 용매로는 증류수, 알콜, 아세톤 등을 들 수 있다.In the first and second ball milling, the amount of the solvent added is preferably 0.5 to 3.0 times the weight of the powder. The reason is that when the amount of the solvent is too small, the effect of dispersing the powder is insufficient. This is because the grinding effect is small, the drying time is long, and the composition of the powder becomes non-uniform. Distilled water, alcohol, acetone etc. are mentioned as said solvent.
또한 1, 2차 볼밀링 시간은 6∼24시간으로 제한하는 것이 바람직한데, 그 이유는 볼밀링 시간이 6시간 이하인 경우에는 볼밀링 효과가 불충분하고, 24시간 이상이면, 볼의 마모에 의한 불순물 혼입이 생기기 때문이다.In addition, it is preferable to limit the first and second ball milling times to 6 to 24 hours, because the ball milling effect is insufficient when the ball milling time is 6 hours or less, and when it is 24 hours or more, impurities due to ball wear This is because mixing occurs.
상기 최종 분쇄후 체질하는 망체의 크기는 100∼250mesh가 바람직한데, 그 이유는 100mesh 이하인 경우에는 덩어리가 발생되어 소결시 균열의 시작점을 제공하게 되고, 250mesh 이상인 경우에는 수율이 낮기 때문이다.The size of the net sieve sifted after the final grinding is preferably 100 to 250 mesh, because if it is 100 mesh or less, agglomerates are generated to provide a starting point of cracking during sintering, and if it is 250 mesh or more, the yield is low.
다음에, 상기와 같이 제조된 분말을 통상의 방법으로 유기결합제와 혼합하여 페이스트를 제조한 후, 기판에 도포한 다음 건조하게 된다.Next, the powder prepared as described above is mixed with an organic binder in a conventional manner to prepare a paste, and then applied to a substrate and dried.
이때, 건조는 상온에서 24시간 정도 행하는 것이 바람직하다.At this time, it is preferable to perform drying at normal temperature for about 24 hours.
다음에, 2℃/min 이하의 승온속도로 300∼500℃의 온도구간까지 가열하고 이 온도에서 30분이상 유지한 후, 10℃/min 이하의 승온속도로 850∼1250℃의 온도구간까지 가열하고, 이 온도에서 10분∼3시간 유지하여 소결한다.Next, the temperature is heated to a temperature range of 300 to 500 ° C. at a temperature rising rate of 2 ° C./min or less and maintained at this temperature for 30 minutes or more, and then to a temperature range of 850 to 1250 ° C. at a temperature rising rate of 10 ° C./min or less. The mixture is kept at this temperature for 10 minutes to 3 hours and sintered.
상기한 300∼500℃의 온도구간까지의 승온속도가 2℃/min 이상인 경우에는 급격한 수축에 의해 인장응력이 표면에 발생하게 되어 피막에 균열이 발생하게 됨으로, 상기 승온속도는 2℃/min 이하로 제한되어야 하며, 보다 바람직한 승온속도는 1℃/min이하이다.When the temperature increase rate up to the temperature range of 300 to 500 ° C. is 2 ° C./min or more, tensile stress occurs on the surface due to rapid shrinkage, and cracks occur in the film, and the temperature increase rate is 2 ° C./min or less. It should be limited to, more preferably the temperature increase rate is 1 ℃ / min or less.
상기한 300∼500℃의 온도구간에서의 유지는 유기바인더를 제거하기 위한 것으로서, 유지시간이 30분 이하인 경우에는 유기바인더가 충분히 제거되지 않기 때문에 30분 이상 유지하여야 하며, 바람직한 유지시간은 30분∼5시간이다.The above-mentioned holding at the temperature range of 300 to 500 ° C. is for removing the organic binder. If the holding time is 30 minutes or less, the organic binder is not sufficiently removed, and thus the holding time is 30 minutes or more, and the preferable holding time is 30 minutes. It is -5 hours.
또한, 상기 유지온도가 너무 낮은 경우에는 유기바인더가 충분히 제거되지 않고, 너무 높은 경우에는 입자간의 소결이 발생하여 유기바인더 가스에 의해 피막표면에 홀이 발생하게 된다.If the holding temperature is too low, the organic binder is not sufficiently removed. If the holding temperature is too high, sintering occurs between particles, and holes are formed on the surface of the coating film by the organic binder gas.
소결온도인 850∼1250℃까지의 승온속도가 10℃/min 이상인 경우에는 피막에 균열이 발생될 우려가 크므로, 상기 승온속도는 10℃/min 이하로 제한하는 것이 바람직하다. 보다 바람직한 승온속도는 5℃/min 이하 정도이다.When the temperature increase rate to 850-1250 degreeC which is a sintering temperature is 10 degreeC / min or more, there exists a possibility that a crack may generate | occur | produce in a film, It is preferable to limit the said temperature rising rate to 10 degrees C / min or less. More preferable temperature increase rate is about 5 degrees C / min or less.
상기와 같이 출발분말을 처리함으로서, 가스 감도가 우수한 가스센서용 산화주석계 반도성 후막이 제조된다.By treating the starting powder as described above, a tin oxide-based semiconducting thick film for gas sensors having excellent gas sensitivity is produced.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.
[실시예]EXAMPLE
출발조성은 산화주석에 소결조제로 마그네시움, 촉매로 파라디움이 1at% 첨가된 것으로 하였다. 상기 물질을 부피 250cc인 플라스틱 통에 약 50g을 넣고, 혼합용매인 증류수를 50cc, 지르코니아 볼을 200g 넣어 14∼16시간 볼밀링하였다. 볼밀링이 끝난 슬러리를 건조오븐에 5시간 이상 건조시킨 후, 섭씨 500도까지 분당 5도의 속도로 승온하여 2시간 유지하여 하소시킨 다음, 분당 10도의 속도로 냉각하였다. 비교를 위하여 하소된 분말을 다시 상기와 같은 조건으로 볼밀링하여 건조시켰다. 하소 후 볼밀링한 것과 하지 않은 것을 입도 분석하기 전에 유발로 잘 분쇄하여 촘촘함이 200 메쉬인 망체(sieve)를 통과시켰다.The starting composition was to add 1 at% of magnesium as a sintering aid and palladium as a catalyst to tin oxide. About 50 g of the material was placed in a plastic container having a volume of 250 cc, 50 cc of distilled water as a mixed solvent and 200 g of zirconia balls were ball milled for 14 to 16 hours. After the ball milling slurry was dried in a drying oven for 5 hours or more, the temperature was raised to 500 degrees Celsius at a rate of 5 degrees per minute, held for 2 hours, and calcined, and then cooled at a rate of 10 degrees per minute. For comparison, the calcined powder was again ball milled to the same conditions as above and dried. After calcination, the ball milled and non-milled ones were ground well by induction prior to particle size analysis and passed through a sieve with a density of 200 mesh.
상기와 같이 제조된 분말들의 입도분석을 행하고, 그 결과를 하기 표 1에 나타내었다.Particle size analysis of the powders prepared as described above was performed, and the results are shown in Table 1 below.
입도분석은 시료분말을 초음파로 분산시킨 후 행하고, 입도분석 후 다시한번 초음파로 분석하여 결과를 정리하는 것을 4회까지 반복하여 시료분말의 뭉침을 가급적 배재하여 재측정한 것이다.Particle size analysis is performed by dispersing the sample powder with ultrasonic waves, and analyzing the result by ultrasonic wave once again after the particle size analysis, and repeating the results up to four times.
상기 표 1에 나타난 바와 같이, 하소 후 볼밀링한 분말(발명 분말)이 하소 후 볼밀링안한 분말(비교 분말)에 비하여 입도가 훨씬 미세함을 알 수 있다.As shown in Table 1, it can be seen that the ball milling powder (invention powder) after calcination is much finer than the ball milling powder (comparative powder) after calcination.
상기와 같이 제조된 비교 분말과 발명 분말을 각각 유기결합제(ESL 사의 24번 유기결합제)와 1:1로 혼합하여 페이스트를 제조한 다음, 알루미나 기판 위에 도포하였다.The comparative powder and the inventive powder prepared as described above were mixed with an organic binder (organic binder No. 24 of ESL No. 24) and 1: 1 to prepare a paste, and then applied onto an alumina substrate.
다음에, 상온에서 24시간 동안 건조하였다.Then, dried at room temperature for 24 hours.
다음에, 1℃/min와 5℃/min의 승온속도로 350℃까지 가열하고, 이 온도에서 5시간 유지한 후, 5℃/min와 20℃/min의 승온속도로 900℃까지 가열하고, 이 온도에서 2시간 유지한 다음, 10℃/min의 냉각속도로 냉각하여 반도성 후막을 제조하였다. 상기와 같이 제조된 반도성 후막에 대한 수소가스 감도를 측정하고 그 결과를 하기 표 2에 나타내었다.Next, it heated to 350 degreeC at the temperature increase rate of 1 degree-C / min and 5 degree-C / min, hold | maintained at this temperature for 5 hours, and then heated to 900 degreeC at the temperature increase rate of 5 degree-C / min and 20 degree-C / min, After maintaining at this temperature for 2 hours, a semiconductive thick film was prepared by cooling at a cooling rate of 10 ° C / min. Hydrogen gas sensitivity for the semiconducting thick film prepared as described above was measured and the results are shown in Table 2 below.
하기 표 2의 수소가스감도는 다음과 같이 측정된 값이다.Hydrogen gas sensitivity of Table 2 is measured as follows.
반도성 소결체의 전기저항을 정진압법으로 측정하고자 300℃ 전기로내에 시편을 넣어 양단에 전원을 연결시키고 전류계를 직렬연결하여 전류를 측정하였다. 처음엔 공기를 흘려주고, 다음엔 수소가 공기속에 200ppm 있는 가스를 흘려주면서 전류를 계속 측정하여, 수소를 공기에 200ppm 정도 섞어서 흘려줄 때의 전류치가 공기만 흘려줄 때의 전류치보다 몇 배인가를 기록하여 이를 200ppm 수소에 대한 감도로 측정한 것이다.In order to measure the electrical resistance of the semiconducting sintered body, the specimen was placed in a 300 ° C electric furnace to connect power to both ends, and an ammeter was connected in series to measure the current. First, flow air, and then continue to measure the current while flowing 200ppm of hydrogen in the air, and record how many times the current is when the hydrogen is mixed with 200ppm of the air This was measured as a sensitivity to 200ppm hydrogen.
또한, 하기 표 2중의 비교재(5)와 발명재에 대한 표면사진을 관찰하고 그 결과를 제1도에 나타내었다. 제1도(a)에서는 비교재(5)를, (b)는 발명재를 나타낸다.In addition, the surface photographs of the comparative material 5 and the inventive material in Table 2 were observed and the results are shown in FIG. In FIG. 1 (a), the comparative material 5 is shown, and (b) shows invention material.
상기 표 2에 나타난 바와 같이, 본 발명에 따라 제조된 분말(발명분말)을 본 발명에 따라 열처리한 것(발명재)이 본 발명을 벗어나는 분말 및 또는 본 발명을 벗어나는 조건으로 열처리한 것[비교재(1-7)]에 비하여 수소가스 감도가 매우 우수함을 알 수 있다.As shown in Table 2, the powder (invented powder) prepared according to the present invention is heat-treated according to the present invention (invented material) is a powder outside the present invention and or heat-treated under conditions outside the present invention. It can be seen that the sensitivity of hydrogen gas is very excellent compared to ash (1-7)].
또한, 제1도에 나타난 바와 같이, 발명재의 경우에는 균열이 전혀 관찰되지 않음에 반하여, 비교재(5)의 경우에는 균열이 관찰되고 있음을 알 수 있다.In addition, as shown in FIG. 1, in the case of the invention material, no crack was observed, whereas in the case of the comparative material 5, it was found that the crack was observed.
상술한 바와 같이, 본 발명은 출발분말 제조시 하소 후 볼밀링함으로써 입도의 중간 값이 작아지고 그로 인하여 가스에 대한 감도가 향상될 뿐만 아니라, 건조 및 열처리하는 공정에 있어서 전기의 통전경로를 끊어주는 표면균열을 방지함으로써, 반도체 후막과 기판 사이에 완충막을 만들지 않고도 균열이 없는 반도성 후막이 형성되어, 완충막 도포 공정을 없앨 수 있으며, 완충막의 화학적 개입에 의한 가스감도의 저하를 방지할 수 있는 효과가 있는 것이다.As described above, the present invention is the ball milling after the calcination in the production of the starting powder, the intermediate value of the particle size is reduced, thereby improving the sensitivity to the gas, as well as breaking the electricity supply path in the drying and heat treatment process By preventing surface cracks, a semiconductive thick film without cracks is formed without forming a buffer film between the semiconductor thick film and the substrate, thereby eliminating the buffer film applying process, and preventing a decrease in gas sensitivity due to chemical intervention of the buffer film. It works.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019940040294A KR0149200B1 (en) | 1994-12-31 | 1994-12-31 | Manufacturing method of tin oxide-based semiconducting thick film for gas sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019940040294A KR0149200B1 (en) | 1994-12-31 | 1994-12-31 | Manufacturing method of tin oxide-based semiconducting thick film for gas sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
KR960023248A KR960023248A (en) | 1996-07-18 |
KR0149200B1 true KR0149200B1 (en) | 1998-11-16 |
Family
ID=19406090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019940040294A KR0149200B1 (en) | 1994-12-31 | 1994-12-31 | Manufacturing method of tin oxide-based semiconducting thick film for gas sensor |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR0149200B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100483304B1 (en) * | 2002-04-15 | 2005-04-15 | 한라산업개발 주식회사 | Method for Making Thick Film Gas Sensors |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100280879B1 (en) * | 1998-03-26 | 2001-05-02 | 구자홍 | Manufacturing Method of Dielectric Thick Film for Plasma Display and Lamp Heating Furnace |
-
1994
- 1994-12-31 KR KR1019940040294A patent/KR0149200B1/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100483304B1 (en) * | 2002-04-15 | 2005-04-15 | 한라산업개발 주식회사 | Method for Making Thick Film Gas Sensors |
Also Published As
Publication number | Publication date |
---|---|
KR960023248A (en) | 1996-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103011811B (en) | Method for preparing high temperature NTC (Negative Temperature Coefficient) thermistor material | |
EP0096519B1 (en) | Process for producing zirconium oxide sintered body | |
Azad et al. | Immittance response of CaSnO3 prepared by self-heat-sustained reaction | |
KR0149200B1 (en) | Manufacturing method of tin oxide-based semiconducting thick film for gas sensor | |
Kićević et al. | A statistical analysis of the influence of processing conditions on the properties of fused silica | |
Tian et al. | Microstructural and electrical properties of thick film resistors on oxide/oxide ceramic–matrix composites | |
Hoch et al. | Densification characteristics of ultrafine powders | |
CN1759455A (en) | A ceramic mixture having negative temperature co-efficient, a thermistor containing the ceramic mixture and a process for prepaing thereof | |
JP4054869B2 (en) | Method for manufacturing oxygen partial pressure detection portion of resistance oxygen sensor | |
JPS589782B2 (en) | Refractory products and manufacturing methods | |
CN104496471A (en) | High-Curie-temperature lead-free pyroelectric ceramic material and preparation method thereof | |
Huybrechts et al. | Influence of high oxygen partial pressure annealing on the positive temperature coefficient of Mn-doped Ba0· 8Sr0· 2TiO3 | |
Dordor et al. | Electrical characterization of phase transition in yttrium doped bismuth oxide, Bi1. 55Y0. 45O3 | |
CN107365153A (en) | A kind of high-performance NTC thermal sensitive ceramic materials and preparation method and application | |
Selmi et al. | Microwave sintering of Sb-doped SnO2 | |
JPH0825790B2 (en) | Mullite sintered body for semiconductor device package and manufacturing method thereof | |
Hwang et al. | Electrical characterization of porous BaTiO3 using impedance spectroscopy in humid condition | |
JP2005213131A (en) | Ceramics and method of manufacturing the same | |
Benkaddour et al. | The influence of particle size on sintering and conductivity of Bi0. 85Pr0. 105V0. 045O1. 545 ceramics | |
JPH07277825A (en) | Electric conductive ceramic | |
JPS647030B2 (en) | ||
Bhattacharyya et al. | Effect of annealing on the electrical resistivity of conductive polyvinylchloride‐copper composites | |
Kuwabara et al. | Instability of the Characteristics of the Positive Temperature Coefficient of Resistivity in High‐Curie‐Point Barium‐Lead Titanate Ceramics and Their Grain Structures | |
Ivanov et al. | Electroconductivity of Submicron Solid Electrolytes Ce 1− x Gd x O 2− δ as a Function of Their Density and the Gadolinium Content | |
Rao et al. | Studies on Electrical Conductivity of UO2 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 19941231 |
|
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 19941231 Comment text: Request for Examination of Application |
|
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 19980106 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 19980515 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 19980603 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 19980603 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20010601 Year of fee payment: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20010601 Start annual number: 4 End annual number: 4 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20030610 |