KR0131369B1 - Manufacturing method of power semiconductor device - Google Patents
Manufacturing method of power semiconductor deviceInfo
- Publication number
- KR0131369B1 KR0131369B1 KR1019930026660A KR930026660A KR0131369B1 KR 0131369 B1 KR0131369 B1 KR 0131369B1 KR 1019930026660 A KR1019930026660 A KR 1019930026660A KR 930026660 A KR930026660 A KR 930026660A KR 0131369 B1 KR0131369 B1 KR 0131369B1
- Authority
- KR
- South Korea
- Prior art keywords
- electrode
- forming
- diffusion region
- well
- npn bipolar
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 11
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 238000000034 method Methods 0.000 claims abstract description 26
- 238000009792 diffusion process Methods 0.000 claims abstract description 21
- 239000002184 metal Substances 0.000 claims abstract description 13
- 239000000758 substrate Substances 0.000 claims abstract description 9
- 239000012535 impurity Substances 0.000 claims description 10
- 238000005468 ion implantation Methods 0.000 claims description 10
- 230000015556 catabolic process Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/101—Integrated devices comprising main components and built-in components, e.g. IGBT having built-in freewheel diode
- H10D84/121—BJTs having built-in components
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0107—Integrating at least one component covered by H10D12/00 or H10D30/00 with at least one component covered by H10D8/00, H10D10/00 or H10D18/00, e.g. integrating IGFETs with BJTs
- H10D84/0109—Integrating at least one component covered by H10D12/00 or H10D30/00 with at least one component covered by H10D8/00, H10D10/00 or H10D18/00, e.g. integrating IGFETs with BJTs the at least one component covered by H10D12/00 or H10D30/00 being a MOS device
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Bipolar Transistors (AREA)
Abstract
본 발명은 전력용 반도체 장치의 제조방법에 관한 것으로, P형 기판에 N-웰을 형성하고 상기 N-웰을 사용하여 PMOS 트랜지스터와 npn 바이폴라 트랜지스터를 구성하되, N-웰의 소정 부분에 P-베이스 확산 영역을 형성하여 이 P-베이스 확산 영역을 npn 바이폴라 트랜지스터의 베이스로 사용하면서 PMOS 트랜지스터의 드레인 전극이 포함되어 전기적으로 연결되게 하고, 또한 PMOS 트랜지스터의 소오스 전극과 npn 바이폴라 트랜지스터의 콜렉터 전극을 금속배선으로 연결하여 PMOS 트랜지스터를 입력단으로 하고 npn 바이폴라 트랜지스터를 출력단으로 동작하도록 하는 전력용 반도체 장치를 제조하는 방법에 관해 기술된다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a power semiconductor device, wherein an N-well is formed on a P-type substrate and a PMOS transistor and an npn bipolar transistor are formed using the N-well, but the P- is formed in a predetermined portion of the N-well. The base diffusion region is formed to use the P-base diffusion region as a base of the npn bipolar transistor, so that the drain electrode of the PMOS transistor is included and electrically connected, and the source electrode of the PMOS transistor and the collector electrode of the npn bipolar transistor are made of metal. A method of manufacturing a power semiconductor device connected by wiring to a PMOS transistor as an input terminal and an npn bipolar transistor as an output terminal is described.
Description
제1도는 본 발명에 따른 전력용 반도체 장치의 단면도.1 is a cross-sectional view of a power semiconductor device according to the present invention.
제2도는 제1도의 등가 회로도.2 is an equivalent circuit diagram of FIG.
* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols on main parts of drawing
1 : P형 기판 2 : N-웰1: P-type substrate 2: N-well
3 : 필드 산화막 4 : P-베이스 확산영역3: field oxide film 4: P-base diffusion region
5 : 게이트 산화막 6 : 게이트 전극5 gate oxide film 6 gate electrode
7A : P+소오스 전극 7A' : N+소오스 전극7A: P + source electrode 7A ': N + source electrode
7B : P+드레인 전극 8 : N+에미터 전극7B: P + drain electrode 8: N + emitter electrode
9 : N+콜렉터 전극 10 : 절연막9 N + collector electrode 10 insulating film
11A, 11B, 11C : 금속배선 G : 게이트 단자11A, 11B, 11C: Metal wiring G: Gate terminal
S : 소오스 단자 D : 드레인 단자S: source terminal D: drain terminal
B : 베이스 단자 C : 콜렉터 단자B: Base Terminal C: Collector Terminal
E : 에미터 단자 Q1 : PMOS 트랜지스터E: emitter terminal Q1: PMOS transistor
Q2 : npn 바이폴라 트랜지스터Q2: npn bipolar transistor
본 발명은 전력용-반도체 장치의 제조방법에 관한 것으로, 특히 P형 기판에 N-웰을 형성하고 상기 N-웰을 사용하여 PMOS 트랜지스터와 npn 바이폴라 트랜지스터를 구성하되, N-웰의 소정 부분에 P-베이스(Base) 확산 영역을 형성하여 이 P-베이스 확산 영역을 npn 바이폴라 트랜지스터의 베이스로 사용하면서 PMOS 트랜지스터의 드레인 전극이 포함되어 전기적으로 연결되게 하고, 또한 PMOS 트랜지스터의 소오스 전극과 npn 바이폴라 트랜지스터의 콜렉터 전극을 금속배선으로 연결하여 PMOS 트랜지스터를 입력단으로 하고 npn 바이폴라 트랜지스터를 출력단으로 동작하도록 하는 전력용 반도체 장치 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a power-semiconductor device, in particular, forming an N-well on a P-type substrate and using the N-well to form a PMOS transistor and an npn bipolar transistor, The P-base diffusion region is formed to use the P-base diffusion region as the base of the npn bipolar transistor, so that the drain electrode of the PMOS transistor is included and electrically connected, and the source electrode and the npn bipolar transistor of the PMOS transistor are also included. The present invention relates to a method for manufacturing a power semiconductor device in which a PMOS transistor is used as an input terminal and a npn bipolar transistor is operated as an output terminal by connecting a collector electrode of a metal wiring.
일반적으로, 반도체 전력용 소자는 개별 소자형태로 구현되며, 기존 Bi-MOS 전력소자의 경우 구현 공정이 복잡하고 수율이 낮아 단가가 높고, 저전압의 CMOS 논리 회로와 동일 칩상에서 구현할 수 없는 구조이다.In general, the semiconductor power device is implemented in the form of a separate device, and the existing Bi-MOS power device has a complicated implementation process and a low yield, high unit cost, and cannot be implemented on the same chip as a low voltage CMOS logic circuit.
따라서, 본 발명은 PMOS 트랜지스터와 npn 바이폴라 트랜지스터를 기존 CMOS 공정을 기초로 구현하고 동일 칩상에서 전기적으로 결합하여 입력단을 PMOS 트랜지스터로, 출력단을 npn 바이폴라 트랜지스터로 동작되도록 하므로써 전류 이득, 항복 전압(Punch Through Voltage) 및 입력 저항을 크게할 수 있는 전력용 반도체 장치 제조방법을 제공함에 그 목적이 있다.Accordingly, the present invention implements a PMOS transistor and an npn bipolar transistor based on an existing CMOS process and electrically couples the same on the same chip to operate an input terminal as a PMOS transistor and an output terminal as an npn bipolar transistor. It is an object of the present invention to provide a method for manufacturing a power semiconductor device capable of increasing a voltage and an input resistance.
상술한 목적을 달성하기 위한 본 발명은 P형 기판에 N-웰을 형성한 후, 상기 N-웰의 경계 부분에 필드 산화막을 형성하는 단계와, 상기 필드 산화막으로 구분된 N-웰의 소정부분에 P형 불순물 이온주입 공정으로 소정 폭과 깊이를 갖는 P-베이스 확산 영역을 형성하여 npn 바이폴라 트랜지스터의 베이스 전극을 형성하는 단계와, 상기 P-베이스 확산 영역의 일측 경계 부분에 겹치도록 PMOS 트랜지스터의 게이트 산화막 및 게이트 전극을 형성한 후, 소오스 및 드레인 불순물 이온주입 공정으로 상기 게이트 전극 일측의 N-웰 기판에 P+소오스 전극을, 다른측인 P-베이스 확산 영역에 P+드레인 전극을 형성하는 단계와, 상기 P+드레인 전극을 형성한 후 N+불순물 이온주입 공정으로 P+소오스 전극과 맞닿는 부분에 N+소오스 전극을, P-베이스 확산 영역내에 포함되는 부분에 N+에미터 전극을, 그리고 N+콜렉터 전극을 형성하는 단계와, 전체 구조 상부에 절연막을 형성한 후 콘택 및 금속배선 공정을 실시하여 P+, N+소오스 전극, N+에미터 전극 및 N+콜렉터 전극상에 각각으로 금속배선을 형성하는 단계로 이루어진 것을 특징으로 한다.According to the present invention for achieving the above object, after forming an N-well in a P-type substrate, forming a field oxide film on the boundary portion of the N-well, and a predetermined portion of the N-well divided into the field oxide film Forming a base electrode of the npn bipolar transistor by forming a P-base diffusion region having a predetermined width and depth in a P-type impurity ion implantation process, and overlapping one boundary portion of the P-base diffusion region. After the gate oxide film and the gate electrode are formed, a P + source electrode is formed in the N-well substrate on one side of the gate electrode and a P + drain electrode is formed in the P-base diffusion region on the other side by a source and drain impurity ion implantation process. ; and the P + Po after forming the drain electrode to the source electrode to the N + P + portion in contact with the source electrode and the N + impurity ion implantation process, into the P- base diffusion region The N + emitter electrode in the portion, and the N + and forming a collector electrode, the entire structure subjected to the upper one forming the insulating film after the contact and metal wiring process on a P +, N + source electrode, N + emitter Forming a metal wiring on the electrode and the N + collector electrode, respectively.
이하, 본 발명을 첨부된 도면을 참조하여 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
제1도는 본 발명에 따른 전력용 반도체 장치의 단면도로서, 그 제조공정을 단계별로 설명하면 다음과 같다.1 is a cross-sectional view of a power semiconductor device according to the present invention, the manufacturing process will be described step by step as follows.
P형 기판(1)에 N-웰(2)을 형성한 후, 상기 N-웰(2) 경계 부분에 산화공정으로 소자간을 격리시키는 필드 산화막(3)을 형성한다.After the N-well 2 is formed on the P-type substrate 1, a field oxide film 3 is formed on the boundary of the N-well 2 so as to isolate the elements from each other by an oxidation process.
상기 공정후 상기 필드 산화막(3)으로 구분된 N-웰(2)간의 소정 부분 즉, PMOS와 npn 바이폴라 트랜지스터의 경계 부분에 P형 불순물 이온주입 공정으로 일정 폭과 깊이를 갖는 P-베이스 확산 영역(4)을 형성하여 npn 바이폴라 트랜지스터의 베이스 전극을 형성한다. 상기 공정후전체 구조 상부에 산화막과 폴리실리콘을 적층한 후 리소그라피(Lithography) 공정 및 식각 공정으로 게이트 산화막(5)상에 게이트 전극(6)을 형성하되,상기 P-베이스 확산 영역(4)의 경계 부분상에 어느정도 겹치도록 형성한다.P-base diffusion region having a predetermined width and depth by a P-type impurity ion implantation process at a predetermined portion between the N-wells 2 separated by the field oxide film 3, that is, the boundary between the PMOS and npn bipolar transistors after the process. (4) is formed to form the base electrode of the npn bipolar transistor. After the process, the oxide film and the polysilicon are laminated on the entire structure, and a gate electrode 6 is formed on the gate oxide film 5 by a lithography process and an etching process, wherein the P-base diffusion region 4 is formed. It is formed to overlap to some extent on the boundary part.
상기 공정후 PMOS의 소오스 및 드레인 불순물 이온주입 공정으로 상기 게이트 전극(6) 일측의 N-웰 기판에 P+소오스 전극(7A)을 다른측인 P-베이스 확산영역에 P+드레인 전극(7B)을 형성한다.The P + source electrode 7A is placed on the N-well substrate on one side of the gate electrode 6 and the P + drain electrode 7B is placed on the P-base diffusion region on the other side by the PMOS source and drain impurity ion implantation process. To form.
상기 공정후 상기 P+소오스 전극(7A)에 접하는 N-웰(2)의 소정 부분과, 상기 P-베이스 확산 영역(4)의 소정부분과, npn 바이폴라 트랜지스터가 형성될 N-웰(2)의 소정 부분을 개방하여 N+불순물 이온주입 공정으로 P+소오스 전극(7A)과 맞닿는 부분에 N+소오스 전극(7A')을, P-베이스 확산 영역(4)에 포함되는 부분에 N+에미터After the process, a predetermined portion of the N-well 2 in contact with the P + source electrode 7A, a predetermined portion of the P-base diffusion region 4, and an N-well 2 in which an npn bipolar transistor will be formed are formed. by opening a predetermined portion of the N + impurity ion implantation process, an N + source electrode (7A ') in the abutting portion and the P + source electrode (7A), the portion contained in the P- base diffusion region (4) N + emitter foundation
전극(8)을, 그리고 나머지 부분에 N+콜렉터 전극(9)을 형성한다.The electrode 8 and the N + collector electrode 9 are formed in the remaining part.
상기 공정후 전체 구조 상부에 절연막(10)을 형성한 후, 콘택 및 금속배선 공정을 실시하여 P+, N+소오스 전극(7A, 7A'), N+에미터 전극(8) 및 N+콜렉터 전극(9)상에 각각으로 금속배선(11A, 11B 및 11C)을 형성한다.After the process, the insulating film 10 is formed on the entire structure, and then contact and metallization processes are performed to perform P + , N + source electrodes 7A, 7A ', N + emitter electrodes 8 and N + collectors. Metal wires 11A, 11B and 11C are formed on the electrode 9, respectively.
상술한 바에 의하면 P형 불순물 이온주입 공정으로 형성된 P-베이스 확산영역(4)은 npn 바이폴라 트랜지스터의 베이스로 작용하며, 또한 PMOS의 드레인 전극(7B)을 포함하고 있어 전기적으로 연결된다.According to the above description, the P-base diffusion region 4 formed by the P-type impurity ion implantation process serves as a base of the npn bipolar transistor, and also includes the drain electrode 7B of the PMOS and is electrically connected thereto.
그리고 제1도에 도시되지 않았지만 P+, N+소오스 전극(7A, 7A')과 N+콜렉터 전극(9)은 금속배선(11A 및 11C)에 의해 연결된다.Although not shown in FIG. 1, the P + , N + source electrodes 7A, 7A 'and the N + collector electrode 9 are connected by metal wirings 11A and 11C.
제2도는 상기 제1도의 등가 회로도로서, 이를 참조하여 본 발명을 더욱 상세히 설명하면, PMOS 트랜지스터(Q1)의 소오스 단자(S)와 npn 바이폴라 트랜지스터(Q2)의 콜렉터 단자(C)는 상호 접속되는데, 이는 제1도에서 소오스 금속배선(11A)과 콜렉터 금속배선(11C)에 의해 접속된다.FIG. 2 is an equivalent circuit diagram of FIG. 1, and the present invention will be described in more detail with reference to the figure. The source terminal S of the PMOS transistor Q1 and the collector terminal C of the npn bipolar transistor Q2 are interconnected. This is connected by source metal wiring 11A and collector metal wiring 11C in FIG.
그리고, 드레인 단자(D)는 베이스 단자(B)와 접속되는데, 이는 제1도에서 P+드레인 전극(7B)이 베이스인 P-베이스 확산 영역(4)내에 포함되어 접속되는 형태가 된다.In addition, the drain terminal D is connected to the base terminal B. In this case, the P + drain electrode 7B is included in the P-base diffusion region 4 which is the base and connected.
즉, 게이트, 소오스 및 드레인 단자(G, S 및 D)를 갖는 PMOS 트랜지스터(Q1)는 베이스, 콜렉터 및 에미터 단자(B,C 및 E)를 갖는 npn 바이폴라 트랜지스터(Q2)와 결합하여 전력소자를 이루는데, 결합 방법에 있어 동일 칩상에서 금속배선에 의해 소오스와 콜렉터가 접속되고 P-베이스 확산 영역에 드레인이 공유되어 접속된다.That is, the PMOS transistor Q1 having the gate, source, and drain terminals G, S, and D is combined with the npn bipolar transistor Q2 having the base, collector, and emitter terminals B, C, and E. In the coupling method, the source and the collector are connected by metal wiring on the same chip, and the drain is shared and connected to the P-base diffusion region.
그리고 PMOS 트랜지스터(Q1)는 입력단으로 동작하고 npn 바이폴라 트랜지스터(Q2)는 출력단으로 동작한다.The PMOS transistor Q1 operates as an input terminal and the npn bipolar transistor Q2 operates as an output terminal.
동작을 간단히 설명하면, PMOS 트랜지스터(Q1)의 소오스(S)와 npn 바이폴라 트랜지스터(Q2)의 콜렉터(C)에는 전원 전압(VDD)이 인가되고, 드레인 전류는 npn 바이폴라 트랜지스터(Q2)의 베이스 전류 성분이 되어 회로의 총전류 It는 바이폴라 트랜지스터(Q2)의 공통에미터 전류 이득(Common Emitter Current Gain)만큼 증폭In brief, the power supply voltage V DD is applied to the source S of the PMOS transistor Q1 and the collector C of the npn bipolar transistor Q2, and the drain current is the base of the npn bipolar transistor Q2. As a current component, the total current I t of the circuit is amplified by the common emitter current gain of the bipolar transistor (Q2).
된다.do.
따라서 바이폴라 트랜지스터(Q2)의 에미터 전류는 IE= It= Id+ Ic= (1 + hfe) Id이다.Thus, the emitter current of bipolar transistor Q2 is I E = I t = I d + I c = (1 + h fe ) I d .
즉, 공통 에미터 전류 이득은 hfe이므로 에미터에 흐르는 전류(IE)는 PMOS의 드레인 전류 Id가 1+hfe만큼 증폭되며, 이에 따라 전류구동 능력이 PMOS에 비하여 1+hfe만큼 커지고, 항복 전압은 PMOS의 펀치스루 전압(Punch through Vo1tage)이 아닌 바이폴라 트랜지스터의 콜렉터와 에미터간의 항복 전압과 같으므로 항복 전압이 커지며, 또한 입력단이 PMOS로 구성되므로 입력저항도 높게된다. 상술한 바와 같이 본 발명에 의하면 PMOS 트랜지스터와 npn 바이폴라 트랜지스터를 전기적으로 결합하여 전류구동 능력과 항복 전압 및 입력 전압이 증가되는 PMOS 트랜지스터와 npn 바이폴라 트랜지스터의 장점을 동시에 가지는 전력소자를 구현할 수 있고, 또한 동일 칩상에서 저전압 CMOS 논리 회로와 공존할 수 있는 소자구조이므로 시스템의 크기를 줄일 수 있으며 신뢰도를 증가시킬 수 있다.That is, since the common emitter current gain is h fe , the current (IE) flowing through the emitter is amplified by 1 + h fe of the drain current I d of the PMOS, and thus the current driving capability is increased by 1 + h fe compared to the PMOS. The breakdown voltage is the same as the breakdown voltage between the collector and the emitter of the bipolar transistor, not the punch-through voltage of the PMOS. Therefore, the breakdown voltage is increased. Also, since the input terminal is composed of PMOS, the input resistance is also high. As described above, according to the present invention, the PMOS transistor and the npn bipolar transistor are electrically coupled to each other, thereby realizing a power device having the advantages of the PMOS transistor and the npn bipolar transistor having increased current driving capability, breakdown voltage, and input voltage. The device structure, which can coexist with low-voltage CMOS logic circuits on the same chip, can reduce system size and increase reliability.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019930026660A KR0131369B1 (en) | 1993-12-07 | 1993-12-07 | Manufacturing method of power semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019930026660A KR0131369B1 (en) | 1993-12-07 | 1993-12-07 | Manufacturing method of power semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
KR950021511A KR950021511A (en) | 1995-07-26 |
KR0131369B1 true KR0131369B1 (en) | 1998-04-15 |
Family
ID=19370052
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019930026660A KR0131369B1 (en) | 1993-12-07 | 1993-12-07 | Manufacturing method of power semiconductor device |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR0131369B1 (en) |
-
1993
- 1993-12-07 KR KR1019930026660A patent/KR0131369B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR950021511A (en) | 1995-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5376816A (en) | Bi-cmos integrated circuit device having buried region use in common for bipolar and mos transistors | |
KR100208632B1 (en) | Semiconductor integrated circuit and manufacturing method thereof | |
US5060044A (en) | Integrated bipolar-CMOS circuit isolation for providing different backgate and substrate bias | |
US5184203A (en) | Semiconductor device having a charge transfer device, MOSFETs, and bipolar transistors--all formed in a single semiconductor substrate | |
US5220190A (en) | Device having a charge transfer device, MOSFETs, and bipolar transistors--al | |
US5260228A (en) | Method of making a semiconductor device having a charge transfer device, MOSFETs, and bipolar transistors | |
JPH1065146A (en) | Semiconductor integrated circuit device | |
EP0381139A2 (en) | Semiconductor integrated circuit and method of manufacture thereof | |
US5969391A (en) | Complementary insulated-gate field-effect transistors having improved anti-latchup characteristic | |
KR0131369B1 (en) | Manufacturing method of power semiconductor device | |
JPS63137478A (en) | Manufacture of semiconductor device having protective circuit | |
KR970009032B1 (en) | Power semiconductor and its manufacturing method | |
US5856218A (en) | Bipolar transistor formed by a high energy ion implantation method | |
JPH03276757A (en) | semiconductor equipment | |
KR100332115B1 (en) | Semiconductor power device and fabricating method thereof | |
JP3211871B2 (en) | I / O protection circuit | |
JP2920061B2 (en) | Semiconductor integrated device for high load driving driver and high load driving driver device | |
JP2001339044A (en) | Electrostatic protection circuit of semiconductor device | |
JPH0837299A (en) | Protective circuit of semiconductor integrated circuit | |
KR100321700B1 (en) | Megred bipolar transistor and mos transistor with isolation layer for preventing latch-up | |
JPH02210862A (en) | Semiconductor device | |
JPH05267672A (en) | Semiconductor device | |
JPS58186959A (en) | Semiconductor device | |
JP3071819B2 (en) | Insulated gate type semiconductor device | |
JP2539386B2 (en) | Method for manufacturing semiconductor integrated circuit device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 19931207 |
|
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 19931207 Comment text: Request for Examination of Application |
|
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 19970506 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 19971121 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 19971129 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 19971129 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20001019 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20011017 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20021018 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20031017 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20041116 Start annual number: 8 End annual number: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20051021 Start annual number: 9 End annual number: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20061024 Start annual number: 10 End annual number: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20071018 Start annual number: 11 End annual number: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20081017 Start annual number: 12 End annual number: 12 |
|
PR1001 | Payment of annual fee |
Payment date: 20091016 Start annual number: 13 End annual number: 13 |
|
PR1001 | Payment of annual fee |
Payment date: 20101019 Start annual number: 14 End annual number: 14 |
|
PR1001 | Payment of annual fee |
Payment date: 20111024 Start annual number: 15 End annual number: 15 |
|
FPAY | Annual fee payment |
Payment date: 20121022 Year of fee payment: 16 |
|
PR1001 | Payment of annual fee |
Payment date: 20121022 Start annual number: 16 End annual number: 16 |
|
EXPY | Expiration of term | ||
PC1801 | Expiration of term |
Termination date: 20140607 Termination category: Expiration of duration |