[go: up one dir, main page]

KR0146712B1 - Fabrication method of surface emission laser diode - Google Patents

Fabrication method of surface emission laser diode

Info

Publication number
KR0146712B1
KR0146712B1 KR1019940025172A KR19940025172A KR0146712B1 KR 0146712 B1 KR0146712 B1 KR 0146712B1 KR 1019940025172 A KR1019940025172 A KR 1019940025172A KR 19940025172 A KR19940025172 A KR 19940025172A KR 0146712 B1 KR0146712 B1 KR 0146712B1
Authority
KR
South Korea
Prior art keywords
layer
gallium arsenide
mirror layer
etching
metal mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
KR1019940025172A
Other languages
Korean (ko)
Inventor
박효훈
유병수
Original Assignee
양승택
재단법인한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 양승택, 재단법인한국전자통신연구원 filed Critical 양승택
Priority to KR1019940025172A priority Critical patent/KR0146712B1/en
Application granted granted Critical
Publication of KR0146712B1 publication Critical patent/KR0146712B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

본 발명은 수직공진형 표면방출 레이저의 제작에서 식각표면의 비활성화 처리에 관한 발명으로서, 식각된 활성층과 거울층의 표면보호를 위해, 100∼300℃의 저온에서 비정질 갈륨비소를 증착시켜 식각표면을 전기적으로 비활성화 시킨 것을 특징으로 하는 표면방출 레이저 소자의 제작방법이다.The present invention relates to an inactivation process of an etch surface in the fabrication of a vertical resonant type surface emitting laser. In order to protect the surface of an etched active layer and a mirror layer, amorphous gallium arsenide is deposited at a low temperature of 100 to 300 ° C. to form an etch surface. It is a method of manufacturing a surface emitting laser device characterized in that it is electrically deactivated.

Description

표면방출 레이저 다이오드의 제조방법Method of manufacturing surface emitting laser diode

제1도 내지 제5도는 본 발명의 표면방출 레이저 다이오드의 제조방법을 각 단계별로 도시한 공정 단면도이다.1 to 5 are process cross-sectional views showing the manufacturing method of the surface-emitting laser diode of the present invention in each step.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 화합물 반도체기판 2 : 하부 거울층1 compound semiconductor substrate 2 lower mirror layer

3 : 활성층 4 : 상부 거울층3: active layer 4: upper mirror layer

5 : n형 전극 6 : 이온식각용 금속 마스크5: n-type electrode 6: metal mask for ion etching

7 : 비정질 갈륨비소층 8 : p형 전극7: amorphous gallium arsenide layer 8: p-type electrode

본 발명은 수직공진형 표면방출 레이저 다이오드의 제조방법에 관한 것으로서, 특히, 비정질 갈륨비소를 이용하여 레이저 공진표면을 전기적으로 비활성화 시키는 방법에 관한 것이다.The present invention relates to a method for manufacturing a vertical resonant surface emitting laser diode, and more particularly, to a method for electrically deactivating a laser resonance surface using amorphous gallium arsenide.

수직공진형 표면방출 레이저를 굴절유도형 구조로 제작하기 위해서 통상적으로, 건식식각 공정을 이용하여 굴절유도 공진층을 식각하게 된다.In order to fabricate a vertical resonant surface emitting laser in a refractive induction type structure, a refractive induction resonance layer is typically etched using a dry etching process.

이때, 식각으로 노출된 공진표면은 결함이 많아 전류누설을 발생시켜 레이저작동의 문턱전류를 높이게 되는 문제를 야기시키고 있다.At this time, the resonance surface exposed by etching has a lot of defects, causing current leakage, thereby raising the threshold current of laser operation.

식각표면에서 이러한 전류누설문제를 줄이기 위해서, 종래에는 SiNX막을 증착하거나(예:Ogura et al., Applied Physics Letters, vol. 60 no. 7, pp. 799-801, 1992), 폴리이미드(polyimide)를 도포하거나(예:Geels et al., IEEE Photonic Technology, vol. 2, no. 4, pp. 234-236, 1990), 결정질 갈륨비소계 화합물을 재성장하거나(예:Wu et. al., Electronics Letters, vol. 29, no. 21, pp. 1981-1863, 1993), 황화처리를 하는 방법(예:Young et al., Electronics Letters vol. 30, no. 3, pp. 233-235, 1994)을 사용하고 있다.To reduce this current leakage problem on the etch surface, conventionally deposited SiN X films (e.g. Ogura et al., Applied Physics Letters, vol. 60 no. 7, pp. 799-801, 1992) or polyimide ) (E.g., Gels et al., IEEE Photonic Technology, vol. 2, no. 4, pp. 234-236, 1990), or regrown crystalline gallium arsenide compounds (e.g., Wu et. Al., Electronics Letters, vol. 29, no. 21, pp. 1981-1863, 1993), methods of sulfidation (e.g. Young et al., Electronics Letters vol. 30, no. 3, pp. 233-235, 1994 ) Is used.

그러나, 상기 종래 기술에서와 같이, SiNX막을 증착할 경우, 공정은 간단하지만, SiNX다결정의 결정구조가 레이저 재료로 사용하는 화합물 반도체 다결정 구조와는 다르기 때문에 결정질 화합물 반도체/SiNX계면에서 격자결함이 많이 남게 된다. 그래서 계면결함의 비활성화 효과가 적다. 또한, 상기와 같이, 폴리이미드(polyimide)를 도포할 경우, 공정은 아주 간단하지만, 역시, 결정질 화합물 반도체/ 폴리이미드간 계면결함을 줄이는데 별 효과를 주지 못한다. 아울러, 결정질 갈륨비소 화합물을 재성장하는 방법은 레이저 재료와 동질 재료를 사용함으로써 계면결함을 크게 줄일 수 있다. 그러나, 재성장을 위해 500℃ 이상의 고온에서 열처리를 하는 단점이 있다.However, as in the prior art, when the SiN X film is deposited, the process is simple, but the lattice at the crystalline compound semiconductor / SiN X interface is different because the crystal structure of the SiN X polycrystal is different from the compound semiconductor polycrystal structure used as the laser material. Many defects remain. Therefore, the deactivation effect of interfacial defects is small. In addition, as described above, when the polyimide is applied, the process is very simple, but also has little effect on reducing the interfacial defect between the crystalline compound semiconductor / polyimide. In addition, the method of regrowing the crystalline gallium arsenide compound can significantly reduce the interface defects by using a laser material and the same material. However, there is a disadvantage that the heat treatment at a high temperature of more than 500 ℃ for regrowth.

이들 방법에 비해, 본 발명은 식각 표면에 비정질 갈륨비소를 증착할 경우 다음의 잇점이 있다.Compared to these methods, the present invention has the following advantages when depositing amorphous gallium arsenide on an etching surface.

첫째, 결정질 갈륨비소와 결정구조가 거의 같아 결정질 화합물 반도체/비정질 갈륨비소 사이의 계면 결함을 크게 줄일 수 있다.First, the crystalline gallium arsenide and the crystal structure is almost the same, it is possible to significantly reduce the interface defect between the crystalline compound semiconductor / amorphous gallium arsenide.

둘째, 200℃ 이하의 저온에서 증착시킬 수 있는 장점이 있다.Second, there is an advantage that can be deposited at a low temperature of 200 ℃ or less.

셋째, 비정질 갈륨비소 재료는 전기적으로 반부도체 성질을 갖으므로, 레이저 소자간 전기적 고립의 효과도 겸하여 얻을 수 있다.Third, the amorphous gallium arsenide material is electrically semi-semiconductor property, it can be obtained also with the effect of electrical isolation between laser elements.

비정질 갈륨비소의 이러한 특징 때문에, 화합물 반도체계 전자소자(전계효과 트랜지스터 등), 광검출기, 측면방출 레이저 소자 등의 구조에서 표면의 비활성화 막으로 사용되고 있다.Because of this feature of amorphous gallium arsenide, it has been used as a surface deactivation film in structures of compound semiconductor electronic devices (field effect transistors, etc.), photodetectors, side emission laser devices, and the like.

그러나, 표면방출형 레이저 구조에서는 비정질 갈륨비소를 비활성화 목적으로 사용한 보고가 없다.However, there are no reports of using amorphous gallium arsenide for deactivation in surface emitting laser structures.

따라서, 상기와 같은 문제점들을 해결하기 위한 본 발명은 레이저 공진표면의 비활성화를 위해 안출된 것으로서, 그 목적은 식각 표면에서의 전류누설을 방지할 수 있는 표면방출 레이저 다이오드의 제조방법을 제공하는데 있다.Accordingly, an object of the present invention is to provide a method of manufacturing a surface-emitting laser diode that can be prevented from leakage of current on an etched surface.

상기 목적을 달성하기 위한 본 발명은 화합물 반도체 기판 위에 하부거울층, 활성층 및 상부 거울층이 성장된 수직공진형 레이저 구조를 갖는 소정의 기판에 후면전극을 형성하는 공정; 상기 상부 거울층 상부에 소정 패턴의 금속 마스크를 증착한 후, 이 금속 마스크를 이용하여 상부 거울층, 활성층 및 하부 거울층의 일부를 식각하여 굴절유도 공진표면을 형성하는 공정; 상기 식각된 공진표면의 비활성화 처리 및 소자분리를 위하여 반부도체인 비정질 갈륨비소층을 100∼300℃의 저온에서 증착하는 공정; 및 상기 금속 마스크가 노출될 때까지 비정질 갈륨비소층을 식각한 후, 노출된 금속 마스크 상부에 상부 전극을 배선하는 공정으로 이루어진 것을 특징으로 한다.The present invention for achieving the above object is a step of forming a rear electrode on a predetermined substrate having a vertical resonance laser structure in which a lower mirror layer, an active layer and an upper mirror layer is grown on a compound semiconductor substrate; Depositing a metal mask having a predetermined pattern on the upper mirror layer, and etching a portion of the upper mirror layer, the active layer and the lower mirror layer by using the metal mask to form a refractive induction resonance surface; Depositing an amorphous gallium arsenide layer, which is a semi-conductor, at a low temperature of 100 to 300 ° C. for deactivation of the etched resonance surface and device isolation; And etching the amorphous gallium arsenide layer until the metal mask is exposed, and then wiring the upper electrode over the exposed metal mask.

이하, 본 발명의 비정질 갈륨비소의 증착에 의한 식각표면의 비활성화 방법을 이용하여 표면방출 레이저의 단계별 제작공정을 첨부도면을 참조하여 상세히 설명한다.Hereinafter, a step-by-step manufacturing process of the surface-emitting laser using the method of deactivating the etching surface by the deposition of amorphous gallium arsenide of the present invention will be described in detail with reference to the accompanying drawings.

제1도는 후면전극을 형성시키는 단계를 나타낸다.1 shows a step of forming a back electrode.

소자제작에 사용되는 일반적인 수직공진형 표면방출 레이저의 기판구조는 제1도와 같이 GaAs 또는 InP계 화합물 반도체 기판(1) 위에 하부 거울층(2), 활성층(3), 상부 거울층(4)이 순차적으로 성장되어 있다. 이러한 기판 구조에서 화합물 반도체 기판(1) 아래에 n형 전극(5)을 형성한다.The substrate structure of a general vertical resonance surface emitting laser used in device fabrication is a lower mirror layer (2), an active layer (3), and an upper mirror layer (4) on a GaAs or InP compound semiconductor substrate (1) as shown in FIG. Growing sequentially. In this substrate structure, the n-type electrode 5 is formed under the compound semiconductor substrate 1.

제2도는 굴절유도 구조를 얻기 위해 식각하는 단계를 나타낸 것으로, 제1도의 상부 거울층(4) 위에 소정 패턴의 금속 마스크(6)를 증착시킨 다음, 이 마스크(5) 패턴을 이용한 이온식각으로 상부 거울층(4)과 활성층(3) 전체와 하부 거울층(2)의 일부를 식각한다. 이때, 상기 금속 마스크 패턴(6)은 Au와 Ni로 이루어진 다층구조를 사용한 것으로, 증착된 Au의 두께는 약 1000∼3000Å, Ni의 두께는 약 500∼1600Å 정도이다.2 shows etching to obtain a refractive induction structure. A metal mask 6 of a predetermined pattern is deposited on the upper mirror layer 4 of FIG. 1 and then ion-etched using the mask 5 pattern. The entire upper mirror layer 4 and the active layer 3 and a part of the lower mirror layer 2 are etched. At this time, the metal mask pattern 6 uses a multilayer structure composed of Au and Ni. The deposited Au has a thickness of about 1000 to 3000 mW and the thickness of Ni is about 500 to 1600 mW.

제3도는 비정질 갈륨비소층(7)을 증착시키는 단계를 나타낸다. 제2도의 식각된 구조의 표면전체에 비정질 갈륨비소층(7)을 증착시킨다.3 shows the step of depositing an amorphous gallium arsenide layer 7. An amorphous gallium arsenide layer 7 is deposited over the entire surface of the etched structure of FIG.

비정질 갈륨비소는 분자선 에피택시(MBE, Molecular Beam Epitaxy) 방법으로, 100∼300℃의 저온에서 증착시킨다.Amorphous gallium arsenide is deposited by a molecular beam epitaxy (MBE) method at a low temperature of 100 to 300 ℃.

비정질 갈륨비소층(7)의 증착두께는 상기 활성층(3)이 완전히 덮이는 두께 이상으로 하며, 식각에 의한 요철을 평탄하게 하기 위한 목적을 겸하여 1∼3μm으로 한다.The deposition thickness of the amorphous gallium arsenide layer 7 is equal to or larger than the thickness of the active layer 3 completely covered, and serves as 1 to 3 µm, which serves as a planarity of the unevenness due to etching.

제4도는 레이저 소자위의 비정질 갈륨비소를 제거시켜 금속층(6)을 노출시킨 상태를 나타낸다.4 shows a state where the metal layer 6 is exposed by removing amorphous gallium arsenide on the laser device.

금속층(6) 위의 비정질 갈륨비소의 제거는 포토레지스트로 패턴을 형성한 후, 습식식각으로 하거나 반응성 이온식각 방법을 이용할 수 있다.The removal of amorphous gallium arsenide on the metal layer 6 may be wet etched after forming a pattern with a photoresist or by using a reactive ion etching method.

제5도는 상기 금속패턴(6) 위에 상부 전극으로서, p형의 전극층(8)을 증착시켜 소자제작을 완료한다.5 is a top electrode on the metal pattern 6, a p-type electrode layer 8 is deposited to complete device fabrication.

이상 설명한 바와 같이, 본 발명의 레이저 다이오드 공진표면의 비활성화 방법에 의하면 다음과 같은 효과를 발휘한다.As described above, the deactivation method of the laser diode resonance surface of the present invention has the following effects.

첫째, 비정질 갈륨비소는 결정질 갈륨비소와 거의 같은 구조를 갖으며, 전기적으로 반부도체의 성질을 가지므로 식각된 결정질 화합물 반도체 활성층 표면을 전기적으로 비활성화시켜 누설전류를 방지함과 아울러 소자간의 전기적 절연과 식각표면의 요철을 평탄화시킬 수 있다.First, amorphous gallium arsenide has almost the same structure as crystalline gallium arsenide, and has the properties of semi-conductor electrically, so that the surface of the etched crystalline compound semiconductor active layer is electrically deactivated to prevent leakage current, Unevenness of the etching surface can be flattened.

둘째, 비정질 갈륨비소의 성장은 저온에서 행하게 되므로 소자의 열적 손상을 줄일 수 있다.Second, the growth of the amorphous gallium arsenide is performed at a low temperature can reduce the thermal damage of the device.

Claims (2)

수직공진형 표면방출 레이저 다이오드의 제조방법에 있어서, 화합물 반도체 기판(1) 위에 하부거울층(2), 활성층(3) 및 상부 거울층(4)이 성장된 수직공진형 레이저 구조를 갖는 소정의 기판에 후면전극(5)을 형성하는 공정; 상기 상부 거울층(4) 상부에 소정 패턴의 금속 마스크(6)를 증착한 후, 이 금속 마스크(6)를 이용하여 상부 거울층(4), 활성층(3) 및 하부 거울층(2)의 일부를 식각하여 굴절유도 공진표면을 형성하는 공정; 상기 식각된 공진표면의 비활성화 처리 및 소자분리를 위하여 반부도체인 비정질 갈륨비소층(7)을 100∼300℃의 저온에서 증착하는 공정; 및 상기 금속 마스크(6)가 노출될 때까지 비정질 갈륨비소층(7)을 식각한 후, 노출된 금속 마스크(6) 상부에 상부 전극(8)을 배선하는 공정으로 이루어진 것을 특징으로 하는 레이저 다이오드의 제조방법.In the method of manufacturing a vertical resonance surface emission laser diode, a predetermined resonance laser structure in which a lower mirror layer (2), an active layer (3) and an upper mirror layer (4) are grown on a compound semiconductor substrate (1) Forming a back electrode 5 on the substrate; After depositing a metal mask 6 having a predetermined pattern on the upper mirror layer 4, the metal mask 6 is used to form the upper mirror layer 4, the active layer 3, and the lower mirror layer 2. Etching a portion to form a refractive induction resonance surface; Depositing an amorphous gallium arsenide layer (7), which is a semi-conductor, at a low temperature of 100 to 300 ° C. for deactivation of the etched resonance surface and device isolation; And etching the amorphous gallium arsenide layer 7 until the metal mask 6 is exposed, and then wiring the upper electrode 8 over the exposed metal mask 6. Manufacturing method. 제1항에 있어서, 상기 식각된 공진표면을 평탄화 하기 위하여 비정질 갈륨비소층(7)이 식각에 의한 요철을 충분히 덮을 수 있는 1∼3μm의 두께로 증착됨을 특징으로 하는 레이저 다이오드의 제조방법.The method of claim 1, wherein an amorphous gallium arsenide layer (7) is deposited to have a thickness of 1 to 3 mu m to cover the unevenness by etching to planarize the etched resonance surface.
KR1019940025172A 1994-09-30 1994-09-30 Fabrication method of surface emission laser diode Expired - Lifetime KR0146712B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940025172A KR0146712B1 (en) 1994-09-30 1994-09-30 Fabrication method of surface emission laser diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940025172A KR0146712B1 (en) 1994-09-30 1994-09-30 Fabrication method of surface emission laser diode

Publications (1)

Publication Number Publication Date
KR0146712B1 true KR0146712B1 (en) 1998-11-02

Family

ID=19394264

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940025172A Expired - Lifetime KR0146712B1 (en) 1994-09-30 1994-09-30 Fabrication method of surface emission laser diode

Country Status (1)

Country Link
KR (1) KR0146712B1 (en)

Similar Documents

Publication Publication Date Title
US6100104A (en) Method for fabricating a plurality of semiconductor bodies
JP3027473B2 (en) Semiconductor components
US7198970B2 (en) Technique for perfecting the active regions of wide bandgap semiconductor nitride devices
GB2271466A (en) Etching semicondudtor wafers
US5084409A (en) Method for patterned heteroepitaxial growth
US20050042788A1 (en) Semiconductor device and method for manufacturing the same
US4925810A (en) Compound semiconductor device and a method of manufacturing the same
JPH03171617A (en) Epitaxial growth method of iii-v compound semiconductor on silicon substrate
JPH02285693A (en) Method for manufacturing monolithically integrated optoelectronic modules
JPH02252267A (en) Manufacture of semeconductor device
KR0146712B1 (en) Fabrication method of surface emission laser diode
KR100323710B1 (en) method for fabricating GaN semiconductor laser substate
US6633056B2 (en) Hetero-integration of dissimilar semiconductor materials
KR100359739B1 (en) Method of fusion for heteroepitaxial layers and overgrowth thereon
KR950011998B1 (en) Manufacturing method of semiconductor laser diode
KR0146711B1 (en) Method of inactivation for surface radiation laser diode
EP0416128B1 (en) Wafer of compound semiconductor
KR0135144B1 (en) Method of manufacturing laser diode
KR940007591B1 (en) Method for manufacturing optoelectronic device using compound semiconductor
US20210005444A1 (en) Method for manufacturing a silicon on nitride substrate
JPS6398120A (en) Crystal growth method
JP2792419B2 (en) Method for manufacturing semiconductor device
KR100287204B1 (en) Selective investment ridge type semiconductor laser diode and manufacturing method thereof
KR20010056977A (en) Fabrication method of self aligned planar buried heterostructure semiconductor laser
JPH02153568A (en) Manufacture of photoelectric integrated circuit

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 19940930

PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 19940930

Comment text: Request for Examination of Application

PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 19971128

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 19980430

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 19980512

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 19980512

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20010427

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20020430

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20030430

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20040401

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20050502

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20060502

Start annual number: 9

End annual number: 9

PR1001 Payment of annual fee

Payment date: 20070502

Start annual number: 10

End annual number: 10

PR1001 Payment of annual fee

Payment date: 20080428

Start annual number: 11

End annual number: 11

PR1001 Payment of annual fee

Payment date: 20090504

Start annual number: 12

End annual number: 12

PR1001 Payment of annual fee

Payment date: 20100430

Start annual number: 13

End annual number: 13

PR1001 Payment of annual fee

Payment date: 20110511

Start annual number: 14

End annual number: 14

PR1001 Payment of annual fee

Payment date: 20120430

Start annual number: 15

End annual number: 15

FPAY Annual fee payment

Payment date: 20130424

Year of fee payment: 16

PR1001 Payment of annual fee

Payment date: 20130424

Start annual number: 16

End annual number: 16

FPAY Annual fee payment

Payment date: 20140430

Year of fee payment: 17

PR1001 Payment of annual fee

Payment date: 20140430

Start annual number: 17

End annual number: 17

EXPY Expiration of term
PC1801 Expiration of term

Termination date: 20150331

Termination category: Expiration of duration