KR0144796B1 - Method for preparing porous polyurethane spherical spheres and their use in wastewater treatment - Google Patents
Method for preparing porous polyurethane spherical spheres and their use in wastewater treatmentInfo
- Publication number
- KR0144796B1 KR0144796B1 KR1019940008397A KR19940008397A KR0144796B1 KR 0144796 B1 KR0144796 B1 KR 0144796B1 KR 1019940008397 A KR1019940008397 A KR 1019940008397A KR 19940008397 A KR19940008397 A KR 19940008397A KR 0144796 B1 KR0144796 B1 KR 0144796B1
- Authority
- KR
- South Korea
- Prior art keywords
- reactor
- water
- porous polyurethane
- benzene
- carrier
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/10—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/14—Manufacture of cellular products
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/82—Post-polymerisation treatment
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Biological Treatment Of Waste Water (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
미생물의 고정화를 위한 발포형 폴리우레탄 미세구형을 중합하였으며, 용매로 물과 벤젠, 물과 사이클로헥산을 사용했을 때가 밀도가 대체로 낮았다. 이와 같은 담체는 발포력이 우수하며 중합후의 전체양이 많았으며, 중합시 활성탄과 제올라이트를 첨가함에 따라 구형의 밀도는 증가하였다.Foamed polyurethane microspheres for the immobilization of microorganisms were polymerized, and the density was generally lower when water and benzene, water and cyclohexane were used as solvents. Such a carrier had excellent foaming power and a large amount after polymerization, and spherical density increased with addition of activated carbon and zeolite during polymerization.
발포형 폴리우레탄 미세구형의 담체로서 성능을 평가하기 위하여 소결한 다공성 유리구와 비교실험을 행하였으며, 모두 배양차수의 증가에 따라 유기물 분해시간이 현저히 짧아졌다. 1차 배양시 WA, WCA 및 GB의 경우 24시간 후 79%, 87% 및 88%의 COD제거율을 각각 나타내었으나 10차 배양의 경우 18시간 후 94%, 99% 및 98%의 제거율을 나타내었다.In order to evaluate the performance of the foamed polyurethane microspheres as carriers, comparative experiments were conducted with the sintered porous glass spheres. WA, WCA, and GB showed 79%, 87%, and 88% COD removal after 24 hours in primary culture, but 94%, 99%, and 98% removal after 10 hours in 10 culture. .
Description
제1도는 본 발명의 중합장치를 도시한 설명도.1 is an explanatory view showing a polymerization apparatus of the present invention.
제2도 및 제3도는 다공성 폴리우레탄 구형, 구형담체 및 소결 다공성 유리구에 고정화된 미생물의 전자현미경 사진.2 and 3 are electron micrographs of microorganisms immobilized on porous polyurethane spheres, spherical carriers and sintered porous glass spheres.
본 발명은 다공성 폴리우레탄 구형의 제조방법과 이로부터 제조된 다공성 폴리우레탄 구형의 폐수처리에의 이용에 관한 것이다.The present invention relates to a method for producing a porous polyurethane sphere and its use in wastewater treatment of a porous polyurethane sphere prepared therefrom.
최근에 미생물의 고정화에 관심이 고조되었으며, 상당한 진전이 있었다. 생물학적 고도화의 목표로서는 소형(Compact)화, 고효율화 및 에너지 절약 등을 들 수 있다. 이 가운데 폐수처리의 성능을 유지하면서 소형화를 목표로 한 규사, 경량골재 등을 담체로한 연구가 활발하게 진행되고 있다. 그러나 이와 같은 담체들은 미생물의 부착이 어려우며, 일단 미생물이 부착되면 시간의 경과에 따라 비대해지거나 유출되는 경우가 있다. 그래서 강제적으로 생물막을 떨어져 나가게 하든가 출구에 스크린을 설치하였다. 이와 같은 단점을 보완하기 위하여 비교적 큰 다공질의 담체를 이용하여 미생물을 담체내부에 고정화시키며 담체끼리의 충돌에 의한 미생물의 탈락을 방지하였다. 이러한 목적을 위하여 사용한 담체중의 하나가 다공성 폴리우레탄이다. 다공성 폴리우레탄은 화학적, 기계적으로 안정하며 값이 저렴하여 폐수처리를 위한 담체로 사용하기 위한 연구가 활발히 진행되고 있다.There has recently been a growing interest in the immobilization of microorganisms and significant progress has been made. Targets for biological advancement include compactness, high efficiency, and energy saving. Among them, researches on silica sand and lightweight aggregates aiming at miniaturization while maintaining the performance of wastewater treatment have been actively conducted. However, such carriers are difficult to attach the microorganisms, and once the microorganisms are attached, they may enlarge or leak over time. So they forced the biofilm off or placed a screen at the exit. In order to compensate for this disadvantage, a relatively large porous carrier is used to immobilize the microorganisms in the carrier and prevent the microorganisms from falling off due to collision between the carriers. One of the carriers used for this purpose is porous polyurethane. Porous polyurethane is chemically and mechanically stable and inexpensive, and researches for using it as a carrier for wastewater treatment have been actively conducted.
폴리우레탄은 폴리머전구체(prepolymer)를 이용한 포괄(entrapment) 또는 발포제(foam)를 이용한 흡착방법을 통해 세포의 고정화에 쓰여왔다.Polyurethane has been used for immobilization of cells through encapsulation using a polymer precursor or adsorption using a foam.
1975년에는 동경대학에서 활성오니법과 폴리우레탄제의 다공질 담체를 투입한 활성오니법과의 비교에서 담체투입에 의한 처리 성능이 극히 우수하며 출현미생물이 활성오니법보다 다양해져 발생오니가 적어진다는 것을 확인하였다.In 1975, compared with the activated sludge method in which the activated sludge method and the porous porous carrier made of polyurethane were introduced at the University of Tokyo, the processing performance by the carrier injection was extremely excellent and the emergence microorganisms were more diverse than the activated sludge method. It was.
1980년초에 영국과 독일에서 각각 CAPTOR, LINPOR라는 공정이 개발되었으며 이 시스템들은 재단된 폴리우레탄제의 담체를 사용하였다.In the early 1980s, the processes of CAPTOR and LINPOR were developed in the UK and Germany respectively, and these systems used tailored polyurethane carriers.
일본의 마사오 콘도(Masao Kondo)등은 다공질 스폰지 모양의 담체를 첨가한 간헐포기 활성이오니방식에 의한 고도처리에서 재질의 선정은 장기 안정성을 결정하는 중요한 인자임을 확인 하였으며, 기질 확산속도의 관점에서 수심 2m의 FRP관체를 이용한 시스템에 있어서 12×12×12mm 셀수 40의 내마모성 폴리우레탄제 담체를 사용하여 BOD와 질소의 동시제거가 가능하다고 보고한 바 있다.Masao Kondo of Japan and others confirmed that material selection is an important determinant of long-term stability in the advanced treatment by intermittent aeration method with porous sponge-like carrier. It has been reported that simultaneous removal of BOD and nitrogen is possible using a carrier made of a wear resistant polyurethane having a cell number of 12 × 12 × 12 mm 40 in a system using an FRP tube having a depth of 2 m.
그러나 기존의 다공성 폴리우레탄의 이용은 큰 부피로 제조한 후 재단하여 사용하기 때문에 담체의 크기를 작게할 수 없을 뿐만 아니라 담체내부의 기공이나 밀도를 임의로 조절할 수 없다. 또한 담체의 크기를 작게할 수 없기 때문에 담체내부에 미생물이 고정화되면 물질전달 저항으로 담체내부는 혐기성이 생기며, 또한 담체의 밀도가 낮기 때문에 반응기내에서 쉽게 순환되지 않고 부상하는 단점이 있다.However, the use of conventional porous polyurethane is not only to reduce the size of the carrier, but also to control the pore or density in the carrier arbitrarily because it is manufactured after cutting to a large volume. In addition, since the size of the carrier cannot be reduced, when the microorganism is immobilized in the carrier, there is a disadvantage in that the carrier is anaerobic due to mass transfer resistance, and the carrier is not easily circulated in the reactor due to the low density of the carrier.
따라서, 본 발명에서는 이와 같은 단점을 해결하기 위하여 용매를 사용하여 다공성 폴리우레탄 구형을 중합하였으며, 용매의 종류에 따른 거대기공(macropore)의 크기 및 발포정도 등의 물리적 특성을 조사하였다. 또한 담체의 밀도를 조절하고 담체에 대한 미생물의 부착능을 향상시키기 위하여 중합시 활성탄과 천연 제올라이트(zeolite)를 첨가하여 미생물 부착능을 조사하였다. 따라서 본 발명에 의해서는 다공성 폴리우레탄을 구로 중합할 수 있을 뿐만 아니라 구의 기공크기 및 기공분포, 밀도 등을 임의로 조절할 수 있다. 이와 같은 거대기공을 갖는 폴리우레탄 입자가 고정화를 위하여 적합한지를 조사하였다.Therefore, in the present invention, in order to solve such disadvantages, a porous polyurethane sphere was polymerized using a solvent, and physical properties such as size and foaming degree of macropore according to the type of solvent were investigated. In addition, in order to control the density of the carrier and improve the ability of the microorganism to adhere to the carrier, the presence of activated carbon and zeolite was added during polymerization to examine the ability of the microorganism to adhere. Therefore, according to the present invention, not only can the porous polyurethane be polymerized into the sphere, but also the pore size, pore distribution, density, etc. of the sphere can be arbitrarily controlled. It was examined whether polyurethane particles having such macropores were suitable for immobilization.
*다공성 폴리우레탄 구형의 합성Synthesis of porous polyurethane sphere
다공성 폴리우레탄 구형을 제조하기 위하여 폴리올(polyol)과 디이소시아내이트(diisocyanate)을 사용하였으며, 각각을 28g과 10g씩 혼합하여 중합하였다. 이때 용매로는 물과 벤젠(benzene), 톨루엔(toluene), 자일렌(xylene) 및 사이클로핵산(cyclohexane) 등의 유기용매를 사용하였다.In order to prepare a porous polyurethane sphere, polyol and diisocyanate were used, and 28 g and 10 g of each were mixed and polymerized. At this time, water and organic solvents such as benzene, toluene, xylene, and cyclohexane were used.
또한 다공성 폴리우레탄 구형의 밀도를 증가시키고 미생물 부착성 및 유기물 흡착성을 증가시키기 위하여 티디아 사(TEDIA COMPANY, INC)의 분말활성탄과 50㎛ 이하의 천연 제올라이트를 각각 5g씩 첨가하여 중합하였다.In addition, in order to increase the density of the porous polyurethane sphere and to increase the microbial adhesion and the adsorption of organic matter, 5 g each of activated activated carbon of TEDIA COMPANY, INC and natural zeolites of 50 μm or less were added and polymerized.
제1도는 발포형 폴리우레탄 미세구형 담체를 합성하기 위한 반응장치이다. 상기 반응장치는 구형의 반응기와, 상기 반응기를 내부에서 외부로 관통하여 설치된 온도계와, 상기 반응기의 상부의 모터에 의해 구동되어 상기 모터로부터 발생한 구동력을 이용하여 반응기의 내부에서 교반작용을 하도록 모터로부터 반응기 내부로 연결형성된 교반기와, 상기 반응기와 면접되어 반응기 내부를 가열시키기 위한 가열기와, 상기 반응기와 연결되어 사용한 유기용매를 회수하는 응측기를 포함하는 구조로 되어 있다.1 is a reaction apparatus for synthesizing foamed polyurethane microspherical carrier. The reactor is a spherical reactor, a thermometer installed to penetrate the reactor from the inside to the outside, and driven by the motor of the upper portion of the reactor from the motor to agitate inside the reactor using the driving force generated from the motor The structure includes a stirrer connected to the inside of the reactor, a heater for interviewing the reactor to heat the inside of the reactor, and a condenser connected to the reactor to recover the used organic solvent.
다공성 폴리우레탄 구형의 부가 반응을 표 1에 나타내었다. 이와 같은 반응은 발열반응이며 반응속도는 이소시아내이트(isocyanate)와 폴리올(polyol)의 구조에 의존하며, 발포제는 폴리올에 함유되어 있다. 본 발명에 사용한 발포제는 프레온 가스이며 다른 발포제로 대체가 가능하다.The addition reaction of the porous polyurethane spheres is shown in Table 1. This reaction is exothermic and the reaction rate depends on the structure of isocyanate and polyol, and the blowing agent is contained in the polyol. The blowing agent used in the present invention is a Freon gas and can be replaced with another blowing agent.
반응기에 물 500ml를 투입한 후 온도를 60 내지 80℃로 유지시킨다. 폴리올과 헥산메틸렌 디이소시아내이트(hexamethylene diisocyanate)를 차례로 투입한 후 10분간 에이징시킨다. 이때 용매로 벤젠, 톨루엔, 자일렌, 사이클로헥산을 사용할 때 헥사메틸렌 이이소시아내이트를 이 용매에 혼합 후 반응기에 투입한다. 또한 담체의 밀도를 증가시키기 위한 첨가물인 활성탄, 제오라이트, 세라이트, 모래 및 그외 첨가물은 이때 넣는다.After 500 ml of water was added to the reactor, the temperature was maintained at 60 to 80 ° C. Polyol and hexanemethylene diisocyanate are added sequentially and then aged for 10 minutes. In this case, when benzene, toluene, xylene, and cyclohexane are used as the solvent, hexamethylene isocyanate is mixed with the solvent and then introduced into the reactor. In addition, additives for increasing the density of the carrier, activated carbon, zeolite, celite, sand and other additives are added at this time.
미립고형분은 활성탄(A)과 제올라이트(Z)가 각각 택일적으로 사용되었으며, 발포제는 폴리올에 함유되어 있다. 또한 물(W), 벤젠(B), 톨루엔(T), 자일렌(X) 및 사이클로핵산(C)이 용매로 사용되었으며, 표 5의 합성된 폴리우레탄은 아래의 12가지 방법에 의하여 제조되었다. 즉 다공성 폴리우레탄을 합성하기 위해서는 이소시아내이트와 폴리올 및 물은 반드시 필요하고, 그외 다른 유기용매인 벤젠(B), 톨루엔(T), 자일렌(X) 및 사이클로핵산(C)과 미립고형분인 활성탄(A)과 제올라이트(Z)가 선택적으로 사용되었다.As the granular solids, activated carbon (A) and zeolite (Z) are alternatively used, respectively, and the blowing agent is contained in the polyol. In addition, water (W), benzene (B), toluene (T), xylene (X) and cyclonucleic acid (C) were used as solvents, and the synthesized polyurethane of Table 5 was prepared by the following 12 methods. . In order to synthesize porous polyurethane, isocyanate, polyol and water are necessary, and other organic solvents such as benzene (B), toluene (T), xylene (X), cyclonucleic acid (C) and fine solids Phosphorus activated carbon (A) and zeolite (Z) were optionally used.
① 이소시아내이트+폴리올+물(W)① isocyanate + polyol + water (W)
② 이소시아내이트+폴리올+물(W)+활성탄(A)② isocyanate + polyol + water (W) + activated carbon (A)
③ 이소시아내이트+폴리올+물(W)+제올라이트(Z)③ isocyanate + polyol + water (W) + zeolite (Z)
④ 이소시아내이트+폴리올+물(W)+벤젠(B)④ isocyanate + polyol + water (W) + benzene (B)
⑤ 이소시아내이트+폴리올+물(W)+벤젠(B)+활성탄(A)⑤ isocyanate + polyol + water (W) + benzene (B) + activated carbon (A)
⑥ 이소시아내이트+폴리올+물(W)+벤젠(B)+제올라이트(Z)⑥ isocyanate + polyol + water (W) + benzene (B) + zeolite (Z)
⑦ 이소시아내이트+폴리올+물(W)+사이클로핵산(C)⑦ isocyanate + polyol + water (W) + cyclonucleic acid (C)
⑧ 이소시아내이트+폴리올+물(W)+사이클로핵산(C)+활성탄(A)⑧ isocyanate + polyol + water (W) + cyclonucleic acid (C) + activated carbon (A)
⑨ 이소시아내이트+폴리올+물(W)+사이클로핵산(C)+제올라이트(Z)⑨ Isocyanate + polyol + water (W) + cyclonucleic acid (C) + zeolite (Z)
⑩ 이소시아내이트+폴리올+물(W)+자일렌(X)소 isocyanate + polyol + water (W) + xylene (X)
⑪ 이소시아내이트+폴리올+물(W)+자일렌(X)+활성탄(A)소 isocyanate + polyol + water (W) + xylene (X) + activated carbon (A)
⑫ 이소시아내이트+폴리올+물(W)+자일렌(X)+제올라이트(Z)의 12가지 방법을 포함하고 있습니다.12 It contains 12 methods of isocyanate + polyol + water (W) + xylene (X) + zeolite (Z).
중합시 가열온도와 에이징온도, 교반기의 회전속도, 미립고형분의 첨가, 발포제의 양 및 종류, 용매의 종류에 따라 발포형 폴리우레탄 미세구형 담체의 기공크기 및 기공분포, 밀도 및 발포능을 적절히 조절할 수 있다.Control the pore size and pore distribution, density and foaming capacity of foamed polyurethane microspherical carrier according to heating temperature and aging temperature during polymerization, rotation speed of stirrer, addition of fine solids, amount and type of blowing agent, and type of solvent. Can be.
다공성 폴리우레탄 구형의 부가반응을 표 1에 나타내었다.The addition reaction of the porous polyurethane spheres is shown in Table 1.
이와 같은 반응은 발열반응이며 반응속도는 이소시아내이트(isocyanate)와 폴리올(polyol)의 구조에 의존하며, 발포제인 클로로플로로카본(Chlorofluorocarbon), 아조비스아이소뷰티로니트릴(Azobisisobutyronitrile)과 아조디카본아마이드(Azodi-carbonamide)는 폴리올에 함유되어 있다.This reaction is exothermic and the reaction rate is dependent on the structure of isocyanate and polyol, and the blowing agents chlorofluorocarbon, azobisisobutyronitrile and azodica Azodi-carbonamide is contained in polyols.
미세구형의 입자크기를 조절하기 위하여 처음에는 반응기의 교반속도를 1분간 500 내지 700으로 유지하고 반응이 점차 진행됨에 따라 교반속도를 점차 증가시켜 입자크기를 변화시킨다. 반응기의 온도는 초기에 서서히 가열하여 40 내지 50℃에서 5 내지 10분간 반응하며, 이때 교반속도는 1분간 500 내지 700으로 유지한다. 온도를 65 내지 75℃로 상승시켜 5 내지 10분간 반응하며, 이때의 교반기의 속도에 따라 미세구형의 입자크기를 조절한다. 이때 1분간의 교반속도를 2000으로 할 때 입자크기는 200 내지 500㎛이었으며, 1분간의 교반속도를 1500으로 했을때는 400 내지 900㎛ 범위의 입자를 얻었다. 미생물의 성장에 저해가 되는 용매를 전부 휘발시키기 위하여 반응기의 온도를 100℃로 유지한다.In order to control the particle size of the microspheres, at first, the stirring speed of the reactor is maintained at 500 to 700 for 1 minute, and as the reaction proceeds, the stirring speed is gradually increased to change the particle size. The temperature of the reactor is initially slowly heated to react for 5 to 10 minutes at 40 to 50 ° C., and the stirring speed is maintained at 500 to 700 for 1 minute. The temperature is raised to 65 to 75 ℃ to react for 5 to 10 minutes, at this time to adjust the size of the fine spherical particles according to the speed of the stirrer. At this time, when the stirring speed of 1 minute was set to 2000, the particle size was 200 to 500 μm, and when the stirring speed of 1 minute was set to 1500, particles in the range of 400 to 900 μm were obtained. The temperature of the reactor is maintained at 100 ° C. in order to volatilize all the solvents that inhibit the growth of microorganisms.
[실시예 1]Example 1
물리화학적 특성 및 발포성 조사Physical and chemical properties and foaming
각각의 용매를 사용하여 중합한 구를 표준체로 425 내지 850㎛ 크기를 선정하여 부피밀도(bulk density) 및 습밀도(wet density)를 측정하였으며, 전자현미경 사진을 통하여 표면거칠기, 기공크기분포 등으로 발포성을 조사하였다.The bulk and wet densities were measured by measuring the size of 425 to 850 ㎛ as a standard for the polymerized spheres using the respective solvents, and the surface roughness and pore size distribution were determined by electron micrograph. Foaming was investigated.
각각의 용매를 사용하여 중합한 각 구의 물리적 특성을 표 2에 나타내었다. 미생물의 부착에 중요한 표면거칠기는 상대적인 값으로 측정하였다.Table 2 shows the physical properties of each sphere polymerized with each solvent. Surface roughness, which is important for microbial adhesion, was measured as a relative value.
용매:W:물, WA:물+활성탄소, WZ:물+제올라이트, WB:물+벤젠,Solvent: W: Water, WA: Water + Activated Carbon, WZ: Water + Zeolite, WB: Water + Benzene,
WBA:물+벤젠+활성탄소, WCA :물+벤젠+제올라이트,WBA: water + benzene + activated carbon, WCA: water + benzene + zeolite,
WC:물+사이클로헥산, WCA:물+사이클로헥산+활성탄소,WC: water + cyclohexane, WCA: water + cyclohexane + activated carbon,
WX:물+자일렌, WXA:물+자일렌+활성탄소, WXZ:물+자일렌+제올라이트WX: Water + Xylene, WXA: Water + Xylene + Activated Carbon, WXZ: Water + Xylene + Zeolite
부피밀도는 용매로 물만을 사용하거나 물과 자일렌을 사용하였을 경우 다른 용매의 사용에 비하여 비교적 높은 값을 나타내었으며, 이것은 발포상태가 좋지 못하다는 것을 의미한다. 물과 벤젠, 물과 사이클로헥산을 사용했을 때가 대체로 낮은 값을 나타내며, 중합 후의 전체 구의양도 가장 많았다. 또한 중합시 활성탄과 제올라이트를 첨가함에 따라 구의 부피 및 습밀도 모두 증가하였다.The bulk density was relatively high when water alone or water and xylene were used as the solvent, compared to the use of other solvents, which means that the foaming state was not good. When water and benzene, water and cyclohexane were used, the values were generally low, and the amount of total sphere after polymerization was the highest. In addition, both the volume and the wet density of the spheres increased with the addition of activated carbon and zeolite during polymerization.
제2도 A, B, C는 물과 사이클로헥산, 물과 자일렌을 용매로 사용한 구의 전자현미경 사진을 나타낸다.2, A, B, and C show electron micrographs of spheres using water, cyclohexane, water and xylene as a solvent.
각 용매에 대한 구의 기공크기는 8㎛ 이하로 물의 경우 각각의 기공크기 별로 평면위에 고르게 분포되어 있었으나 그외 용매의 경우 평면이 고르지 못하였다. 표면 거칠기는 전자현미경 사진을 통하여 상대적 비교로 관찰하였으며, 사이클로헥산이 대체로 우수하며, 물과 사이클로헥산 및 제올라이트를 첨가했을 때가 가장 우수하였다.The pore size of the spheres for each solvent was less than 8 ㎛ and evenly distributed on the plane for each pore size for water, but for other solvents, the plane was uneven. Surface roughness was observed by electron micrographs, and the cyclohexane was generally excellent, and water, cyclohexane, and zeolite were the best.
[실시예 2]Example 2
미생물 부착능 및 제거효율Microorganism Adhesion and Removal Efficiency
고정화 실험을 위하여 미생물은 본 발명자가 분리한 에칠렌글리콜(ethyleneglycol) 분해균인 슈도모나스속을 사용하였으며, 배지는 표 3과 같다.For the immobilization experiment, microorganisms were used in Pseudomonas genus, which is an ethyleneglycol degrading bacterium isolated by the present inventors, and the medium is shown in Table 3.
다공성 폴리우레탄에 대한 에칠렌글리콜 분해균의 부착능과 부착에 따른 에칠렌글리콜 분해정도를 측정하기 위하여 화분배양을 실시하였다. 분리 동정한 에칠렌글리콜 분해균을 미리 배양하여 이 배양액 7mL와 탄소원으로 에칠렌글리콜만을 사용한 합성폐수 93mL를 각각의 삼각 플라스크에 넣고 여기에 담체 20ml를 투입하여 진탕배양기에서 각각의 농도가 80%이상 제거될때까지 배양하였다. 이때 배양액을 완전히 버리고 새로운 배지(표 3) 100mL를 투입하여 다시 배양하였다. 이와 같은 조작을 여러번 되풀이하여 회분배양의 회수가 증가함에 따라 담체에 부착된 미생물의 양은 증가하며 따라서 에칠렌글리콜 분해속도의 증가를 조사하였다.Pollen cultivation was carried out to measure the adhesion of ethylene glycol degrading bacteria to the porous polyurethane and the degree of ethylene glycol degradation according to adhesion. When the identified ethylene glycol degrading bacteria were previously incubated, 7 mL of this culture medium and 93 mL of synthetic wastewater using only ethylene glycol as a carbon source were added to each Erlenmeyer flask, and 20 ml of the carrier was added thereto to remove 80% of the concentration from the shaker. Incubated until. At this time, the culture solution was completely discarded, and 100 mL of fresh medium (Table 3) was added thereto and cultured again. This operation was repeated several times, and as the recovery of the batch culture increased, the amount of microorganisms attached to the carrier increased, and thus the increase in ethylene glycol degradation rate was investigated.
진탕배양기는 회전형이며 온도 35℃, pH 7.5 및 1분간 회전수는 180을 유지하였다. 에칠렌글리콜의 농도는 COD를 측정하여 간접적인 방법으로 정량하였다.The shake incubator was rotatable and maintained at a temperature of 35 [deg.] C., pH 7.5 and a 1 minute rotational speed of 180. The concentration of ethylene glycol was quantified by indirect method by measuring COD.
표 4는 1차 회분배양시 시간의 변화에 따른 COD의 농도를 나타낸 것이다. 활성탄과 제올라이트를 중합시 첨가한 경우는 흡착능이 뛰어난 배양초기에 COD의 상당량이 제거되었으며 제올라이트 보다는 활성탄이 흡착능이 뛰어난 것을 알 수 있다. 용매로 물만을 사용하였을 때인 W와 활성탄과 제올라이트를 첨가하였을 때인 WA, WZ의 경우 24시간 후 COD는 534mg/L, 845mg/L, 480mg/L으로 각각 나타났으며, 87%, 79% 및 88%의 제거율을 나타내었다. 또한 용매로 물과 사이클로헥산을 사용하고 활성탄과 제올라이트를 각각 첨가하였을 때 24시간후 COD는 2027mg/L, 527mg/L, 2573mg/L로 각각 48%, 49% 및 87%의 제거율을 나타내었다. 활성탄을 첨가했을 때가 COD 제거효율이 우수하였으며, 용매로 물만 첨가하였을 때가 다른 유기용매를 함께 첨가했을 때 보다 활성탄 첨가를 제외하고 효율이 감소하였다. 이와 같은 이유는 유기용매가 미생물의 성장에 저해작용을 하기 때문인 것으로 사료되며 배양차수가 증가함에 따라 유기용매의 저해작용은 줄어들며 미생물이 부착성장할 수 있는 비표면적이 더 많은 발포성이 우수한 담체가 COD 제거효율이 우수하게 되는 것으로 사료된다.Table 4 shows the concentration of COD according to the change of time in the first batch culture. When activated carbon and zeolite were added at the time of polymerization, a significant amount of COD was removed at the beginning of the culture having excellent adsorption capacity, and activated carbon had better adsorption capacity than zeolite. After 24 hours for W and WA and WZ when water was used as the solvent, COD was 534mg / L, 845mg / L and 480mg / L, respectively, 87%, 79% and 88%. A removal rate of% is shown. In addition, when water and cyclohexane were used as the solvent, and activated carbon and zeolite were added, the COD was 2027 mg / L, 527 mg / L, and 2573 mg / L after 24 hours, showing removal rates of 48%, 49%, and 87%, respectively. When activated carbon was added, the COD removal efficiency was excellent, and when the water was added as a solvent, the efficiency was lowered except for the addition of activated carbon than when other organic solvents were added together. The reason for this is that the organic solvent inhibits the growth of microorganisms. As the culture order increases, the inhibitory effect of the organic solvent decreases, and the carrier having excellent foamability with more specific surface area to which microorganisms can adhere and remove COD is removed. It is considered that the efficiency is excellent.
제3도 A, B, C, D, E 및 F는 10차 배양 후 미생물이 부착된 각 담체의 전자현미경 사진을 나타낸다. 각 담체의 표면에 미생물막을 형성하고 있다.3, A, B, C, D, E, and F show electron micrographs of each carrier to which microorganisms are attached after the 10th culture. A microbial film is formed on the surface of each carrier.
표 5는 10차 회분배양시 시간의 변화에 따른 COD의 농도를 나타낸 것이다. 부착 미생물의 증가에 의해서 에칠렌글리콜 분해시간이 현저히 감소했음을 알 수 있다. 용매로 물과 벤젠, 물과 사이클로헥산을 사용했을 때가 제거효율이 가장 우수하며 물만을 사용하였을 때는 발포성의 불충분으로 인하여 다른 유기용매의 첨가때 보다 COD 제거능이 감소하였다. 이와 같은 결과에서 다공성 폴리우레탄 제조시 유기용매의 첨가가 필요하며 또한 사용한 유기용매는 응축기를 부착하여 회수할 수 있다.Table 5 shows the concentration of COD according to the change of time in the 10th batch culture. It can be seen that the decomposition time of ethylene glycol was significantly reduced by the increase of adherent microorganisms. Water and benzene and water and cyclohexane were the best removal efficiencies. Solvent was used only when water was used, and COD removal was lower than that of other organic solvents due to insufficient foamability. As a result, addition of an organic solvent is required in preparing a porous polyurethane, and the used organic solvent can be recovered by attaching a condenser.
[실시예 3]Example 3
성능비교Performance Comparison
기존의 다른 담체와 미생물의 부착성 및 미생물 분해능을 비교하기 위하여 스코트(SCHOOT)사의 다공성 소결유리(sintered porous glass)를 사용하여 비교 실험을 하였다. 스코트사의 다공성 소결유리는 크기가 0.4 내지 1mm이며, 부피밀도 0.6g/mL, 표면적은 90m2/g m2/L이다.In order to compare the adhesion of microorganisms with other conventional microorganisms and microbial resolution, a comparative experiment was performed using Schinter's sintered porous glass. Scott's porous sintered glass has a size of 0.4 to 1 mm, a bulk density of 0.6 g / mL, and a surface area of 90 m 2 / g m 2 / L.
배양조건을 위에서와 동일하게 하였으며 1차와 10차 배양시 시간의 변화에 따른 유기물 제거효율을 표 4, 5에서 나타내었다. 10차 배양 후 미생물이 고정화된 유리구의 전자현미경 사진을 제4도에 나타내었다.The culture conditions were the same as above, and the removal efficiency of organic matter according to the change of time in the first and the tenth culture was shown in Tables 4 and 5. Electron micrographs of the glass spheres in which the microorganisms were immobilized after the 10th culture are shown in FIG. 4.
유리구가 다공성 폴리우레탄구 보다 기공의 크기가 훨씬 크며 이와 같이 큰기공에는 미생물의 고정화가 잘 되지 않고 외부에만 미생물막을 형성하였다. 또한 다공성 폴리우레탄구와 소결한 다공성유리구 모두 배양차수의 증가에 따라 유기물 분해시간이 현저히 짧아졌으며, 이는 담체에 고정화된 미생물의 증가에 기인한다. 1차 배양시 WA, WCA 및 GB의 경우 24hr 후 79%, 87% 및 88%의 제거율을 각각 나타내었으나 10차 배양의 경우 18hr 후 94%, 99% 및 98%의 제거율을 나타내었다.The glass spheres are much larger in pore size than the porous polyurethane spheres, and micropores are not formed in the large pores. In addition, both the porous polyurethane sphere and the sintered porous glass sphere significantly shortened the decomposition time of organic matter with the increase of the culture order, which is due to the increase of the microorganisms immobilized on the carrier. WA, WCA, and GB showed 79%, 87%, and 88% removal rates after 24 hr in the primary culture, but 94%, 99%, and 98% removal after 18 hr in the 10th culture.
따라서 용매를 사용하여 중합한 다공성 폴리우레탄구가 폐수처리를 위한 담체로서의 성능이 우수하며 소결한 다공성유리구와 비교하였을 때 매우 경제적인 담체로 사료된다.Therefore, porous polyurethane spheres polymerized using solvent have excellent performance as carriers for wastewater treatment and are considered to be very economical carriers compared to sintered porous glass spheres.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019940008397A KR0144796B1 (en) | 1994-04-21 | 1994-04-21 | Method for preparing porous polyurethane spherical spheres and their use in wastewater treatment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019940008397A KR0144796B1 (en) | 1994-04-21 | 1994-04-21 | Method for preparing porous polyurethane spherical spheres and their use in wastewater treatment |
Publications (2)
Publication Number | Publication Date |
---|---|
KR950029296A KR950029296A (en) | 1995-11-22 |
KR0144796B1 true KR0144796B1 (en) | 1998-07-15 |
Family
ID=19381433
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019940008397A KR0144796B1 (en) | 1994-04-21 | 1994-04-21 | Method for preparing porous polyurethane spherical spheres and their use in wastewater treatment |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR0144796B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990073454A (en) * | 1999-07-09 | 1999-10-05 | 성기달 | 5) For the treatment of waste water, functional carriers and combined purification tanks using them |
KR20040034754A (en) * | 2002-10-15 | 2004-04-29 | 김부남 | The manufacturing method of polyurethane sponge mixing activated carbon |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030069013A (en) * | 2002-02-15 | 2003-08-25 | 김임석 | Method for eliminating phosphate from wastewater |
-
1994
- 1994-04-21 KR KR1019940008397A patent/KR0144796B1/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990073454A (en) * | 1999-07-09 | 1999-10-05 | 성기달 | 5) For the treatment of waste water, functional carriers and combined purification tanks using them |
KR20040034754A (en) * | 2002-10-15 | 2004-04-29 | 김부남 | The manufacturing method of polyurethane sponge mixing activated carbon |
Also Published As
Publication number | Publication date |
---|---|
KR950029296A (en) | 1995-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1328319C (en) | Process for the production of filler-containing, polymer-bound compositions the compositions obtained by this process and their use | |
JPH046352B2 (en) | ||
Chang et al. | Immobilization of Alcaligenes eutrophus using PVA crosslinked with sodium nitrate | |
JP3608913B2 (en) | Bioreactor carrier and production method | |
JPH0951794A (en) | Porous carrier for bioreactor | |
EP0864540B1 (en) | Method for carrying out a biocatalyst reaction | |
KR0144796B1 (en) | Method for preparing porous polyurethane spherical spheres and their use in wastewater treatment | |
US6569337B2 (en) | Bioreactor carrier, process for producing the carrier and method for using the same | |
Bandhyopadhyay et al. | Solid matrix characterization of immobilized Pseudomonas putida MTCC 1194 used for phenol degradation | |
US6565751B2 (en) | Bioreactor carrier, process for producing the carrier and method for using the same | |
CN1366531A (en) | Aqueous polyurethane gel, process for producing same, and use thereof | |
KR100277017B1 (en) | Media for wastewater treatment, manufacturing method thereof and wastewater treatment method using the media | |
KR100433644B1 (en) | Porous Polymer Matrix Formed with Activated Carbon and Zeolite for Biofilter and Method for Preparing the Same | |
US6011110A (en) | Carrier for bioreactor and method of producing the same | |
CN115926091A (en) | Waterborne polyurethane filler and preparation method and application thereof | |
JP2002052394A (en) | Bioreactor carrier, method for producing the same, and method for using the carrier | |
Dong et al. | Immobilization of nitrifying bacteria in waterborne polyurethane hydrogel for removal of ammonium nitrogen from wastewater | |
Dong et al. | Synthesis and application of polyurethane Hydrogel carrier on nitrobacteria immobilization | |
KR100221054B1 (en) | Manufacturing Method of Polyurethane Foam for PCB Decomposition | |
JPS61173777A (en) | Immobilized bacterium, production thereof and method of water treatment | |
Qiao et al. | Optimized immobilization of activated sludge in poly (ethylene glycol) gels by UV technology | |
JPS63196291A (en) | Carrier supporting immobilized microorganism and production thereof | |
KR0144604B1 (en) | A carrier for fixing the micro organism in purification equipment | |
KR100188805B1 (en) | Media for biological treatment of wastewater and manufacturing method thereof | |
CN118530981A (en) | Super microbial film carrier material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 19940421 |
|
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 19940421 Comment text: Request for Examination of Application |
|
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 19970721 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 19980126 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 19980423 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 19980423 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20010424 Year of fee payment: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20010424 Start annual number: 4 End annual number: 4 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20030110 |