KR0120956B1 - Filler composition for ceramic joining - Google Patents
Filler composition for ceramic joiningInfo
- Publication number
- KR0120956B1 KR0120956B1 KR1019940025779A KR19940025779A KR0120956B1 KR 0120956 B1 KR0120956 B1 KR 0120956B1 KR 1019940025779 A KR1019940025779 A KR 1019940025779A KR 19940025779 A KR19940025779 A KR 19940025779A KR 0120956 B1 KR0120956 B1 KR 0120956B1
- Authority
- KR
- South Korea
- Prior art keywords
- present
- ceramic
- joining
- filler
- metal
- Prior art date
Links
- 239000000945 filler Substances 0.000 title claims abstract description 47
- 239000000919 ceramic Substances 0.000 title claims abstract description 33
- 238000005304 joining Methods 0.000 title claims abstract description 23
- 239000000203 mixture Substances 0.000 title claims abstract description 16
- 229910052802 copper Inorganic materials 0.000 claims abstract description 16
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 13
- 239000000956 alloy Substances 0.000 claims abstract description 13
- 239000002184 metal Substances 0.000 abstract description 41
- 229910052751 metal Inorganic materials 0.000 abstract description 41
- 239000000463 material Substances 0.000 abstract description 22
- 238000000034 method Methods 0.000 abstract description 22
- 238000002844 melting Methods 0.000 abstract description 15
- 230000008018 melting Effects 0.000 abstract description 14
- 229910001092 metal group alloy Inorganic materials 0.000 abstract description 12
- 239000000758 substrate Substances 0.000 abstract description 10
- 150000002739 metals Chemical class 0.000 abstract description 8
- 238000010438 heat treatment Methods 0.000 abstract description 4
- 239000010949 copper Substances 0.000 description 17
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 8
- 238000005219 brazing Methods 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 229910017309 Mo—Mn Inorganic materials 0.000 description 2
- 229910004349 Ti-Al Inorganic materials 0.000 description 2
- 229910004692 Ti—Al Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000002076 thermal analysis method Methods 0.000 description 2
- 229910017944 Ag—Cu Inorganic materials 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910002482 Cu–Ni Inorganic materials 0.000 description 1
- 229910017945 Cu—Ti Inorganic materials 0.000 description 1
- 229910004353 Ti-Cu Inorganic materials 0.000 description 1
- 229910003126 Zr–Ni Inorganic materials 0.000 description 1
- -1 as shown in FIG. 3 Inorganic materials 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- PMTRSEDNJGMXLN-UHFFFAOYSA-N titanium zirconium Chemical compound [Ti].[Zr] PMTRSEDNJGMXLN-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/302—Cu as the principal constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
- C22C30/02—Alloys containing less than 50% by weight of each constituent containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/50—Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
- B23K2103/52—Ceramics
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
본 발명은 세라믹의 접합에 사용되는 용가재(Filler)용 합금조성물, 및 이러한 용가재를 사용하여 세라믹과 금속,또는 세라믹과 세라믹을 접합시키는 접합방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to alloy compositions for fillers used for joining ceramics, and to joining methods for joining ceramics and metals or ceramics and ceramics using such filler materials.
본 발명에 따르면, Cu 40-70wt%,Ti 20-40wt%, Al 5-10wt% 의 조성비를 가진 세라믹과 금속의 접합용 용가재합금 조성물이 제공된다.According to the present invention, there is provided a filler metal alloy composition for joining ceramics and metals having a composition ratio of 40 to 70 wt% Cu, 20 to 40 wt% Ti, and 5 to 10 wt% Al.
또한, 본 발명에 따르면, Cu 40-45wt%, Ti 45-50wt%, Al 5-10wt%의 조성비를 가진 세라믹과 금속의 접합용 용가재합금 조성물이 제공된다.In addition, according to the present invention, there is provided a filler metal alloy composition for joining ceramics and metals having a composition ratio of 40 to 45 wt% Cu, 45 to 50 wt% Ti, and 5 to 10 wt% Al.
본 발명에 따른 용가재를 피접합모재인 세라믹기판과 금속부재 또는 세라믹부재를 올려놓은 후, 용가재의 용융온도 이상으로 가열함으로써 간단한 공정으로 세라믹과 금속 또는 세라믹을 접합시킬 수 있다.After placing the filler metal according to the present invention on the ceramic substrate, the metal member or the ceramic member, to be joined, and heating the melting material above the melting temperature of the filler metal, the ceramic and the metal or ceramic can be joined in a simple process.
Description
제1도는 본 발명의 실시예의 경도를 비교한 도표.1 is a chart comparing the hardness of the embodiments of the present invention.
제2도는 본 발명에 따른 용가재를 사용하여 접합한 접합체의 강도비교표.2 is a strength comparison table of the bonded body using the filler metal according to the invention.
제3도는 종래의 메탈리아즈 브레이징 접합법의 개략 공정도.3 is a schematic process diagram of a conventional metallized brazing bonding method.
제4도는 본 발명에 따른 접합법의 개략공정도.4 is a schematic process diagram of a bonding method according to the present invention.
본 발명은 접합특성이 우수하고 코스트가 저렴한 세라믹 접합용 용가재(Filler) 합금조성물에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filler alloy composition for ceramic joining, which has excellent joining properties and is low in cost.
최근에 내열성, 내식성 및 절연성이 우수한 세라믹재료와 금속재료의 접합에 의한 복합체의 적용범위가 확대되고 있다. 그런데, 세라믹과 금속은 그 원자결합양식이나 열팽창계수 및 탄성계수등의 물성치가 서로 달라 접합이 어려우며, 접합부에서의 크랙발생이나, 소요의 접합강도의 구현, 또는 접합부의 기밀성의 확보등 세라믹과 금속간 접합에 관련하여 아직도 해결해야 할 과제가 많이 남아있다.Recently, the application range of the composite by the bonding of the ceramic material and the metal material which is excellent in heat resistance, corrosion resistance, and insulation is expanding. However, ceramics and metals are difficult to be bonded because their physical properties such as atomic bonding style, thermal expansion coefficient, and elastic modulus are different from each other. There are still many challenges to be solved with regard to interconjugation.
기존에 알려진 세라믹과 금속간의 접합법은 직접접합법, 중간재법, 그리고 기계적 접합법으로 대별할 수 있으며, 중간재법 중에서 피접합체 사이에 활성금속으로 된 용가재를 배치하여 진공 또는 불활성가스의 분위기 중에서 가열하여 용가제를 용융시켜서 접합하는 브레이징법은, 다른 접합법에 비해 공정이 긴단하면서도 접합강도도 양호하며, 비교적 복잡한 형상의 접합도 가능하고 다른 방법에 비해 대량생산에 적합하다는 상대적인 장점을 가지고 있다. 종래예 시판되는 세라믹접합용 활성금속 용가재 중에서 대표적인 것으로서는 Ag-Cu합금에 활성금속원소인 Ti을 소량 첨가시킨 용가재를 들 수 있는데, 이것은 융점이 낮고 반응성도 양호하지만, 접합부의 내식성이 양하고, Ti를 소량만 첨가시키는데는 고도의 용해기술이 필요하므로 제조상의 곤란점이 있으며, 또한 귀금속인 Ag를 기지로 사용하므로 가격이 비싸고 접합면적이 넓을 경우에는 접합성이 좋지않다는 문제점이 있다. 또한, Ti-Zr-Cu이나 Ti-Zr-Cu-Ni계 등의 Ti을 기지로 한 용가재합금은 접합부의 강도 및 내식성이 우수하지만 접합부의 취성이 크다는 것이 단점으로 지적될 수 있다.Conventionally known ceramic and metal joining methods can be classified into direct joining, intermediate materials, and mechanical joining methods. Among the intermediate materials, the filler metal made of active metal is placed between the joined materials and heated in a vacuum or inert gas atmosphere. The brazing method of melting and joining has a relative advantage that the process is longer and the bonding strength is better than that of other bonding methods, and that bonding of a relatively complicated shape is possible and suitable for mass production compared to other methods. Typical examples of commercially available active metal fillers for ceramic joining include filler materials in which a small amount of Ti, an active metal element, is added to an Ag-Cu alloy, which has a low melting point and good reactivity, but has good corrosion resistance at the joint. The addition of only a small amount of Ti requires a high melting technology, there is a difficulty in manufacturing, and because the use of Ag, a precious metal as a base, there is a problem that the bonding is not good when the price is expensive and the bonding area is large. In addition, the filler metal alloy based on Ti, such as Ti-Zr-Cu or Ti-Zr-Cu-Ni, has excellent strength and corrosion resistance at the joint, but it can be pointed out that the brittleness at the joint is large.
본 발명은 전술한 바와같은 종래의 세라믹-금속간 접합에 사용되는 용가재 합금의 문제점을 해결하기위해 제안된 것으로서, 가격이 저렴한 Cu를 기지로 사용하고 고가인 Ag를 포함하지 않아서 염가로 제조할수 있으며, 융점에 있어서 기존의 용가재 합금과 큰 차이를 보이지 않으면서도 젖음성(Wettability)이 탁월한 새로운 세라믹접합용 유가재 합금을 제공하고자 하는 것이다.The present invention has been proposed to solve the problems of the filler metal alloy used in the conventional ceramic-to-metal joint as described above, and can be manufactured at low cost because it uses Cu as a base and does not include expensive Ag. In addition, the present invention aims to provide a new ceramic joining valuable alloy alloy having excellent wettability while showing no significant difference with the existing filler metal alloy in melting point.
또한, 본 발명은 Ti가 적정량 함유되어 합금의 제조에 고도의 용해기술을 필요로 하지 않으면서 Ti를 다량 함유하는 종래의 Ti-Zr계 용가재에 비해 취성이 작으며, 강도와 내식성도 양호하고, 접합부의 형상이나 기밀성도 우수한 새로운 세라믹접합용 용가재 합금을 제공하고자 하는 것이다.In addition, the present invention is less brittle than conventional Ti-Zr filler metals containing a large amount of Ti without the need for advanced dissolution technology in the production of an alloy containing a proper amount of Ti, good strength and corrosion resistance, It is an object of the present invention to provide a filler metal alloy for ceramic joining, which has excellent shape and airtightness.
또한, 본 발명은 본 발명에 따른 새로운 용가재 합금의 우수한 젖음성을 이용하여 세라믹과 금속을 간단한 공정에 의해 직접 접합시킬 수 있는 새로운 접합공정을 제공하고자 한다.In addition, the present invention is to provide a new bonding process that can directly bond the ceramic and metal by a simple process using the excellent wettability of the new filler metal alloy according to the present invention.
일반적으로 Cu는 Ag베이스나 Cu베이스 및 Ni베이스의 합금과의 접합성이 좋고 Fe계통의 재료와도 접합친화력이 우수하다. 또한, 연성이 풍부하고 다른 재료와의 고용도도 높기 때문에 금속접합용 용가재의 성분으로 적합하다, 그러나 순수한 구리만으로는 세라믹(Al2O3)과의 친화력, 즉 젖음성과 반응성이 나쁘므로 세라믹과 친화력이 높은 Ti을 접합촉진원소로 첨가시킨다. 그러나 전술한 바와같이, Ti를 기지로 하는 종래의 Ti-Cu계의 용가재는 취성이 강한 결점이 있다. 따라서 본 발명에서는 Cu-Ti계에서 Ti의 성분을 감소시키고, Mn 또는 Al을 첨가시켜서 연성, 융점 및 접합성(반응성, 젖음성)이 향상된 새로운 용가재 합금을 제안하게 된다.In general, Cu has good bonding properties with Ag-base, Cu-base, and Ni-base alloys, and has excellent bonding affinity with Fe-based materials. Further, only by ductility-rich, it is suitable as a component of the filler metal for metal bonding is high even employment of different materials, but pure copper ceramic (Al 2 O 3) and the affinity, i.e., so bad wettability and reactivity affinity with ceramic This high Ti is added as a bonding promoter element. However, as mentioned above, the conventional Ti-Cu filler metal based on Ti has a weak brittleness. Therefore, the present invention proposes a new filler metal alloy having improved ductility, melting point, and bondability (reactivity, wettability) by reducing Ti component in Cu-Ti and adding Mn or Al.
본 발명의 한 특징에 따르면, Cu 40-70wt%, Ti 20-40%, Mn 10-20wt%의 조성비를 가진 세라믹과 금속의 접합용 용가재합금 조성물이 제공된다.According to one aspect of the present invention, there is provided a filler metal alloy composition for joining ceramics and metals having a composition ratio of 40 to 70 wt% Cu, 20 to 40% Ti, and 10 to 20 wt% Mn.
본 발명의 다른 특징에 따르면, Cu 40-45wt%, Ti45-50wt%, Al 5-10wt%의 조성비를 가진 세라믹과 금속의 접합용 용가재합금 조성물이 제공된다.According to another feature of the present invention, there is provided a filler metal alloy composition for bonding ceramics and metals having a composition ratio of 40 to 45 wt% Cu, 45 to 45 wt% Cu, and 5 to 10 wt% Al.
본 발명의 다른 특징에 따르면, 세라믹기판 상에 Cu-Ti-Mn 또는 Cu-Ti-Al계 합금으로 된 용가재를 배치하고, 용가재 위에 피접합 금속부재 또는 세라믹부제를 올려 놓은 후, 용가재의 용융온도 이상으로 가열하여 세라믹 기판과 금속부재 또는 세라믹 부재를 접합시키는 것을 특징으로 하는 세라믹의 접합방법이 제공된다.According to another feature of the present invention, after placing a filler material of Cu-Ti-Mn or Cu-Ti-Al-based alloy on the ceramic substrate, placing the metal member or ceramic subsidiary material to be joined on the filler material, the melting temperature of the filler material A ceramic joining method is provided by joining a ceramic substrate to a metal member or a ceramic member by heating as described above.
이하에서 본 빌명의 바람직한 실시예를 종래의 용가재합금과 융점, 젖음성, 접합강도의 면에서 비교한 것을 설명한다.Hereinafter, the preferred embodiment of the present invention will be described in comparison with the conventional filler metal alloy in terms of melting point, wettability, and bonding strength.
우선,소정의 합금조송에 따라 각 금속분말을 혼합하여 프레스를 이용하여 셩형시켜서 크기 12×20 내지 12×30, 무게 25 내지 30g 정도의 시편을 만들고, 이를 석영도가니에 넣어 고주파유도가열 또는 진공아아크 용해장치에 의해 잉고트를 제작하였다.First, in accordance with a predetermined alloy feeding, each metal powder is mixed and shaved using a press to make a specimen having a size of 12 × 20 to 12 × 30 and a weight of about 25 to 30g, and put it in a quartz crucible to induce high frequency induction heating or vacuum arc. The ingot was produced by the melting apparatus.
이렇게 얻은 잉고트를 다시 분쇄하여 진공 또는 Ar 분위기중에 고주파 유도가열하여 재용해시킨 후 자연냉각시키면서 고상점과 액상점을 측정하는 열분석실험을 하였다.The ingot was then pulverized again and subjected to thermal analysis in which solid phase and liquid phase were measured while re-dissolving by induction heating in a vacuum or Ar atmosphere.
각 시편별 열분석결과를 표-1과 같다. 표중 기호 AB는 Cu베이스에 Ti와 Mn을 첨가한 시편이고, CD는 Cu베이스에 Ti와 Al을 첨기한 시편을 의미한다. 한편, T5000은 종래의 Cu-Ti-Zr계 비교용가재이고, T2020은 Cu-Ti-Zr-Ni계 비교용가재이다.The thermal analysis results for each specimen are shown in Table-1. Symbol AB in the table represents a specimen in which Ti and Mn are added to the Cu base, and CD represents a specimen in which Ti and Al are added to the Cu base. On the other hand, T5000 is a conventional Cu-Ti-Zr-based comparative material, and T2020 is a Cu-Ti-Zr-Ni-based comparative material.
표-1에서 알 수 있는 것은 실시예의 합금의 액상점(융점)은 대략 850 내지 980℃의 범위에 있으며, 비교예인 T5000이나 T2020에 비해 유사하거나 다소 높지만 전체적으로 융점이 1000℃이하로서 낮게 나타났다.It can be seen from Table-1 that the liquid phase (melting point) of the alloy of the embodiment is in the range of approximately 850 to 980 ℃, similar or somewhat higher than the comparative example T5000 or T2020, but the melting point was lower than 1000 ℃ as a whole.
첨부된 도표 제1도는 본 발명의 실시예와 비교예의 경도를 빅커스경도계로 측정한 결과를 보여주는데, 도시된 바와같이, 본 발명의 실시예의 시편들이 비교예에 비해 훨씬 낮은 경도치를 나타낸다. 이와같이, 본 발명의 용가재합금들은 연성이 풍부하여 접합후 냉각시 발생되는 열응력을 효과적으로 완화할 수 있다는 장점을 가진다.Figure 1 shows the results of measuring the hardness of the Examples and Comparative Examples of the present invention with a Vickers hardness meter, as shown, the specimens of the Examples of the present invention shows a much lower hardness value than the Comparative Example. As such, the filler metals of the present invention have the advantage of being ductile, which can effectively alleviate the thermal stress generated during cooling after bonding.
아래의 표-2는 본 발명에 따른 실시예의 알루미나 기판에 대한 젖음성을 평가하기 위해 알루미나기판상에서 시편을 용융시켜서 그 접촉각을 측정한 것이다. 측정방법은 합금 인고트를 250mesh로 분쇄하고 유압잭으로 Φ5×2t의 형상으로 성형한 후, Ar 분위기의 연속로에서 가열하였다. 표-2에서 알 수 있는 바와같이, Cu-Ti-Al계인 실시예 CD-7, CD-8, CD-9는 접촉각이 5°이하로서 비교예에 비해 젖음성이 매우 우수하고, Cu-Ti-Mn계인 실시예 AB-9, AB-11도 20°이하로서 비교예에 비해 접촉각이 작아서 젖음성이 우수한 것으로 나타났다. 다만, 실시예 AB-6은 접촉각이 60°로서 다른 것에 비해 접촉각이 다소 높지만 70。이하로서 다른 대체로 양호한 범위에 들고, 필렛형상이 양호하여, 용가재의 공급방법의 개선을 통해 세라믹접합용 용가재로 충분히 사용될 수 있다.Table 2 below is to measure the contact angle by melting the specimen on the alumina substrate in order to evaluate the wettability of the alumina substrate of the embodiment according to the present invention. In the measuring method, the alloy ingot was pulverized to 250 mesh, molded into a shape of Φ 5 × 2 t with a hydraulic jack, and then heated in an Ar atmosphere. As can be seen from Table-2, Examples CD-7, CD-8, and CD-9, which are Cu-Ti-Al-based, have an excellent wettability as compared with the comparative example with a contact angle of 5 ° or less, and Cu-Ti-. Examples AB-9 and AB-11, which are Mn-based, were also 20 ° or less, and the contact angle was smaller than that of the comparative example, indicating excellent wettability. However, in Example AB-6, the contact angle is 60 ° and the contact angle is slightly higher than the others, but the contact angle is 70 ° or less, which is generally in a good range, and the fillet shape is good, and the filler material for ceramic bonding is improved by improving the supply method of filler metal. It can be used sufficiently.
아래의 표-3은 내경ψ12 외경ψ16 의 알루미나관체를 본 발명에 따른 용가재를 사용하여 접합한 경우의 인장강도를 측정하여 비교예의 용가재와 비교한 것이다. 본 발명에 따른 용가재의 인장강도는 대략 9 내지 30MPa를 나타내어 비교예의 10 내지 15MPa와 동등하거나 훨씬 우수한 인장강도를 나타냈으며, 특히, Cu-Ti-Mn계의 시편은 파단이 대부분 계면이 아닌 모재에서 발생하여 접합강도가 모재의 인장강도와 동등하여 매우 우수한 것으로 나타났다.Table 3 below compares the tensile strength of the alumina tube body having the inner diameter ψ 12 outer diameter ψ 16 with the filler material according to the present invention and compared it with the filler material of the comparative example. Tensile strength of the filler metal according to the present invention was approximately 9 to 30 MPa, showing a tensile strength equivalent to or better than 10 to 15 MPa of the comparative example, in particular, Cu-Ti-Mn-based specimens are mostly broken in the base material not the interface The bond strength was found to be very good, equivalent to the tensile strength of the base metal.
첨부된 도표 제2도는 알루미나관체와 구리관체, 알루미나관체간, 및 구리관체간에 본 발명의 용가재를 사용하여 접합한 경우의 접합강도를 비교예와 비교하는 것이다. 여기서 알루미나는 92.5% 이상의 AlO를 사용하고, 구리로서는 탈산동과 무산소동을 사용하였다. 도표에서 알 수 있는 바와같이, 본 발명의 용가재를 알루미나관체와 구리관체에 사용한 경우, 비교예와 마찬가지로 모두 20MPa 이상의 인장강도를 나타내고 파단면은 모재인 알루미나관체에서 발생하여 높은 접합강도를 발휘하고 있다.The attached diagram 2 is to compare the bonding strength of the alumina tube body, the copper tube body, the alumina tube body, and the copper tube body in the case of using the filler material of the present invention in comparison with the comparative example. As the alumina, 92.5% or more of AlO was used, and deoxidized copper and anoxic copper were used as copper. As can be seen from the diagram, when the filler metal of the present invention was used in an alumina tube and a copper tube, both of them showed tensile strength of 20 MPa or more as in the comparative example, and the fracture surface occurred in the alumina tube, which is the base material, and exhibited high bonding strength. .
한편, 구리관체간의 접합의 경우에는 모두 100MPa 이상의 인장강도를 나타내어 비교예보다 높거나 비슷한 접합강도를 나타내었다.On the other hand, in the case of the joint between the copper tube, all showed a tensile strength of 100MPa or more, showing a higher or similar joint strength than the comparative example.
이상에서 설명한 바와같이, 본 발명에 따른 용가재에 의하면, 종래의 세라믹접합용 용가재에 비해 융점이나, 젖음성, 연성, 접합강도등의 면에서 동등하거나 우수한 물성을 나타내면서도, Cu를 베이스로 사용함으로써 염가로 제조할 수 있다는 장점을 지니고 있다.As described above, according to the filler metal according to the present invention, it is inexpensive to use Cu as a base while exhibiting equivalent or superior physical properties in terms of melting point, wettability, ductility, and bonding strength, compared to conventional filler materials for ceramic bonding. It has the advantage of being manufactured with.
특히, 본 발명에 따른 조성비를 갖는 용가재 합금은 젖음성이 우수하기 때문에, 일정량의 용가재를 벌크상태로 직접 세라믹기판 위에서 가열용융하여 균일하게 메탈라이징할 수 있으므로 용가재의 양을 일정하게 공급할 수 있으며, 접합면의 형상에 관계없이 정밀한 접합이 가능하게 된다. 이것은 종래의 용가재 공급방법중 분말상태로 공급하는 경우의 공급량을 적정량으로 제어하기가 곤란했던 문제점이나, 얇은 판재로 공급하는 경우의 접합면의 형상에 따라 판재를 절단가공하는 번거로움을 해결할 수 있어서 공정의 단축과 접합의 정밀성향상을 기대할 수 있다.In particular, since the filler metal alloy having a composition ratio according to the present invention has excellent wettability, a certain amount of filler metal can be directly melted and heated on a ceramic substrate in a bulk state to uniformly metallize, thereby providing a constant amount of filler metal, and bonding. Precise bonding is possible regardless of the shape of the surface. This can solve the problem that it is difficult to control the supply amount in the form of powder in the conventional filler metal supply method in an appropriate amount, and the trouble of cutting the plate according to the shape of the joining surface in the case of supplying the thin plate. Shortening the process and improving the precision of the joining can be expected.
또한, 기존의 세라믹과 금속을 접합하기 위한 메탈라이즈 브레이징법에 의하면, 제3도에 도시된 바와같이, 알루미나기판(1)상에 Mo-Mn페이스트(2)를 도포하고, 약 1500℃에서 일차로 소결한 후, 그 위에 Ni도금(3)하고 다시 950℃에서 2차로 소결한 후에 용가재(4)를 개재시켜서 알루미나 기판(1)과 금속판(5)을 브레이징접합하는 공정을 거쳐서 접합체를 완성하였다. 그러나 본 발명의 용가재에 의하면, 탁월한 젖음성을 가지므로, 제4도에 도시된 바와같이 Mo-Mn층이나 Ni층을 소결, 형성하는 중간공정을 생략하고 직접 알루미나기판과 금속 사이에 본 발명의 용가재를 배치하여 소정의 온도로 가열용융 시킴으로써, 알루미나기판을 메탈라이즈시킴과 동시에 금속모재와의 접합을 달성할 수 있다. 즉, 본 발명의 용가재를 사용하므로써,종래의 메탈라이즈 브래이징법이 지닌 공정의 과다로 인한 설비비 및 원가의 상승이라는 문제점을 극복할 수 있게 된다.In addition, according to the metallization brazing method for joining a conventional ceramic and a metal, as shown in FIG. 3, Mo-Mn paste 2 is applied on the alumina substrate 1, and the primary at about 1500 ° C. After sintering with, Ni plating (3) thereon and second sintering at 950 ° C., followed by brazing of the alumina substrate (1) and the metal plate (5) via the filler metal (4) to complete the joined body. . However, according to the filler metal of the present invention, since it has excellent wettability, the filler metal of the present invention is directly deposited between the alumina substrate and the metal by omitting the intermediate step of sintering and forming the Mo-Mn layer or the Ni layer as shown in FIG. By arranging and heat-melting at a predetermined temperature, the alumina substrate can be metallized and the bonding with the metal base material can be achieved. That is, by using the filler metal of the present invention, it is possible to overcome the problem of the increase in equipment cost and cost due to the excessive process of the conventional metallization brazing method.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019940025779A KR0120956B1 (en) | 1994-10-08 | 1994-10-08 | Filler composition for ceramic joining |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019940025779A KR0120956B1 (en) | 1994-10-08 | 1994-10-08 | Filler composition for ceramic joining |
Publications (2)
Publication Number | Publication Date |
---|---|
KR960013553A KR960013553A (en) | 1996-05-22 |
KR0120956B1 true KR0120956B1 (en) | 1997-10-22 |
Family
ID=19394703
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019940025779A KR0120956B1 (en) | 1994-10-08 | 1994-10-08 | Filler composition for ceramic joining |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR0120956B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013129891A1 (en) * | 2012-02-29 | 2013-09-06 | 한국생산기술연구원 | Heterojunction structure and method for manufacturing same |
-
1994
- 1994-10-08 KR KR1019940025779A patent/KR0120956B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR960013553A (en) | 1996-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6742700B2 (en) | Adhesive composition for bonding different kinds of members | |
JPS61158876A (en) | Direct liquid phase bonding for ceramic to metal | |
US3795041A (en) | Process for the production of metal-ceramic bond | |
JPH0367985B2 (en) | ||
JPH0247428B2 (en) | ||
EP0110418A2 (en) | Ductile brazing alloys containing reactive metals | |
EP0301492B1 (en) | Method for bonding cubic boron nitride sintered compact | |
US3793705A (en) | Process for brazing a magnetic ceramic member to a metal member | |
JP3095490B2 (en) | Ceramic-metal joint | |
US4606981A (en) | Ductile brazing alloys containing reactive metals | |
KR0120956B1 (en) | Filler composition for ceramic joining | |
JPS62289396A (en) | Joining method for ceramics | |
JPH0220688A (en) | Fe-cr-ni-b-sic solder foil | |
JPH075408B2 (en) | Ceramic metallization composition, metallization method and metallized product | |
JPS63169348A (en) | Amorphous alloy foil for jointing ceramics | |
US5301861A (en) | Gold-nickel-vanadium brazing materials | |
JPS62227596A (en) | Ceramics-metal joining member | |
JP2001048670A (en) | Ceramics-metal joined body | |
JPH04300259A (en) | Joining member and joining | |
JP2650460B2 (en) | Joining method of alumina ceramic and metal | |
JPS6228067A (en) | Joining method for ceramics | |
JPH07187839A (en) | Nitride ceramics-metal joined body and its production | |
JPS59223280A (en) | Method of bonding ceramic and metal | |
JPH05286777A (en) | Bonding method of ceramics with ti or ti alloy | |
JPS6111912B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 19941008 |
|
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 19941008 Comment text: Request for Examination of Application |
|
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 19970526 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 19970721 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 19970823 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 19970823 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20000821 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20010730 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20020719 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20030610 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20040723 Start annual number: 8 End annual number: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20050824 Start annual number: 9 End annual number: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20060714 Start annual number: 10 End annual number: 10 |
|
FPAY | Annual fee payment |
Payment date: 20070607 Year of fee payment: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20070607 Start annual number: 11 End annual number: 11 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20090710 |