[go: up one dir, main page]

JPWO2018159733A1 - Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display device - Google Patents

Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display device Download PDF

Info

Publication number
JPWO2018159733A1
JPWO2018159733A1 JP2019503096A JP2019503096A JPWO2018159733A1 JP WO2018159733 A1 JPWO2018159733 A1 JP WO2018159733A1 JP 2019503096 A JP2019503096 A JP 2019503096A JP 2019503096 A JP2019503096 A JP 2019503096A JP WO2018159733 A1 JPWO2018159733 A1 JP WO2018159733A1
Authority
JP
Japan
Prior art keywords
liquid crystal
group
ppm
carbon atoms
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019503096A
Other languages
Japanese (ja)
Other versions
JP7096534B2 (en
Inventor
司 藤枝
司 藤枝
一平 福田
一平 福田
美希 豊田
美希 豊田
雄介 山本
雄介 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Publication of JPWO2018159733A1 publication Critical patent/JPWO2018159733A1/en
Priority to JP2022090434A priority Critical patent/JP7409431B2/en
Application granted granted Critical
Publication of JP7096534B2 publication Critical patent/JP7096534B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/76Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings and etherified hydroxy groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/78Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C217/80Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings
    • C07C217/82Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring
    • C07C217/90Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring the oxygen atom of at least one of the etherified hydroxy groups being further bound to a carbon atom of a six-membered aromatic ring, e.g. amino-diphenylethers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C219/00Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C219/32Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings and esterified hydroxy groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/52Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C229/54Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton with amino and carboxyl groups bound to carbon atoms of the same non-condensed six-membered aromatic ring
    • C07C229/62Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton with amino and carboxyl groups bound to carbon atoms of the same non-condensed six-membered aromatic ring with amino groups and at least two carboxyl groups bound to carbon atoms of the same six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/28Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton
    • C07C237/40Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton having the nitrogen atom of the carboxamide group bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J41/00Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring
    • C07J41/0033Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring not covered by C07J41/0005
    • C07J41/0088Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring not covered by C07J41/0005 containing unsubstituted amino radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Liquid Crystal (AREA)

Abstract

本発明は、過度の加熱にさらされた場合であっても、液晶を垂直に配向させる能力が低下しない液晶配向膜を得られる液晶配向剤を提供し、且つ膜に何らかの異物が接触し、傷ついた際も、液晶を垂直に配向させる能力が低下しない液晶配向膜を得られる液晶配向剤を提供する。本発明は、式[1]で表されるジアミン(式[1]中、Xは単結合又は−O−などの二価の基を表し、Yは式[1−1]で表される基を表す。Y1〜Y6は、明細書記載の特定の基を表す)を含有するジアミン成分と、テトラカルボン酸成分との反応物であるポリイミド前駆体及びそのイミド化物であるポリイミドから選ばれる少なくとも1種の重合体を含有する液晶配向剤を提供する。【化1】【選択図】なしThe present invention provides a liquid crystal aligning agent capable of obtaining a liquid crystal aligning film that does not decrease in its ability to vertically align liquid crystals even when exposed to excessive heating, and that the film may be damaged by contact with any foreign matter. The present invention also provides a liquid crystal aligning agent capable of obtaining a liquid crystal alignment film in which the ability to vertically align liquid crystals does not decrease. The present invention relates to a diamine represented by the formula [1] (in the formula [1], X represents a single bond or a divalent group such as -O-, and Y represents a group represented by the formula [1-1]. Y1 to Y6 each represent a specific group described in the specification) and at least one selected from a polyimide precursor which is a reaction product of a tetracarboxylic acid component and a polyimide which is an imidated product thereof. A liquid crystal aligning agent containing a kind of polymer is provided. [Chemical 1] [Selection diagram] None

Description

本発明は、液晶を垂直に配向させる能力に優れる液晶配向剤、液晶配向膜、及び液晶表示素子に関する。   TECHNICAL FIELD The present invention relates to a liquid crystal alignment agent, a liquid crystal alignment film, and a liquid crystal display device having excellent ability to vertically align liquid crystals.

基板に対して垂直に配向している液晶分子を電界によって応答させる方式(垂直配向(VA)方式ともいう)の液晶表示素子には、その製造過程において液晶分子に電圧を印加しながら紫外線を照射する工程を含むものがある。   A liquid crystal display element of a type in which liquid crystal molecules vertically aligned with respect to a substrate responds by an electric field (also referred to as a vertical alignment (VA) type) is irradiated with ultraviolet rays while applying a voltage to the liquid crystal molecules in a manufacturing process. Some steps include the step of performing

このような垂直配向方式の液晶表示素子では、予め液晶組成物中に光重合性化合物を添加し、かつポリイミド系などの垂直配向膜を用い、液晶セルに電圧を印加しながら紫外線を照射することで、液晶の応答速度を速くする技術(PSA(Polymer Sustained Alignment)方式素子、例えば、特許文献1及び非特許文献1参照。)が知られている。   In such a vertical alignment type liquid crystal display device, a photopolymerizable compound is added to a liquid crystal composition in advance, and ultraviolet rays are applied while applying a voltage to the liquid crystal cell using a vertical alignment film such as a polyimide. Thus, a technique for increasing the response speed of a liquid crystal (PSA (Polymer Sustained Alignment) type element, for example, see Patent Document 1 and Non-Patent Document 1) is known.

かかるPSA方式素子に用いられる液晶配向剤として、特定の環構造を有する側鎖を用いた液晶配向剤が提案されている(特許文献2参照)。この特定の環構造は、液晶を垂直に配向させる能力が高く、この液晶配向剤が用いられた垂直配向方式の液晶表示素子は、表示特性が良好であった。   As a liquid crystal aligning agent used in such a PSA type device, a liquid crystal aligning agent using a side chain having a specific ring structure has been proposed (see Patent Document 2). This specific ring structure has a high ability to vertically align liquid crystals, and a liquid crystal display device of a vertical alignment system using this liquid crystal aligning agent had good display characteristics.

特開2003−307720号公報JP 2003-307720 A WO2006/070819号公報WO2006 / 070819

K.Hanaoka,SID 04 DIGEST、P.1200-1202K.Hanaoka, SID 04 DIGEST, P.1200-1202

しかし、近年の垂直配向方式の液晶表示素子では、用いられる基板の薄型化、大型化の影響で、焼成時に、同じ基板内の異なる部分間で温度差が生じ、過度に加熱された部分の液晶配向膜は、液晶を垂直に配向させる能力が低下し、その結果、得られる液晶表示素子が部分的に表示不良を来す問題が生じる。
また、液晶パネル製造工程において、液晶配向膜とカラムスペーサーが接触し、液晶配向膜に傷がついてしまうことで、その部分に配向欠陥(輝点)が生じることも問題である。
However, in recent vertical alignment type liquid crystal display devices, due to the effect of thinning and increasing the size of the substrate used, a temperature difference is generated between different portions of the same substrate during firing, and the liquid crystal in an excessively heated portion is generated. The alignment film has a reduced ability to vertically align the liquid crystal, and as a result, there is a problem that the resulting liquid crystal display element partially causes display failure.
Another problem is that in the liquid crystal panel manufacturing process, the liquid crystal alignment film and the column spacer come into contact with each other and the liquid crystal alignment film is damaged, thereby causing an alignment defect (bright spot) at that portion.

本発明は、過度の加熱にさらされた場合であっても、液晶を垂直に配向させる能力が低下しない液晶配向膜を得られる液晶配向剤を提供することにある。
また、膜に何らかの異物が接触し、傷ついた際も、液晶を垂直に配向させる能力が低下しない液晶配向膜を得られる液晶配向剤を提供することにある。
It is an object of the present invention to provide a liquid crystal aligning agent capable of obtaining a liquid crystal aligning film which does not decrease in ability to vertically align liquid crystals even when subjected to excessive heating.
Another object of the present invention is to provide a liquid crystal aligning agent capable of obtaining a liquid crystal alignment film in which the ability to vertically align liquid crystals does not decrease even when some foreign matter comes into contact with the film and is damaged.

発明者らは、下記構成の液晶配向剤により目的を達成できることを見出し、本発明を完成させた。
即ち、本発明の構成は以下の通りである。
1.下記式[1]で表されるジアミンを含有するジアミン成分と、テトラカルボン酸成分との反応物であるポリイミド前駆体及びそのイミド化物であるポリイミドから選ばれる少なくとも1種の重合体を含有する液晶配向剤。
The inventors have found that the object can be achieved by the liquid crystal aligning agent having the following constitution, and have completed the present invention.
That is, the configuration of the present invention is as follows.
1. Liquid crystal containing at least one polymer selected from a polyimide precursor which is a reaction product of a diamine component containing a diamine represented by the following formula [1] and a tetracarboxylic acid component, and a polyimide which is an imidized product thereof. Alignment agent.

Figure 2018159733
Figure 2018159733

式[1]中、Xは、単結合、−O−、−C(CH−、−NH−、−CO−、−NHCO−、−COO−、−(CH−、−SO−、及びそれらの任意の組み合わせからなる2価の有機基を表し、mは1〜8の整数を表す。
Yはそれぞれ独立して下記式[1−1]の構造を表す。
Wherein [1], X is a single bond, -O -, - C (CH 3) 2 -, - NH -, - CO -, - NHCO -, - COO -, - (CH 2) m -, - Represents a divalent organic group composed of SO 2 — and an arbitrary combination thereof, and m represents an integer of 1 to 8.
Y each independently represents a structure of the following formula [1-1].

式[1−1]中、Y及びYはそれぞれ独立して、単結合、−(CH−(aは1〜15の整数である)、−O−、−CHO−、−CONH−、−NHCO−、−COO−及び−OCO−からなる群から選ばれる少なくとも1種を示す。
は単結合又は−(CH−(bは1〜15の整数である)を示す(ただし、Y又はYが単結合、−(CH−である場合、Yは単結合であり、Yが−O−、−CHO−、−CONH−、−NHCO−、−COO−及び−OCO−からなる群から選ばれる少なくとも1種であるか、及び/又はYが−O−、−CHO−、−CONH−、−NHCO−、−COO−及び−OCO−からなる群から選ばれる少なくとも1種である場合、Yは単結合又は−(CH−である(ただし、Yが−CONH−である場合、Y及びY単結合である))。
はベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の2価の環状基、又はステロイド骨格およびトコフェノール骨格を有する炭素数17〜51の2価の有機基を示し、前記環状基上の任意の水素原子は、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシ基、炭素数1〜3のフッ素含有アルキル基、炭素数1〜3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。
はベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の環状基を示し、これらの環状基上の任意の水素原子は、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシ基、炭素数1〜3のフッ素含有アルキル基、炭素数1〜3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。
は、水素原子、炭素数1〜18のアルキル基、炭素数2〜18のアルケニル基、炭素数1〜18のフッ素含有アルキル基、炭素数1〜18のアルコキシ基及び炭素数1〜18のフッ素含有アルコキシ基からなる群から選ばれる少なくとも1種を示す。nは0〜4の整数を示す。
In the formula [1-1], Y 1 and Y 3 are each independently a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O— , -CONH-, -NHCO-, -COO- and -OCO-.
Y 2 represents a single bond or — (CH 2 ) b — (b is an integer of 1 to 15) (provided that when Y 1 or Y 3 is a single bond or — (CH 2 ) a —, 2 is a single bond, and Y 1 is at least one selected from the group consisting of —O—, —CH 2 O—, —CONH—, —NHCO—, —COO—, and —OCO—, and / or Or when Y 3 is at least one selected from the group consisting of —O—, —CH 2 O—, —CONH—, —NHCO—, —COO—, and —OCO—, Y 2 is a single bond or — ( CH 2 ) b — (however, when Y 1 is —CONH—, it is a single bond of Y 2 and Y 3 )).
Y 4 represents a benzene ring, at least one divalent cyclic group selected from the group consisting of a cyclohexane ring and a heterocyclic ring, or a divalent organic group having 17 to 51 carbon atoms having a steroid skeleton and a tocophenol skeleton; An arbitrary hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, and a fluorine-containing alkoxy group having 1 to 3 carbon atoms. Or it may be substituted by a fluorine atom.
Y 5 represents at least one cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring, and a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, To 3 alkoxy groups, a C 1-3 fluorine-containing alkyl group, a C 1-3 fluorine-containing alkoxy group or a fluorine atom.
Y 6 is a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, and an alkoxy group having 1 to 18 carbon atoms. At least one selected from the group consisting of fluorine-containing alkoxy groups. n shows the integer of 0-4.

本発明により、過度の加熱にさらされた場合であっても、液晶を垂直に配向させる能力が低下しない液晶配向膜を得られる液晶配向剤を提供することができる。
また、本発明により、上記効果に加えて、又は上記効果以外に、膜に何らかの異物が接触し、傷ついた際も、液晶を垂直に配向させる能力が低下しない液晶配向膜を得られる液晶配向剤を提供することができる。
さらに、本発明により、上記液晶配向剤から得られる液晶配向膜、上記液晶配向剤を用いて液晶配向膜を得る方法を提供することができる。
According to the present invention, it is possible to provide a liquid crystal aligning agent capable of obtaining a liquid crystal alignment film in which the ability to vertically align liquid crystals does not decrease even when exposed to excessive heating.
Further, according to the present invention, in addition to or in addition to the above-mentioned effects, a liquid crystal alignment agent capable of obtaining a liquid crystal alignment film in which the ability to vertically align liquid crystals does not decrease even when some foreign matter contacts the film and is damaged. Can be provided.
Further, according to the present invention, it is possible to provide a liquid crystal alignment film obtained from the liquid crystal alignment agent and a method for obtaining a liquid crystal alignment film using the liquid crystal alignment agent.

本発明の液晶配向剤は、上記式[1]で表されるジアミン(以下、「上記式[1]で表されるジアミン」を「特定ジアミン」と略記する場合がある)を含有するジアミン成分と、テトラカルボン酸成分との反応物であるポリイミド前駆体及びそのイミド化物であるポリイミドから選ばれる少なくとも1種の重合体(以下、「特定重合体」と略記する場合がある)を含有する。   The liquid crystal aligning agent of the present invention includes a diamine component containing a diamine represented by the above formula [1] (hereinafter, the “diamine represented by the above formula [1]” may be abbreviated as “specific diamine”). And at least one polymer selected from a polyimide precursor that is a reaction product with a tetracarboxylic acid component and a polyimide that is an imidized product thereof (hereinafter, may be abbreviated as “specific polymer”).

特定重合体は、特定ジアミンを含有するが、特定ジアミン以外のジアミンを有してもよい。
特定ジアミンとそれ以外のジアミンとの量は、特定重合体中、特定ジアミンが5mol%〜70mol%、好ましくは10mol%〜50mol%、より好ましくは10mol%〜40mol%となる量で特定ジアミンを有するのがよい。
また、本発明の液晶配向剤は、特定重合体以外の「ポリイミド前駆体及び/又はそのイミド化物であるポリイミド」を含有してもよい。
以下、「特定ジアミン」について述べ、次いで「特定ジアミン」以外のジアミンについて述べる。
The specific polymer contains a specific diamine, but may have a diamine other than the specific diamine.
The amount of the specific diamine and the other diamine in the specific polymer has the specific diamine in an amount of 5 mol% to 70 mol%, preferably 10 mol% to 50 mol%, more preferably 10 mol% to 40 mol%. Is good.
Further, the liquid crystal aligning agent of the present invention may contain "polyimide which is a polyimide precursor and / or an imidized product thereof" other than the specific polymer.
Hereinafter, the “specific diamine” will be described, and then diamines other than the “specific diamine” will be described.

<特定ジアミン>
本発明の液晶配向剤に用いられる特定ジアミンは、下記式[1]で表される。
<Specific diamine>
The specific diamine used in the liquid crystal alignment agent of the present invention is represented by the following formula [1].

Figure 2018159733
Figure 2018159733

式[1]中、Xは、単結合、−O−、−C(CH−、−NH−、−CO−、−NHCO−、−COO−、−(CH−、−SO−、及びそれらの任意の組み合わせからなる2価の有機基を表し、mは1〜8の整数を表す。
「それらの任意の組み合わせ」として、−O−(CH−O−、−O−C(CH−、−CO−(CH−、−NH−(CH−、−SO−(CH−、−CONH−(CH−、−CONH−(CH−NHCO−、−COO−(CH−OCO−などを挙げることができるがこれらに限定されない。
Xは、好ましくは、単結合、−O−、−NH−、−O−(CH−O−であるのがよい。
Wherein [1], X is a single bond, -O -, - C (CH 3) 2 -, - NH -, - CO -, - NHCO -, - COO -, - (CH 2) m -, - Represents a divalent organic group composed of SO 2 — and an arbitrary combination thereof, and m represents an integer of 1 to 8.
As "any combination thereof", -O- (CH 2) m -O -, - O-C (CH 3) 2 -, - CO- (CH 2) m -, - NH- (CH 2) m -, - SO 2 - (CH 2) m -, - CONH- (CH 2) m -, - CONH- (CH 2) m -NHCO -, - COO- (CH 2) m -OCO- , and the like However, the present invention is not limited to these.
X is preferably a single bond, -O -, - NH -, - O- (CH 2) is good is an m -O-.

式[1]中、Yは、Xの位置からメタ位であってもオルト位であってもよいが、好ましくはオルト位であるのがよい。即ち、式[1]は、以下の式[1’]であるのが好ましい。   In the formula [1], Y may be a meta position or an ortho position from the position of X, but is preferably an ortho position. That is, the formula [1] is preferably the following formula [1 '].

Figure 2018159733
Figure 2018159733

上記式[1]における「−NH」の位置は、式[1]に示すとおり、いずれの位置であってもよいが、好ましくは下記式[1]−a1、[1]−a2、[1]−a3で表される位置であるのがよく、より好ましくは[1]−a1であるのがよい。The position of “—NH 2 ” in the above formula [1] may be any position as shown in the formula [1], but preferably the following formulas [1] -a1, [1] -a2, [1] The position is preferably represented by [1] -a3, more preferably [1] -a1.

Figure 2018159733
Figure 2018159733

上記式[1]−a1〜式[1]−a3及び上記式[1’]から、上記式[1]は、下記式から選ばれるいずれかの構造であるのがよく、好ましくは式[1]−a1−1で表される構造であるのがよい。   From the formulas [1] -a1 to [1] -a3 and the formula [1 ′], the formula [1] may be any structure selected from the following formulas, and preferably the formula [1] ] -A1-1.

Figure 2018159733
Figure 2018159733

Yはそれぞれ独立して下記式[1−1]の構造を表す。   Y each independently represents a structure of the following formula [1-1].

Figure 2018159733
Figure 2018159733

式[1−1]中、Y及びYはそれぞれ独立して、単結合、−(CH−(aは1〜15の整数である)、−O−、−CHO−、−CONH−、−NHCO−、−COO−及び−OCO−からなる群から選ばれる少なくとも1種を示す。
は単結合又は−(CH−(bは1〜15の整数である)を示す(ただし、Y又はYが単結合、−(CH−である場合、Yは単結合であり、Yが−O−、−CHO−、−CONH−、−NHCO−、−COO−及び−OCO−からなる群から選ばれる少なくとも1種であるか、及び/又はYが−O−、−CHO−、−CONH−、−NHCO−、−COO−及び−OCO−からなる群から選ばれる少なくとも1種である場合、Yは単結合又は−(CH−である(ただし、Yが−CONH−である場合、Y及びY単結合である))。
はベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の2価の環状基、又はステロイド骨格およびトコフェノール骨格を有する炭素数17〜51の2価の有機基を示し、前記環状基上の任意の水素原子は、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシ基、炭素数1〜3のフッ素含有アルキル基、炭素数1〜3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。
はベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の環状基を示し、これらの環状基上の任意の水素原子は、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシ基、炭素数1〜3のフッ素含有アルキル基、炭素数1〜3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。
は、水素原子、炭素数1〜18のアルキル基、炭素数2〜18のアルケニル基、炭素数1〜18のフッ素含有アルキル基、炭素数1〜18のアルコキシ基及び炭素数1〜18のフッ素含有アルコキシ基からなる群から選ばれる少なくとも1種を示す。nは0〜4の整数を示す。
In the formula [1-1], Y 1 and Y 3 are each independently a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O— , -CONH-, -NHCO-, -COO- and -OCO-.
Y 2 represents a single bond or — (CH 2 ) b — (b is an integer of 1 to 15) (provided that when Y 1 or Y 3 is a single bond or — (CH 2 ) a —, 2 is a single bond, and Y 1 is at least one selected from the group consisting of —O—, —CH 2 O—, —CONH—, —NHCO—, —COO—, and —OCO—, and / or Or when Y 3 is at least one selected from the group consisting of —O—, —CH 2 O—, —CONH—, —NHCO—, —COO—, and —OCO—, Y 2 is a single bond or — ( CH 2 ) b — (however, when Y 1 is —CONH—, it is a single bond of Y 2 and Y 3 )).
Y 4 represents a benzene ring, at least one divalent cyclic group selected from the group consisting of a cyclohexane ring and a heterocyclic ring, or a divalent organic group having 17 to 51 carbon atoms having a steroid skeleton and a tocophenol skeleton; An arbitrary hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, and a fluorine-containing alkoxy group having 1 to 3 carbon atoms. Or it may be substituted by a fluorine atom.
Y 5 represents at least one cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring, and a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, To 3 alkoxy groups, a C 1-3 fluorine-containing alkyl group, a C 1-3 fluorine-containing alkoxy group or a fluorine atom.
Y 6 is a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, and an alkoxy group having 1 to 18 carbon atoms. At least one selected from the group consisting of fluorine-containing alkoxy groups. n shows the integer of 0-4.

上記式[1−1]で表される基として、以下の基[1−1]−1〜[1−1]−22を挙げることができるがこれらに限定されない。これらのうち、[1−1]−1〜[1−1]−4、[1−1]−8、[1−1]−10であるのが好ましい。なお、*は、上記式[1]、上記式[1’]、上記式[1]−a1〜上記式[1]−a3におけるフェニル基との結合している位置を示す。mは1〜15の整数を示し、nは0〜18の整数を示す。   Examples of the group represented by the formula [1-1] include the following groups [1-1] -1 to [1-1] -22, but are not limited thereto. Among these, [1-1] -1 to [1-1] -4, [1-1] -8, and [1-1] -10 are preferable. In addition, * shows the position couple | bonded with the phenyl group in said Formula [1], said Formula [1 '], said Formula [1] -a1-said Formula [1] -a3. m represents an integer of 1 to 15, and n represents an integer of 0 to 18.

Figure 2018159733
Figure 2018159733

<光反応性の側鎖>
本発明の液晶配向剤に含有される重合体は、光反応性の側鎖を有していてもよい。
該光反応性の側鎖は、「特定重合体」が有していても、「特定重合体」以外の重合体である「ポリイミド前駆体及び/又はそのイミド化物であるポリイミド」が有していてもよい。
<光反応性側鎖を含有するジアミン>
光反応性を有する側鎖を「特定重合体」及び/又は「特定重合体」以外の重合体に導入するには、光反応性の側鎖を有するジアミンをジアミン成分の一部に用いるのがよい。光反応性の側鎖を有するジアミンとしては、式[VIII]、又は式[IX]で表される側鎖を有するジアミンを挙げることができるがこれらに限定されない。
<Photoreactive side chain>
The polymer contained in the liquid crystal alignment agent of the present invention may have a photoreactive side chain.
Even if the photoreactive side chain is contained in the “specific polymer”, it is contained in the “polyimide precursor and / or imidized polyimide” which is a polymer other than the “specific polymer”. May be.
<Diamine containing photoreactive side chain>
In order to introduce a photoreactive side chain into a “specific polymer” and / or a polymer other than the “specific polymer”, it is necessary to use a diamine having a photoreactive side chain as a part of the diamine component. Good. Examples of the diamine having a photoreactive side chain include, but are not limited to, a diamine having a side chain represented by the formula [VIII] or [IX].

Figure 2018159733
Figure 2018159733

式[VIII]、式[IX]における二つのアミノ基(−NH)の結合位置は限定されない。具体的には、側鎖の結合基に対して、ベンゼン環上の2,3の位置、2,4の位置、2,5の位置、2,6の位置、3,4の位置、3,5の位置が挙げられる。なかでも、ポリアミック酸を合成する際の反応性の観点から、2,4の位置、2,5の位置、又は3,5の位置が好ましい。ジアミンを合成する際の容易性も加味すると、2,4の位置、又は3,5の位置がより好ましい。The bonding positions of the two amino groups (—NH 2 ) in the formulas [VIII] and [IX] are not limited. Specifically, with respect to the bonding group in the side chain, the positions of 2, 3 on the benzene ring, the positions of 2, 4, the positions of 2, 5, the positions of 2, 6, the positions of 3, 4, and 3, 5 positions. Among them, the 2,4 position, the 2,5 position, or the 3,5 position is preferred from the viewpoint of reactivity when synthesizing the polyamic acid. Taking into account the ease of synthesizing the diamine, the positions of 2, 4 or 3, 5 are more preferable.

式[VIII]中のR、R及びR10の定義は、次のとおりである。
即ち、Rは、単結合、−CH−、−O−、−COO−、−OCO−、−NHCO−、−CONH−、−NH−、−CHO−、−N(CH)−、−CON(CH)−、又は−N(CH)CO−を表す。特に、Rは、単結合、−O−、−COO−、−NHCO−、又は−CONH−であるのが好ましい。
は、単結合、フッ素原子で置換されていてもよい炭素数1〜20のアルキレン基を表し、アルキレン基の−CH−は−CF−又は−CH=CH−で任意に置換されていてもよく、次のいずれかの基が互いに隣り合わない場合、これらの基に置換されていてもよい;−O−、−COO−、−OCO−、−NHCO−、−CONH−、−NH−、二価の炭素環若しくは複素環。
なお、上記二価の炭素環若しくは複素環は、具体的には以下のものを例示することができるが、これらに限定されない。
The definitions of R 8 , R 9 and R 10 in the formula [VIII] are as follows.
That, R 8 represents a single bond, -CH 2 -, - O - , - COO -, - OCO -, - NHCO -, - CONH -, - NH -, - CH 2 O -, - N (CH 3) -, - CON (CH 3) -, or an -N (CH 3) CO-. In particular, R 8 is preferably a single bond, —O—, —COO—, —NHCO—, or —CONH—.
R 9 represents a single bond or an alkylene group having 1 to 20 carbon atoms which may be substituted with a fluorine atom, wherein -CH 2-in the alkylene group is optionally substituted with -CF 2 -or -CH = CH-. And when any of the following groups are not adjacent to each other, they may be substituted with these groups; -O-, -COO-, -OCO-, -NHCO-, -CONH-,- NH-, a divalent carbocyclic or heterocyclic ring.
Specific examples of the divalent carbon ring or heterocyclic ring include the following, but are not limited thereto.

Figure 2018159733
Figure 2018159733

は、通常の有機合成的手法で形成させることができるが、合成の容易性の観点から、単結合又は炭素数1〜12のアルキレン基が好ましい。
10は、下記式から選択される光反応性基を表す。
R 9 can be formed by a usual organic synthetic technique, but is preferably a single bond or an alkylene group having 1 to 12 carbon atoms from the viewpoint of ease of synthesis.
R 10 represents a photoreactive group selected from the following formula.

Figure 2018159733
Figure 2018159733

10は、光反応性の点から、メタクリル基、アクリル基又はビニル基であることが好ましい。R 10 is preferably a methacryl group, an acryl group or a vinyl group from the viewpoint of photoreactivity.

また、式[IX]中のY1、Y、Y、Y、Y、及びYの定義は、次のとおりである。
即ち、Yは−CH−、−O−、−CONH−、−NHCO−、−COO−、−OCO−、−NH−、又は−CO−を表す。
は、炭素数1〜30のアルキレン基、二価の炭素環若しくは複素環であり、このアルキレン基、二価の炭素環若しくは複素環の1つ又は複数の水素原子は、フッ素原子若しくは有機基で置換されていてもよい。Yは、次の基が互いに隣り合わない場合、−CH−がこれらの基に置換されていてもよい;−O−、−NHCO−、−CONH−、−COO−、−OCO−、−NH−、−NHCONH−、−CO−。
は、−CH−、−O−、−CONH−、−NHCO−、−COO−、−OCO−、−NH−、−CO−、又は単結合を表す。
はシンナモイル基を表す。 Yは単結合、炭素数1〜30のアルキレン基、二価の炭素環若しくは複素環であり、このアルキレン基、二価の炭素環若しくは複素環の1つ又は複数の水素原子は、フッ素原子若しくは有機基で置換されていてもよい。
は、次の基が互いに隣り合わない場合、−CH−がこれらの基に置換されていてもよい;−O−、−NHCO−、−CONH−、−COO−、−OCO−、−NH−、−NHCONH−、−CO−。
はアクリル基又はメタクリル基である光重合性基を示す。
The definitions of Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , and Y 6 in the formula [IX] are as follows.
That, Y 1 is -CH 2 -, - O -, - CONH -, - NHCO -, - COO -, - OCO -, - NH-, or represent a -CO-.
Y 2 is an alkylene group having 1 to 30 carbon atoms, a divalent carbocyclic or heterocyclic ring, and one or more hydrogen atoms of the alkylene group, the divalent carbon ring or the heterocyclic ring are a fluorine atom or an organic May be substituted with a group. Y 2 is, when the following groups are not adjacent to each other, —CH 2 — may be substituted by these groups; —O—, —NHCO—, —CONH—, —COO—, —OCO—, -NH-, -NHCONH-, -CO-.
Y 3 represents —CH 2 —, —O—, —CONH—, —NHCO—, —COO—, —OCO—, —NH—, —CO—, or a single bond.
Y 4 represents a cinnamoyl group. Y 5 is a single bond, an alkylene group having 1 to 30 carbon atoms, a divalent carbon ring or a heterocyclic ring, and one or more hydrogen atoms of the alkylene group, the divalent carbon ring or the heterocyclic ring are a fluorine atom Alternatively, it may be substituted with an organic group.
Y 5 is, when the following groups are not adjacent to each other, —CH 2 — may be substituted by these groups; —O—, —NHCO—, —CONH—, —COO—, —OCO—, -NH-, -NHCONH-, -CO-.
Y 6 represents a photopolymerizable group that is an acryl group or a methacryl group.

光反応性の側鎖を有するジアミンは、具体的には以下のものが挙げられるが、これに限定される訳ではない。下記式中、X、X10は、それぞれ独立に、単結合、−O−、−COO−、−NHCO−、又は−NH−である結合基、Yはフッ素原子で置換されていてもよい炭素数1〜20のアルキレン基を表す。Specific examples of the diamine having a photoreactive side chain include, but are not limited to, the following. In the following formula, X 9 and X 10 are each independently a single bond, a bonding group that is —O—, —COO—, —NHCO—, or —NH—, and Y may be substituted with a fluorine atom. Represents an alkylene group having 1 to 20 carbon atoms.

Figure 2018159733
Figure 2018159733

また、光反応性の側鎖を有するジアミンとしては、下記式で表わされる光二量化反応を起こす基及び光重合反応を起こす基を側鎖に有するジアミンも挙げられる。   Examples of the diamine having a photoreactive side chain include a diamine having a group that causes a photodimerization reaction represented by the following formula and a group that causes a photopolymerization reaction in the side chain.

Figure 2018159733
Figure 2018159733

上記式中、Y〜Yは、上記定義と同じである。
上記光反応性の側鎖を有するジアミンは、液晶配向膜とした際の液晶配向性、プレチルト角、電圧保持特性、蓄積電荷などの特性、液晶表示素子とした際の液晶の応答速度などに応じて、1種類又は2種類以上を混合して使用できる。
In the above formula, Y 1 to Y 6 are the same as defined above.
The above-mentioned diamine having a photoreactive side chain depends on the liquid crystal alignment property when forming a liquid crystal alignment film, the pretilt angle, the voltage holding property, the characteristics such as accumulated charge, and the response speed of the liquid crystal when forming a liquid crystal display element. In addition, one kind or a mixture of two or more kinds can be used.

また、光反応性の側鎖を有するジアミンは、ポリアミック酸の合成に用いるジアミン成分の10〜70モル%を用いることが好ましく、より好ましくは20〜60モル%、特に好ましくは30〜50モル%である。
また、光反応性の側鎖を有するジアミンとしては、紫外線照射により分解しラジカルが発生するラジカル発生構造を有する部位を側鎖に有するジアミンも挙げられる。
Further, as the diamine having a photoreactive side chain, it is preferable to use 10 to 70 mol% of the diamine component used for the synthesis of the polyamic acid, more preferably 20 to 60 mol%, and particularly preferably 30 to 50 mol%. It is.
Examples of the diamine having a photoreactive side chain also include a diamine having a site having a radical generating structure in which a radical is generated by being decomposed by irradiation with ultraviolet light.

Figure 2018159733
Figure 2018159733

上記式(1)におけるAr、R、R、T、T、S及びQは、以下の定義を有する。
即ち、Arはフェニレン、ナフチレン、及びビフェニレンから選ばれる芳香族炭化水素基を示し、それらには有機基が置換していても良く、水素原子はハロゲン原子に置換していても良い。
1、Rはそれぞれ独立して炭素原子数1〜10のアルキル基もしくはアルコキシ基である。
T1、T2はそれぞれ独立して、単結合又は−O−、−COO−、−OCO−、−NHCO−、−CONH−、−NH−、−CHO−、−N(CH)−、−CON(CH)−、−N(CH)CO−の結合基である。
Sは単結合もしくは非置換もしくはフッ素原子によって置換されている炭素原子数1〜20のアルキレン基。ただしアルキレン基の-CH-または-CF-は-CH=CH-で任意に置き換えられていてもよく、次に挙げるいずれかの基が互いに隣り合わない場合において、これらの基に置き換えられていてもよい;−O−、−COO−、−OCO−、−NHCO−、−CONH−、−NH−、二価の炭素環、二価の複素環。
Qは下記から選ばれる構造(構造式中、Rは水、素原子又は炭素原子数1〜4のアルキル基を表し、Rは-CH-、−NR−、−O−、又は−S−を表す。)を表す。
Ar, R 1 , R 2 , T 1 , T 2 , S and Q in the above formula (1) have the following definitions.
That is, Ar represents an aromatic hydrocarbon group selected from phenylene, naphthylene, and biphenylene, which may be substituted with an organic group, and a hydrogen atom may be substituted with a halogen atom.
R 1 and R 2 are each independently an alkyl group or an alkoxy group having 1 to 10 carbon atoms.
T1, T2 are each independently a single bond or -O -, - COO -, - OCO -, - NHCO -, - CONH -, - NH -, - CH 2 O -, - N (CH 3) -, —CON (CH 3 ) — and —N (CH 3 ) CO—.
S is a single bond or an unsubstituted or substituted alkylene group having 1 to 20 carbon atoms. However, -CH 2 -or -CF 2-of the alkylene group may be arbitrarily replaced by -CH = CH-, and when any of the following groups is not adjacent to each other, it is replaced by these groups. -O-, -COO-, -OCO-, -NHCO-, -CONH-, -NH-, a divalent carbocycle, a divalent heterocycle.
Q is a structure selected from the following (in the structural formula, R represents water, an elemental atom or an alkyl group having 1 to 4 carbon atoms, and R 3 represents —CH 2 —, —NR—, —O—, or —S Represents-).

Figure 2018159733
Figure 2018159733

上記式(I)において、カルボニルが結合しているArは紫外線の吸収波長に関与するため、長波長化する場合、ナフチレンやビフェニレンのような共役長の長い構造が好ましい。また、Arには置換基が置換していても良く、かかる置換基は、アルキル基、ヒドロキシル基、アルコキシ基、アミノ基などのような電子供与性の有機基が好ましい。   In the above formula (I), Ar having a carbonyl bonded thereto is involved in the absorption wavelength of ultraviolet light. Therefore, when the wavelength is increased, a structure having a long conjugate length such as naphthylene or biphenylene is preferable. Ar may be substituted with a substituent, and such a substituent is preferably an electron-donating organic group such as an alkyl group, a hydroxyl group, an alkoxy group, and an amino group.

式(I)中、Arがナフチレンやビフェニレンのような構造になると溶解性が悪くなり、合成の難易度も高くなる。紫外線の波長が250nm〜380nmの範囲であればフェニル基でも十分な特性が得られるため、フェニル基が最も好ましい。   In the formula (I), when Ar has a structure such as naphthylene or biphenylene, the solubility is deteriorated and the difficulty of the synthesis is increased. If the wavelength of the ultraviolet light is in the range of 250 nm to 380 nm, a phenyl group is most preferable because sufficient characteristics can be obtained even with a phenyl group.

また、R、Rは、それぞれ独立して炭素原子数1〜10のアルキル基、アルコキシ基、ベンジル基、又はフェネチル基であり、アルキル基やアルコキシ基の場合、R、Rで環を形成していてもよい。R 1 and R 2 are each independently an alkyl group having 1 to 10 carbon atoms, an alkoxy group, a benzyl group, or a phenethyl group. In the case of an alkyl group or an alkoxy group, R 1 and R 2 represent a ring. May be formed.

式(I)中、Qは、電子供与性の有機基が好ましく、上記の基が好ましい。
Qがアミノ誘導体の場合、ポリイミドの前駆体であるポリアミック酸の重合の際に、発生するカルボン酸基とアミノ基が塩を形成するなどの不具合が生じる可能性があるため、より好ましくはヒドロキシル基又はアルコキシル基である。
In the formula (I), Q is preferably an electron-donating organic group, and more preferably the above groups.
When Q is an amino derivative, a carboxylic acid group and an amino group generated during the polymerization of a polyamic acid which is a precursor of polyimide may cause a problem such as formation of a salt. Or an alkoxyl group.

式(1)におけるジアミノベンゼンは、o−フェニレンジアミン、m−フェニレンジアミン、又はp−フェニレンジアミンのいずれの構造でもよいが、酸二無水物との反応性の点では、m−フェニレンジアミン、又はp−フェニレンジアミンが好ましい。   The diaminobenzene in the formula (1) may have any structure of o-phenylenediamine, m-phenylenediamine, or p-phenylenediamine, but from the viewpoint of reactivity with an acid dianhydride, m-phenylenediamine or P-phenylenediamine is preferred.

具体的には、合成の容易さ、汎用性の高さ、特性などの点から、下記式で表される構造が最も好ましい。なお、式中nは2〜8の整数である。   Specifically, a structure represented by the following formula is most preferable in terms of ease of synthesis, high versatility, characteristics, and the like. In the formula, n is an integer of 2 to 8.

Figure 2018159733
Figure 2018159733

<その他のジアミン>
特定重合体を得るためのその他のジアミン成分としては、上記[1]式で表される特定ジアミン以外のジアミン(以下、その他のジアミンとも言う)を含有しても良い。そのようなジアミンは、以下の一般式[2]で表される。その他ジアミンは1種又は2種以上を併用することもできる。
<Other diamines>
As the other diamine component for obtaining the specific polymer, a diamine other than the specific diamine represented by the above formula [1] (hereinafter, also referred to as other diamine) may be contained. Such a diamine is represented by the following general formula [2]. In addition, one or more diamines can be used in combination.

Figure 2018159733
Figure 2018159733

上記式[2]中、A及びAは、それぞれ独立して、水素原子又は、炭素数1〜5のアルキル基、炭素数2〜5のアルケニル基、又は炭素数2〜5のアルキニル基である。モノマーの反応性の観点から、A及びAは水素原子、又はメチル基が好ましい。Yの構造を例示すると、以下の通りである。In the above formula [2], A 1 and A 2 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkynyl group having 2 to 5 carbon atoms. It is. From the viewpoint of monomer reactivity, A 1 and A 2 are preferably a hydrogen atom or a methyl group. To illustrate the structure of Y 1, it is as follows.

Figure 2018159733
Figure 2018159733

Figure 2018159733
Figure 2018159733

Figure 2018159733
Figure 2018159733

Figure 2018159733
Figure 2018159733

Figure 2018159733
Figure 2018159733

Figure 2018159733
Figure 2018159733

Figure 2018159733
Figure 2018159733

Figure 2018159733
Figure 2018159733

Figure 2018159733
Figure 2018159733

Figure 2018159733
Figure 2018159733

Figure 2018159733
Figure 2018159733

Figure 2018159733
Figure 2018159733

Figure 2018159733
Figure 2018159733

Figure 2018159733
Figure 2018159733

Figure 2018159733
Figure 2018159733

Figure 2018159733
Figure 2018159733

Figure 2018159733
Figure 2018159733

Figure 2018159733
Figure 2018159733

式中、特記しない限り、nは、1〜6の整数である。下記式中、Bocは、tert−ブトキシカルボニル基を表す。   In the formula, n is an integer of 1 to 6, unless otherwise specified. In the following formula, Boc represents a tert-butoxycarbonyl group.

Figure 2018159733
Figure 2018159733

本発明の液晶配向剤に使用されるその他のジアミン成分は、特に限定されないが、塗布性、電圧保持率特性、残留DC電圧特性などの観点から、(Y−7)、(Y−8)、(Y−16)、(Y−17)、(Y−21)、(Y−22)、(Y−28)、(Y−37)、(Y−38)、(Y−60)、(Y−67)、(Y−68)、(Y−71)〜(Y−73)、(Y−160)〜(Y−180)から選ばれるジアミンを選定し併用することが特に好ましい。   Other diamine components used in the liquid crystal alignment agent of the present invention are not particularly limited, but from the viewpoints of applicability, voltage holding characteristics, residual DC voltage characteristics, and the like, (Y-7), (Y-8), (Y-16), (Y-17), (Y-21), (Y-22), (Y-28), (Y-37), (Y-38), (Y-60), (Y -67), (Y-68), (Y-71) to (Y-73) and (Y-160) to (Y-180).

(テトラカルボン酸成分)
特定重合体を得るためのテトラカルボン酸成分としては、テトラカルボン酸、テトラカルボン酸二無水物、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル、又はテトラカルボン酸ジアルキルエステルジハライドが挙げられ、本発明では、これらを総称してテトラカルボン酸成分ともいう。
テトラカルボン酸成分としては、テトラカルボン酸二無水物、その誘導体である、テトラカルボン酸、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル、又はテトラカルボン酸ジアルキルエステルジハライド(これらを総称して、第1のテトラカルボン酸成分という。)を用いることもできる。
(Tetracarboxylic acid component)
Examples of the tetracarboxylic acid component for obtaining the specific polymer include tetracarboxylic acid, tetracarboxylic dianhydride, tetracarboxylic dihalide, tetracarboxylic dialkyl ester, or tetracarboxylic dialkyl ester dihalide. Then, these are also collectively referred to as a tetracarboxylic acid component.
As the tetracarboxylic acid component, tetracarboxylic dianhydride, a derivative thereof, tetracarboxylic acid, tetracarboxylic dihalide, tetracarboxylic dialkyl ester, or tetracarboxylic dialkyl ester dihalide (collectively, 1 tetracarboxylic acid component).

<テトラカルボン酸二無水物>
テトラカルボン酸二無水物としては、例えば脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、芳香族テトラカルボン酸二無水物などを挙げることができる。 これらの具体例としては、以下の[1]〜[5]の群のものなどをそれぞれ挙げることができる。
<Tetracarboxylic dianhydride>
Examples of the tetracarboxylic dianhydride include aliphatic tetracarboxylic dianhydride, alicyclic tetracarboxylic dianhydride, and aromatic tetracarboxylic dianhydride. Specific examples thereof include those of the following groups [1] to [5].

[1] 脂肪族テトラカルボン酸二無水物として、例えば1,2,3,4−ブタンテトラカルボン酸二無水物など; [1] As an aliphatic tetracarboxylic dianhydride, for example, 1,2,3,4-butanetetracarboxylic dianhydride;

[2] 脂環式テトラカルボン酸二無水物として、例えば下記式(X1−1)〜(X1−13)などの酸二無水物、 [2] As the alicyclic tetracarboxylic dianhydride, for example, acid dianhydrides of the following formulas (X1-1) to (X1-13),

Figure 2018159733
Figure 2018159733

式(X1−1)〜(X1−4)において、RからR23はそれぞれ独立して、水素原子、ハロゲン原子、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基、炭素数2〜6のアルキニル基、フッ素原子を含有する炭素数1〜6の1価の有機基、又はフェニル基であり、同一でも異なってもよく、
前記式中、Rは水素原子、又はメチル基であり、
Xa、は下記式(Xa−1)〜(Xa−7)で表される4価の有機基である。
In the formulas (X1-1) to (X1-4), R 3 to R 23 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, An alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, or a phenyl group, which may be the same or different,
In the above formula, RM is a hydrogen atom or a methyl group,
Xa is a tetravalent organic group represented by the following formulas (Xa-1) to (Xa-7).

Figure 2018159733
Figure 2018159733

[3] 3−オキサビシクロ[3.2.1]オクタン−2,4−ジオン−6−スピロ−3’−(テトラヒドロフラン−2’,5’−ジオン)、3,5,6−トリカルボキシ−2−カルボキシメチルノルボルナン−2:3,5:6−二無水物、4,9−ジオキサトリシクロ[5.3.1.02,6]ウンデカン−3,5,8,10−テトラオンなど;   [3] 3-oxabicyclo [3.2.1] octane-2,4-dione-6-spiro-3 ′-(tetrahydrofuran-2 ′, 5′-dione), 3,5,6-tricarboxy- 2-carboxymethylnorbornane-2: 3,5: 6-dianhydride, 4,9-dioxatricyclo [5.3.1.02,6] undecane-3,5,8,10-tetraone and the like;

[4] 芳香族テトラカルボン酸二無水物として、例えばピロメリット酸無水物、4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、下記式(Xb−1)〜(Xb−10)で表される酸二無水物など、および   [4] As the aromatic tetracarboxylic dianhydride, for example, pyromellitic anhydride, 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic acid Acid dianhydride, acid dianhydride represented by the following formulas (Xb-1) to (Xb-10), and

Figure 2018159733
Figure 2018159733

[5] さらに、式(X1−44)〜(X1−52)で表される酸二無水物、特開2010−97188号公報に記載のテトラカルボン酸二無水物を挙げることができる。 [5] Further, acid dianhydrides represented by the formulas (X1-44) to (X1-52) and tetracarboxylic dianhydrides described in JP-A-2010-97188 can be exemplified.

Figure 2018159733
Figure 2018159733

なお、上記テトラカルボン酸二無水物は、1種を単独で又は2種以上組み合わせて使用することができる。
本発明の液晶配向剤に使用されるテトラカルボン酸二無水物成分は、特に限定されないが、塗布性、電圧保持率特性、残留DC電圧特性などの観点から、(X1−1)、(X1−2)、(X1−3)、(X1−6)、(X1−7)、(X1−8)、(X1−9)、(Xa−2)、ピロメリット酸無水物、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物、(Xb−6)、(Xb−9)から選ばれるテトラカルボン酸二無水物を選定し用いることが好ましい。
In addition, the said tetracarboxylic dianhydride can be used individually by 1 type or in combination of 2 or more types.
The tetracarboxylic dianhydride component used in the liquid crystal aligning agent of the present invention is not particularly limited. However, from the viewpoints of coatability, voltage holding characteristics, residual DC voltage characteristics, and the like, (X1-1), (X1- 2), (X1-3), (X1-6), (X1-7), (X1-8), (X1-9), (Xa-2), pyromellitic anhydride, 3,3 ′, It is preferable to select and use a tetracarboxylic dianhydride selected from 4,4′-diphenylsulfonetetracarboxylic dianhydride, (Xb-6) and (Xb-9).

<重合体の製造方法>
これらの重合体を製造する方法は、通常、ジアミン成分とテトラカルボン酸成分とを反応させて得られる。テトラカルボン酸二無水物及びそのテトラカルボン酸の誘導体からなる群から選ばれる少なくとも1種のテトラカルボン酸成分と、1種又は複数種のジアミンからなるジアミン成分とを反応させて、ポリアミド酸を得る方法が挙げられる。具体的には、テトラカルボン酸二無水物と1級又は2級のジアミンとを重縮合させてポリアミック酸を得る方法が用いられる。
<Method for producing polymer>
The method for producing these polymers is usually obtained by reacting a diamine component with a tetracarboxylic acid component. A polyamic acid is obtained by reacting at least one tetracarboxylic acid component selected from the group consisting of tetracarboxylic dianhydride and a derivative of the tetracarboxylic acid with a diamine component composed of one or more diamines. Method. Specifically, a method of polycondensing a tetracarboxylic dianhydride with a primary or secondary diamine to obtain a polyamic acid is used.

ポリアミド酸アルキルエステルを得るためには、カルボン酸基をジアルキルエステル化したテトラカルボン酸と1級又は2級のジアミンとを重縮合させる方法、カルボン酸基をハロゲン化したテトラカルボン酸ジハライドと1級又は2級のジアミンとを重縮合させる方法、又はポリアミド酸のカルボキシ基をエステルに変換する方法が用いられる。
ポリイミドを得るには、前記のポリアミド酸又はポリアミド酸アルキルエステルを閉環させてポリイミドとする方法が用いられる。
In order to obtain a polyamic acid alkyl ester, a method of polycondensing a tetracarboxylic acid in which a carboxylic acid group is dialkylesterified with a primary or secondary diamine, a method in which a tetracarboxylic acid dihalide in which a carboxylic acid group is halogenated and a primary Alternatively, a method of polycondensing with a secondary diamine, or a method of converting a carboxy group of a polyamic acid into an ester is used.
In order to obtain a polyimide, a method is used in which the above-mentioned polyamic acid or polyamic acid alkyl ester is closed to form a polyimide.

ジアミン成分とテトラカルボン酸成分との反応は、通常、溶媒中で行う。その際に用いる溶媒としては、生成したポリイミド前駆体が溶解するものであれば特に限定されない。下記に、反応に用いる溶媒の具体例を挙げるが、これらの例に限定されない。
例えば、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン又はγ−ブチロラクトン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド又は1,3−ジメチル−イミダゾリジノンが挙げられる。また、ポリイミド前駆体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4−ヒドロキシ−4−メチル−2−ペンタノン又は下記式[D−1]〜式[D−3]で表される溶媒を用いることができる。
The reaction between the diamine component and the tetracarboxylic acid component is usually performed in a solvent. The solvent used at this time is not particularly limited as long as the produced polyimide precursor is dissolved. Specific examples of the solvent used in the reaction are shown below, but are not limited to these examples.
For example, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or γ-butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide or 1,3-dimethyl-imidazolidinone. Can be When the solvent solubility of the polyimide precursor is high, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone or the following formulas [D-1] to [D-3] are used. The solvent used can be used.

Figure 2018159733
Figure 2018159733

式[D−1]中、Dは炭素数1〜3のアルキル基を示し、式[D−2]中、Dは炭素数1〜3のアルキル基を示し、式[D−3]中、Dは炭素数1〜4のアルキル基を示す。In the formula [D-1], D 1 represents an alkyl group having 1 to 3 carbon atoms; in the formula [D-2], D 2 represents an alkyl group having 1 to 3 carbon atoms; In the formula, D 3 represents an alkyl group having 1 to 4 carbon atoms.

これらの溶媒は単独で使用しても、混合して使用してもよい。更に、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、前記溶媒に混合して使用してもよい。また、溶媒中の水分は、重合反応を阻害し、更には、生成したポリイミド前駆体を加水分解させる原因となるので、溶媒は脱水乾燥させたものを用いることが好ましい。   These solvents may be used alone or as a mixture. Furthermore, even if the solvent does not dissolve the polyimide precursor, the solvent may be mixed with the solvent as long as the generated polyimide precursor does not precipitate. Further, since water in the solvent inhibits the polymerization reaction and further causes hydrolysis of the produced polyimide precursor, it is preferable to use a solvent that has been dehydrated and dried.

ジアミン成分とテトラカルボン酸成分とを溶媒中で反応させる際には、ジアミン成分を溶媒に分散或いは溶解させた溶液を攪拌させ、テトラカルボン酸成分をそのまま、又は溶媒に分散或いは溶解させて添加する方法、逆にテトラカルボン酸成分を溶媒に分散、或いは溶解させた溶液にジアミン成分を添加する方法、ジアミン成分とテトラカルボン酸成分とを交互に添加する方法等が挙げられ、これらのいずれの方法を用いてもよい。また、ジアミン成分又はテトラカルボン酸成分を、それぞれ複数種用いて反応させる場合は、あらかじめ混合した状態で反応させてもよく、個別に順次反応させてもよく、更に個別に反応させた低分子量体を混合反応させ重合体としてもよい。   When reacting a diamine component and a tetracarboxylic acid component in a solvent, a solution in which the diamine component is dispersed or dissolved in the solvent is stirred, and the tetracarboxylic acid component is added as it is or dispersed or dissolved in the solvent. A method of adding a diamine component to a solution in which a tetracarboxylic acid component is dispersed or dissolved in a solvent, or a method of alternately adding a diamine component and a tetracarboxylic acid component, and the like. May be used. When a plurality of diamine components or tetracarboxylic acid components are used for the reaction, they may be reacted in a premixed state, may be individually reacted sequentially, or may be further reacted individually. May be mixed to form a polymer.

ジアミン成分とテトラカルボン酸成分とを重縮合せしめる温度は、−20〜150℃の任意の温度を選択することができるが、好ましくは−5〜100℃の範囲である。反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となる。そのため、好ましくは1〜50質量%、より好ましくは5〜30質量%である。反応初期は高濃度で行い、その後、溶媒を追加できる。
ポリイミド前駆体の重合反応においては、ジアミン成分の合計モル数とテトラカルボン酸成分の合計モル数の比は0.8〜1.2であることが好ましい。通常の重縮合反応と同様に、このモル比が1.0に近いほど生成するポリイミド前駆体の分子量は大きくなる。
The temperature at which the diamine component and the tetracarboxylic acid component are polycondensed can be selected from any temperature in the range of -20 to 150 ° C, but is preferably in the range of -5 to 100 ° C. The reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring becomes difficult. . Therefore, it is preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The initial stage of the reaction is performed at a high concentration, after which the solvent can be added.
In the polymerization reaction of the polyimide precursor, the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid component is preferably 0.8 to 1.2. As in the ordinary polycondensation reaction, the molecular weight of the generated polyimide precursor increases as the molar ratio approaches 1.0.

ポリイミドは、前記のポリイミド前駆体を閉環させて得られるポリイミドであり、このポリイミドにおいては、アミド酸基の閉環率(イミド化率ともいう)は必ずしも100%である必要はなく、用途や目的に応じて任意に調整できる。
ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化、又はポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。
Polyimide is a polyimide obtained by ring-closing the above-mentioned polyimide precursor, and in this polyimide, the ring-closing rate of amic acid groups (also referred to as imidation rate) does not necessarily need to be 100%, It can be adjusted as needed.
Examples of the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is, and catalytic imidization in which a catalyst is added to the polyimide precursor solution.

ポリイミド前駆体を溶液中で熱イミド化させる場合の温度は、100〜400℃、好ましくは120〜250℃であり、イミド化反応により生成する水を系外に除きながら行う方法が好ましい。ポリイミド前駆体の触媒イミド化は、ポリイミド前駆体の溶液に、塩基性触媒と酸無水物とを添加し、−20〜250℃、好ましくは0〜180℃で攪拌することにより行うことができる。   The temperature at which the polyimide precursor is thermally imidized in the solution is 100 to 400 ° C., preferably 120 to 250 ° C., and a method in which water generated by the imidization reaction is removed outside the system is preferable. Catalytic imidation of the polyimide precursor can be carried out by adding a basic catalyst and an acid anhydride to the solution of the polyimide precursor and stirring at -20 to 250C, preferably 0 to 180C.

塩基性触媒の量は、アミド酸基の0.5〜30モル倍、好ましくは2〜20モル倍であり、酸無水物の量は、アミド酸基の1〜50モル倍、好ましくは3〜30モル倍である。
塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。なかでも、ピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。
酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができる。特に、無水酢酸を用いると反応終了後の精製が容易となるので好ましい。
触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。
The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amide acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to mol time of the amide acid group. It is 30 mole times.
Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, and trioctylamine. Among them, pyridine is preferable since it has an appropriate basicity for causing the reaction to proceed.
Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, and pyromellitic anhydride. In particular, it is preferable to use acetic anhydride because purification after the reaction is easy.
The imidization rate by the catalytic imidization can be controlled by adjusting the amount of the catalyst, the reaction temperature, and the reaction time.

ポリイミド前駆体又はポリイミドの反応溶液から、生成したポリイミド前駆体又はポリイミドを回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としては、メタノール、エタノール、イソプロピルアルコール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、トルエン、ベンゼン、水等を挙げることができる。溶媒に投入して沈殿させたポリマーは、濾過して回収した後、常圧或いは減圧下で、常温或いは加熱して乾燥することができる。また、沈殿回収した重合体を、溶媒に再溶解させ、再沈殿回収する操作を2〜10回繰り返すと、重合体中の不純物を少なくすることができる。この際の溶媒として、例えば、アルコール類、ケトン類、炭化水素等が挙げられる。これら中から選ばれる3種類以上の溶媒を用いると、より一層精製の効率が上がるので好ましい。   When recovering the produced polyimide precursor or polyimide from the polyimide precursor or polyimide reaction solution, the reaction solution may be put into a solvent to precipitate. Examples of the solvent used for the precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, water and the like. The polymer that has been put into the solvent and precipitated can be collected by filtration and then dried at normal temperature or under reduced pressure at normal temperature or under normal pressure. Further, by repeating the operation of re-dissolving the polymer recovered by precipitation in a solvent and recovering the recovered precipitate by 2 to 10 times, impurities in the polymer can be reduced. Examples of the solvent at this time include alcohols, ketones, and hydrocarbons. It is preferable to use three or more solvents selected from these, because the purification efficiency is further increased.

本発明のポリアミド酸アルキルエステルを製造するための、より具体的な方法を下記(1)〜(3)に示す。
(1)ポリアミド酸のエステル化反応で製造する方法
ジアミン成分とテトラカルボン酸成分とからポリアミド酸を製造し、そのカルボキシ基(COOH基)に、化学反応、すなわち、エステル化反応を行い、ポリアミド酸アルキルエステルを製造する方法である。
エステル化反応は、ポリアミド酸とエステル化剤を溶媒の存在下で、−20〜150℃(好ましくは0〜50℃)において、30分〜24時間(好ましくは1〜4時間)反応させる方法である。
More specific methods for producing the polyamic acid alkyl esters of the present invention are shown in the following (1) to (3).
(1) Method for Producing Polyamic Acid by Esterification Reaction A polyamic acid is produced from a diamine component and a tetracarboxylic acid component, and a carboxy group (COOH group) is subjected to a chemical reaction, that is, an esterification reaction, to produce a polyamic acid. This is a method for producing an alkyl ester.
The esterification reaction is a method of reacting a polyamic acid and an esterifying agent in the presence of a solvent at −20 to 150 ° C. (preferably 0 to 50 ° C.) for 30 minutes to 24 hours (preferably 1 to 4 hours). is there.

前記エステル化剤としては、エステル化反応後に、容易に除去できるものが好ましく、N,N−ジメチルホルムアミドジメチルアセタール、N,N−ジメチルホルムアミドジエチルアセタール、N,N−ジメチルホルムアミドジプロピルアセタール、N,N−ジメチルホルムアミドジネオペンチルブチルアセタール、N,N−ジメチルホルムアミドジ−t−ブチルアセタール、1−メチル−3−p−トリルトリアゼン、1−エチル−3−p−トリルトリアゼン、1−プロピル−3−p−トリルトリアゼン、4−(4,6−ジメトキシ−1,3,5−トリアジン−2−イル)−4−メチルモルホリニウムクロリド等が挙げられる。エステル化剤の使用量は、ポリアミド酸の繰り返し単位1モルに対して、2〜6モル当量が好ましい。なかでも、2〜4モル当量が好ましい。   As the esterification agent, those which can be easily removed after the esterification reaction are preferable, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N N-dimethylformamide dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl -3-p-tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like. The amount of the esterifying agent to be used is preferably 2 to 6 molar equivalents per 1 mol of the repeating unit of the polyamic acid. Especially, 2-4 molar equivalent is preferable.

前記エステル化反応に用いる溶媒としては、ポリアミド酸の溶媒への溶解性の点から、前記ジアミン成分とテトラカルボン酸成分との反応に用いる溶媒が挙げられる。なかでも、N,N−ジメチルホルムアミド、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン又はγ−ブチロラクトンが好ましい。これら溶媒は、1種又は2種以上を混合して用いてもよい。
前記エステル化反応における溶媒中のポリアミド酸の濃度は、ポリアミド酸の析出が起こりにくい点から、1〜30質量%が好ましい。なかでも、5〜20質量%が好ましい。
Examples of the solvent used for the esterification reaction include solvents used for the reaction between the diamine component and the tetracarboxylic acid component from the viewpoint of solubility of the polyamic acid in the solvent. Among them, N, N-dimethylformamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or γ-butyrolactone is preferred. These solvents may be used alone or in combination of two or more.
The concentration of the polyamic acid in the solvent in the esterification reaction is preferably from 1 to 30% by mass from the viewpoint that precipitation of the polyamic acid hardly occurs. Especially, 5-20 mass% is preferable.

(2)ジアミン成分とテトラカルボン酸ジエステルジクロリドとの反応で製造する方法
具体的には、ジアミン成分とテトラカルボン酸ジエステルジクロリドとを、塩基と溶媒の存在下で、−20〜150℃(好ましくは0〜50℃)において、30分〜24時間(好ましくは1〜4時間)反応させる方法である。
塩基は、ピリジン、トリエチルアミン、4−ジメチルアミノピリジン等を用いることができる。なかでも、反応が穏和に進行するため、ピリジンが好ましい。塩基の使用量は、反応後に、容易に除去できる量が好ましく、テトラカルボン酸ジエステルジクロリドに対して、2〜4倍モルであることが好ましい。なかでも、2〜3倍モルがより好ましい。
(2) Method for producing by reacting a diamine component with a tetracarboxylic diester dichloride Specifically, a diamine component and a tetracarboxylic diester dichloride are prepared in the presence of a base and a solvent at -20 to 150 ° C (preferably (0 to 50 ° C) for 30 minutes to 24 hours (preferably 1 to 4 hours).
As the base, pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used. Among them, pyridine is preferred because the reaction proceeds gently. The amount of the base used is preferably an amount that can be easily removed after the reaction, and is preferably 2 to 4 times the molar amount of the tetracarboxylic diester dichloride. Above all, a 2- to 3-fold molar amount is more preferable.

溶媒には、得られる重合体、すなわち、ポリアミド酸アルキルエステルの溶媒への溶解性の点から、前記ジアミン成分とテトラカルボン酸成分との反応に用いる溶媒が挙げられる。なかでも、N,N−ジメチルホルムアミド、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン又はγ−ブチロラクトンが好ましい。これらの溶媒は、1種又は2種以上を混合して用いてもよい。
反応における溶媒中のポリアミド酸アルキルエステルの濃度は、ポリアミド酸アルキルエステルの析出が起こりにくい点から、1〜30質量%が好ましい。なかでも、5〜20質量%が好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミド酸アルキルエステルの作製に用いる溶媒は、できるだけ脱水されていることが好ましい。更に、反応は窒素雰囲気中で行い、外気の混入を防ぐのが好ましい。
The solvent includes a solvent used in the reaction between the diamine component and the tetracarboxylic acid component in view of the solubility of the obtained polymer, that is, the polyamic acid alkyl ester in the solvent. Among them, N, N-dimethylformamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or γ-butyrolactone is preferred. These solvents may be used alone or in combination of two or more.
The concentration of the polyamic acid alkyl ester in the solvent in the reaction is preferably 1 to 30% by mass from the viewpoint that precipitation of the polyamic acid alkyl ester hardly occurs. Especially, 5-20 mass% is preferable. In order to prevent hydrolysis of the tetracarboxylic diester dichloride, it is preferable that the solvent used for preparing the polyamic acid alkyl ester is as dehydrated as possible. Furthermore, the reaction is preferably performed in a nitrogen atmosphere to prevent outside air from being mixed.

(3)ジアミン成分とテトラカルボン酸ジエステルとの反応で製造する方法
具体的には、ジアミン成分とテトラカルボン酸ジエステルとを、縮合剤、塩基及び溶媒の存在下で、0〜150℃(好ましくは0〜100℃)において、30分〜24時間(好ましくは3〜15時間)重縮合反応させる方法である。
(3) Method for producing by reacting a diamine component with a tetracarboxylic diester Specifically, a diamine component and a tetracarboxylic diester are prepared at 0 to 150 ° C. (preferably in the presence of a condensing agent, a base and a solvent). (0 to 100 ° C.) for 30 minutes to 24 hours (preferably 3 to 15 hours).

縮合剤には、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’−カルボニルジイミダゾール、ジメトキシ−1,3,5−トリアジニルメチルモルホリニウム、O−(ベンゾトリアゾール−1−イル)−N,N,N’,N’−テトラメチルウロニウムテトラフルオロボラート、O−(ベンゾトリアゾール−1−イル)−N,N,N’,N’−テトラメチルウロニウムヘキサフルオロホスファート、(2,3−ジヒドロ−2−チオキソ−3−ベンゾオキサゾリル)ホスホン酸ジフェニル等を用いることができる。縮合剤の使用量は、テトラカルボン酸ジエステルに対して、2〜3倍モルが好ましく、特に、2〜2.5倍モルが好ましい。   Condensing agents include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N'-carbonyldiimidazole, dimethoxy-1,3,5-triazinyl Methylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ', N'-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N, N ', N'-tetramethyluronium hexafluorophosphate, diphenyl (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate and the like can be used. The amount of the condensing agent to be used is preferably 2 to 3 moles, more preferably 2 to 2.5 moles, per mole of the tetracarboxylic acid diester.

塩基には、ピリジン、トリエチルアミン等の3級アミンを用いることができる。塩基の使用量は、重縮合反応後に、容易に除去できる量が好ましく、ジアミン成分に対して、2〜4倍モルが好ましく、2〜3倍モルがより好ましい。
重縮合反応に用いる溶媒は、得られる重合体、すなわち、ポリアミド酸アルキルエステルの溶媒への溶解性の点から、前記ジアミン成分とテトラカルボン酸成分との反応に用いる溶媒が挙げられる。なかでも、N,N−ジメチルホルムアミド、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン又はγ−ブチロラクトンが好ましい。これら溶媒は、1種又は2種以上用いてもよい。
Tertiary amines such as pyridine and triethylamine can be used as the base. The amount of the base used is preferably an amount that can be easily removed after the polycondensation reaction, and is preferably 2 to 4 times, more preferably 2 to 3 times the mol of the diamine component.
The solvent used for the polycondensation reaction includes the solvent used for the reaction between the diamine component and the tetracarboxylic acid component in view of the solubility of the obtained polymer, that is, the polyamic acid alkyl ester in the solvent. Among them, N, N-dimethylformamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or γ-butyrolactone is preferred. One or more of these solvents may be used.

また、重縮合反応においては、ルイス酸を添加剤として加えることで、反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウム等のハロゲン化リチウムが好ましい。ルイス酸の使用量は、ジアミン成分に対して、0.1〜10倍モルが好ましい。なかでも、2.0〜3.0倍モルが好ましい。   In addition, in the polycondensation reaction, the reaction proceeds efficiently by adding a Lewis acid as an additive. As the Lewis acid, lithium halides such as lithium chloride and lithium bromide are preferable. The amount of the Lewis acid used is preferably 0.1 to 10 times the mol of the diamine component. Above all, a 2.0- to 3.0-fold molar amount is preferable.

上記(1)〜(3)の手法で得られたポリアミド酸アルキルエステルの溶液から、ポリアミド酸アルキルエステルを回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としては、水、メタノール、エタノール、2−プロパノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等を挙げることができる。溶媒に投入して沈殿させた重合体は、前記で使用した添加剤、触媒類を除去することを目的に、上記溶媒で、複数回洗浄操作を行うことが好ましい。洗浄し、ろ過して回収した後、重合体は常圧或いは減圧下、常温或いは加熱して乾燥することができる。また、沈殿回収した重合体を、溶媒に再溶解させ、再沈殿回収する操作を2〜10回繰り返すことにより、重合体中の不純物を少なくすることができる。
ポリアミド酸アルキルエステルは、前記(2)又は(3)の製造方法が好ましい。
When recovering the polyamic acid alkyl ester from the solution of the polyamic acid alkyl ester obtained by the above-mentioned methods (1) to (3), the reaction solution may be poured into a solvent to cause precipitation. Examples of the solvent used for the precipitation include water, methanol, ethanol, 2-propanol, hexane, butyl cellosolve, acetone, and toluene. It is preferable to carry out a washing operation with the above-mentioned solvent a plurality of times for the purpose of removing the additives and catalysts used in the polymer that has been put into the solvent and precipitated. After washing, filtration and recovery, the polymer can be dried at normal pressure or reduced pressure at normal temperature or by heating. In addition, by repeating the operation of re-dissolving the precipitated and recovered polymer in a solvent and re-precipitating and recovering it 2 to 10 times, impurities in the polymer can be reduced.
For the polyamic acid alkyl ester, the production method of (2) or (3) is preferable.

<液晶配向剤>
本発明の液晶配向剤は、上述の特定重合体を含有し、好ましくは液晶配向膜を形成するための溶液であるのがよい。液晶配向剤における重合体の含有量は、液晶配向剤中、2〜10質量%が好ましく、3〜8質量%がより好ましい。
<Liquid crystal aligning agent>
The liquid crystal alignment agent of the present invention contains the above-mentioned specific polymer, and is preferably a solution for forming a liquid crystal alignment film. The content of the polymer in the liquid crystal aligning agent is preferably 2 to 10% by mass, more preferably 3 to 8% by mass in the liquid crystal aligning agent.

本発明の液晶配向剤における全ての重合体成分は、全てが本発明の特定重合体であってもよく、それ以外の他の重合体が混合されていても良い。それ以外の重合体としては、ポリイミドおよびポリイミド前駆体に加えて、セルロース系重合体、アクリルポリマー、メタクリルポリマー、ポリスチレン、ポリアミド、ポリシロキサン等も挙げられる。それ以外の他の重合体の含有量は、液晶配向剤に含まれる樹脂成分のうち、1〜90質量%が好ましく、30〜80質量がより好ましい。   All the polymer components in the liquid crystal aligning agent of the present invention may be all the specific polymer of the present invention, or may be mixed with other polymers. Other polymers include cellulose-based polymers, acrylic polymers, methacrylic polymers, polystyrene, polyamides, polysiloxanes, and the like, in addition to polyimide and polyimide precursors. The content of the other polymer is preferably from 1 to 90% by mass, more preferably from 30 to 80% by mass, of the resin components contained in the liquid crystal aligning agent.

本発明の液晶配向剤に使用される良溶媒は、本発明の特定重合体が溶解するものであれば特に限定されない。下記に、液晶配向剤に用いる溶媒の具体例を挙げるが、これらの例に限定されない。
例えば、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン又はγ−ブチロラクトン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド又は1,3−ジメチル−イミダゾリジノンが挙げられる。
また、ポリイミド前駆体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4−ヒドロキシ−4−メチル−2−ペンタノン又は上記式[D−1]〜式[D−3]で表される溶媒を用いることもできる。
上記良溶媒は1種類で使用してもよいし、塗布方法などに合わせてより適する組み合わせ、および比率で使用してもよい。
本発明の液晶配向剤における良溶媒は、液晶配向剤に含まれる溶媒全体の20〜99質量%であることが好ましい。なかでも、20〜90質量%が好ましい。より好ましいのは、30〜80質量%である。
The good solvent used for the liquid crystal aligning agent of the present invention is not particularly limited as long as the specific polymer of the present invention can be dissolved. Specific examples of the solvent used for the liquid crystal aligning agent are described below, but the present invention is not limited to these examples.
For example, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or γ-butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide or 1,3-dimethyl-imidazolidinone. Can be
When the solvent solubility of the polyimide precursor is high, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or a compound represented by the above formulas [D-1] to [D-3] is used. Solvents used can also be used.
The above-mentioned good solvent may be used alone, or may be used in a more suitable combination and ratio according to a coating method or the like.
The good solvent in the liquid crystal aligning agent of the present invention is preferably 20 to 99% by mass of the entire solvent contained in the liquid crystal aligning agent. Especially, 20 to 90 mass% is preferable. More preferably, the content is 30 to 80% by mass.

本発明の液晶配向剤は、液晶配向剤を塗布した際の液晶配向膜の塗膜性や表面平滑性を向上させる溶媒(貧溶媒ともいう)を使用できる。下記にその具体例を挙げる。
例えば、エタノール、イソプロピルアルコール、1−ブタノール、2−ブタノール、イソブチルアルコール、tert−ブチルアルコール、1−ペンタノール、2−ペンタノール、3−ペンタノール、2−メチル−1−ブタノール、イソペンチルアルコール、tert−ペンチルアルコール、3−メチル−2−ブタノール、ネオペンチルアルコール、1−ヘキサノール、2−メチル−1−ペンタノール、2−メチル−2−ペンタノール、2−エチル−1−ブタノール、1−ヘプタノール、2−ヘプタノール、3−ヘプタノール、1−オクタノール、2−オクタノール、2−エチル−1−ヘキサノール、シクロヘキサノール、1−メチルシクロヘキサノール、2−メチルシクロヘキサノール、3−メチルシクロヘキサノール、2,6−ジメチル−4−ヘプタノール、1,2−エタンジオール、1,2−プロパンジオール、1,3−プロパンジオール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、1,5−ペンタンジオール、2−メチル−2,4−ペンタンジオール、2−エチル−1,3−ヘキサンジオール、ジイソプロピルエーテル、ジプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2−ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、4−ヒドロキシ−4−メチル−2−ペンタノン、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、2−ペンタノン、3−ペンタノン、2−ヘキサノン、2−ヘプタノン、4−ヘプタノン、2,6−ジメチル−4−ヘプタノン、4,6−ジメチル−2−ヘプタノン、3−エトキシブチルアセタート、1−メチルペンチルアセタート、2−エチルブチルアセタート、2−エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、2−(メトキシメトキシ)エタノール、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、2−(ヘキシルオキシ)エタノール、フルフリルアルコール、ジエチレングリコール、プロピレングリコール、プロピレングリコールモノブチルエーテル、1−(ブトキシエトキシ)プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコール、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2−(2−エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n−ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3−メトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、3−エトキシプロピオン酸メチルエチル、3−メトキシプロピオン酸エチル、3−エトキシプロピオン酸、3−メトキシプロピオン酸、3−メトキシプロピオン酸プロピル、3−メトキシプロピオン酸ブチル、乳酸メチルエステル、乳酸エチルエステル、乳酸n−プロピルエステル、乳酸n−ブチルエステル、乳酸イソアミルエステル、前記式[D−1]〜[D−3]で表される溶媒等を挙げることができる。
As the liquid crystal aligning agent of the present invention, a solvent (also referred to as a poor solvent) that improves the coatability and surface smoothness of the liquid crystal aligning film when the liquid crystal aligning agent is applied can be used. Specific examples are given below.
For example, ethanol, isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol , 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 2,6- Dimethyl 4-heptanol, 1,2-ethanediol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3- Butanediol, 1,5-pentanediol, 2-methyl-2,4-pentanediol, 2-ethyl-1,3-hexanediol, diisopropyl ether, dipropyl ether, dibutyl ether, dihexyl ether, dioxane, ethylene glycol dimethyl ether , Ethylene glycol diethyl ether, ethylene glycol dibutyl ether, 1,2-butoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, 4-hydroxy-4-methyl-2-pentanone, diethylene glycol methyl Tyl ether, diethylene glycol dibutyl ether, 2-pentanone, 3-pentanone, 2-hexanone, 2-heptanone, 4-heptanone, 2,6-dimethyl-4-heptanone, 4,6-dimethyl-2-heptanone, 3-ethoxybutyl Acetate, 1-methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, ethylene glycol monoacetate, ethylene glycol diacetate, propylene carbonate, ethylene carbonate, 2- (methoxymethoxy) ethanol, ethylene Glycol monobutyl ether, ethylene glycol monoisoamyl ether, ethylene glycol monohexyl ether, 2- (hexyloxy) ethanol, furfuryl alcohol, diethylene glycol, Propylene glycol monobutyl ether, 1- (butoxyethoxy) propanol, propylene glycol monomethyl ether acetate, dipropylene glycol, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol Propylene glycol dimethyl ether, tripropylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, ethylene glycol monoacetate, ethylene glycol diacetate, diethylene glycol monoethyl ether Acetate, diethylene glycol monobutyl ether acetate, 2- (2-ethoxyethoxy) ethyl acetate, diethylene glycol acetate, triethylene glycol, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, methyl lactate, ethyl lactate, methyl acetate, Ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether acetate, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, methyl ethyl 3-ethoxypropionate, 3-methoxypropionic acid Ethyl, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, methyl lactate, milk Ethyl ester, lactic acid n- propyl ester, lactate n- butyl ester, lactic acid isoamyl ester, the formula [D-1] ~ can be exemplified solvents represented by [D-3].

なかでも、好ましい溶媒の組み合わせとしては、N−メチル−2−ピロリドンとエチレングリコールモノブチルエーテル、N−メチル−2−ピロリドンとγ−ブチロラクトンとエチレングリコールモノブチルエーテル、N−メチル−2−ピロリドンとγ−ブチロラクトンとプロピレングリコールモノブチルエーテル、N−エチル−2−ピロリドンとプロピレングリコールモノブチルエーテル、N−メチル−2−ピロリドンとγ−ブチロラクトンと4−ヒドロキシ−4−メチル−2−ペンタノンとジエチレングリコールジエチルエーテル、N−メチル−2−ピロリドンとγ−ブチロラクトンとプロピレングリコールモノブチルエーテルと2,6−ジメチル−4−ヘプタノン、N−メチル−2−ピロリドンとγ−ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソプロピルエーテル、N−メチル−2−ピロリドンとγ−ブチロラクトンとプロピレングリコールモノブチルエーテルと2,6−ジメチル−4−ヘプタノール、N−メチル−2−ピロリドンとγ−ブチロラクトンとジプロピレングリコールジメチルエーテル、などを挙げることができる。これら貧溶媒は、液晶配向剤に含まれる溶媒全体の1〜80質量%が好ましく、10〜80質量%がより好ましく、20〜70質量%が特に好ましい。このような溶媒の種類及び含有量は、液晶配向剤の塗布装置、塗布条件、塗布環境などに応じて適宜選択される。   Among them, preferred combinations of solvents include N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone and γ-butyrolactone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone and γ- Butyrolactone and propylene glycol monobutyl ether, N-ethyl-2-pyrrolidone and propylene glycol monobutyl ether, N-methyl-2-pyrrolidone and γ-butyrolactone, 4-hydroxy-4-methyl-2-pentanone and diethylene glycol diethyl ether, N- Methyl-2-pyrrolidone, γ-butyrolactone, propylene glycol monobutyl ether and 2,6-dimethyl-4-heptanone, N-methyl-2-pyrrolidone, γ-butyrolactone, and propylene glycol Monobutyl ether and diisopropyl ether, N-methyl-2-pyrrolidone and γ-butyrolactone, propylene glycol monobutyl ether and 2,6-dimethyl-4-heptanol, N-methyl-2-pyrrolidone and γ-butyrolactone and dipropylene glycol dimethyl ether, And the like. The content of the poor solvent is preferably from 1 to 80% by mass, more preferably from 10 to 80% by mass, and particularly preferably from 20 to 70% by mass of the entire solvent contained in the liquid crystal aligning agent. The type and content of such a solvent are appropriately selected according to the application device, application conditions, application environment, and the like of the liquid crystal aligning agent.

本発明の液晶配向剤には、上記の他、本発明に記載の重合体以外の重合体、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体、液晶配向膜と基板との密着性を向上させる目的のシランカップリング剤、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物、更には塗膜を焼成する際にポリイミド前駆体の加熱によるイミド化を効率よく進行させる目的のイミド化促進剤等を含有せしめてもよい。   The liquid crystal alignment agent of the present invention, in addition to the above, a polymer other than the polymer according to the present invention, a dielectric for the purpose of changing the electrical properties of the liquid crystal alignment film such as the dielectric constant and conductivity, a liquid crystal alignment film and A silane coupling agent for the purpose of improving the adhesion to the substrate, a crosslinkable compound for the purpose of increasing the hardness and denseness of the liquid crystal alignment film, and heating of the polyimide precursor when the coating film is baked And an imidization accelerator or the like for the purpose of promoting the imidization by the compound efficiently.

液晶配向膜と基板との密着性を向上させる化合物としては、官能性シラン含有化合物やエポキシ基含有化合物が挙げられ、例えば、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、2−アミノプロピルトリメトキシシラン、2−アミノプロピルトリエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン、3−ウレイドプロピルトリメトキシシラン、3−ウレイドプロピルトリエトキシシラン、N−エトキシカルボニル−3−アミノプロピルトリメトキシシラン、N−エトキシカルボニル−3−アミノプロピルトリエトキシシラン、N−トリエトキシシリルプロピルトリエチレントリアミン、N−トリメトキシシリルプロピルトリエチレントリアミン、10−トリメトキシシリル−1,4,7−トリアザデカン、10−トリエトキシシリル−1,4,7−トリアザデカン、9−トリメトキシシリル−3,6−ジアザノニルアセテート、9−トリエトキシシリル−3,6−ジアザノニルアセテート、N−ベンジル−3−アミノプロピルトリメトキシシラン、N−ベンジル−3−アミノプロピルトリエトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−フェニル−3−アミノプロピルトリエトキシシラン、N−ビス(オキシエチレン)−3−アミノプロピルトリメトキシシラン、N−ビス(オキシエチレン)−3−アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2−ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6−テトラグリシジル−2,4−ヘキサンジオール、N,N,N’,N’,−テトラグリシジル−m−キシレンジアミン、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサンまたはN,N,N’,N’,−テトラグリシジル−4、4’−ジアミノジフェニルメタンなどが挙げられる。   Examples of the compound that improves the adhesiveness between the liquid crystal alignment film and the substrate include a functional silane-containing compound and an epoxy group-containing compound, such as 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, and 3-aminopropyltriethoxysilane. Glycidoxypropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2- (Aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl- 3-aminopropyltrimethoxy Silane, N-ethoxycarbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10 -Triethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-amino Propyltrimethoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (oxyethylene) -3 -Aminopropyltrimethoxysilane, N Bis (oxyethylene) -3-aminopropyltriethoxysilane, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl Ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, N, N , N ', N',-Tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane or N, N, N ', N',-tetraglycidyl Etc. Le-4,4'-diaminodiphenylmethane and the like.

また、本発明の液晶配向剤には、液晶配向膜の機械的強度を上げるために以下のような添加物を添加してもよい。   Further, the following additives may be added to the liquid crystal alignment agent of the present invention in order to increase the mechanical strength of the liquid crystal alignment film.

Figure 2018159733
Figure 2018159733

上記の添加剤は、液晶配向剤に含有される重合体成分の100質量部に対して0.1〜30質量部であることが好ましい。0.1質量部未満であると効果が期待できず、30質量部を超えると液晶の配向性を低下させるため、より好ましくは0.5〜20質量部である。   The amount of the additive is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. If the amount is less than 0.1 part by mass, no effect can be expected. If the amount exceeds 30 parts by mass, the orientation of the liquid crystal is reduced.

<液晶配向膜及び液晶表示素子>
本発明の液晶配向膜は、本発明の液晶配向剤を基板上に塗布して焼成することにより形成できる。
例えば、本発明の液晶配向剤を、基板に塗布した後、必要に応じて乾燥し、焼成を行うことで得られる硬化膜を、そのまま液晶配向膜として用いることもできる。また、この硬化膜をラビングしたり、偏光又は特定の波長の光等を照射したり、イオンビーム等の処理をしたり、PSA用配向膜として液晶充填後の液晶表示素子に電圧を印加した状態でUVを照射することも可能である。特に、PSA用配向膜として使用することが有用である。
<Liquid crystal alignment film and liquid crystal display element>
The liquid crystal alignment film of the present invention can be formed by applying the liquid crystal aligning agent of the present invention on a substrate and baking it.
For example, a cured film obtained by applying the liquid crystal aligning agent of the present invention to a substrate, followed by drying and baking as necessary can be used as a liquid crystal alignment film as it is. The cured film was rubbed, irradiated with polarized light or light of a specific wavelength, treated with an ion beam, or the like, and a voltage was applied to the liquid crystal display element after filling the liquid crystal as a PSA alignment film. UV irradiation is also possible. In particular, it is useful to use it as an alignment film for PSA.

この際、用いる基板としては、透明性の高い基板であれば特に限定されず、ガラス板、ポリカーボネート、ポリ(メタ)アクリレート、ポリエーテルサルホン、ポリアリレート、ポリウレタン、ポリサルホン、ポリエーテル、ポリエーテルケトン、トリメチルペンテン、ポリオレフィン、ポリエチレンテレフタレート、(メタ)アクリロニトリル、トリアセチルセルロース、ジアセチルセルロース、アセテートブチレートセルロースなどのプラスチック基板などを用いることができる。また、液晶駆動のためのITO電極などが形成された基板を用いることがプロセスの簡素化の観点から好ましい。また、反射型の液晶表示素子では片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミ等の光を反射する材料も使用できる。   At this time, the substrate to be used is not particularly limited as long as it is a substrate having high transparency, and is a glass plate, polycarbonate, poly (meth) acrylate, polyethersulfone, polyarylate, polyurethane, polysulfone, polyether, polyetherketone. And a plastic substrate such as trimethylpentene, polyolefin, polyethylene terephthalate, (meth) acrylonitrile, triacetylcellulose, diacetylcellulose and acetate butyratecellulose. It is preferable to use a substrate on which an ITO electrode or the like for driving a liquid crystal is formed from the viewpoint of simplifying the process. In the case of a reflection type liquid crystal display element, an opaque material such as a silicon wafer can be used if only one substrate is used. In this case, a material that reflects light such as aluminum can be used.

液晶配向剤の塗布方法は特に限定されず、スクリーン印刷、オフセット印刷、フレキソ印刷等の印刷法、インクジェット法、スプレー法、ロールコート法や、ディップ、ロールコーター、スリットコーター、スピンナー等が挙げられる。生産性の面から工業的には転写印刷法が広く用いられており、本発明でも好適に用いられる。   The method for applying the liquid crystal aligning agent is not particularly limited, and examples thereof include printing methods such as screen printing, offset printing, and flexographic printing, inkjet methods, spray methods, roll coating methods, dips, roll coaters, slit coaters, and spinners. From the viewpoint of productivity, the transfer printing method is widely used industrially, and is preferably used in the present invention.

上記の方法で液晶配向剤を塗布して形成される塗膜は、焼成して硬化膜とすることができる。液晶配向剤を塗布した後の乾燥の工程は、必ずしも必要とされないが、塗布後から焼成までの時間が基板ごとに一定していない場合、又は塗布後ただちに焼成されない場合には、乾燥工程を行うことが好ましい。この乾燥は、基板の搬送等により塗膜形状が変形しない程度に溶媒が除去されていればよく、その乾燥手段については特に限定されない。例えば、温度40℃〜150℃、好ましくは60℃〜100℃のホットプレート上で、0.5分〜30分、好ましくは1分〜5分乾燥させる方法が挙げられる。   The coating film formed by applying the liquid crystal aligning agent by the above method can be fired to form a cured film. The drying step after applying the liquid crystal aligning agent is not necessarily required, but when the time from application to baking is not constant for each substrate, or when baking is not performed immediately after application, a drying step is performed. Is preferred. This drying may be performed as long as the solvent is removed to such an extent that the shape of the coating film is not deformed by the transfer of the substrate or the like, and the drying means is not particularly limited. For example, a method of drying on a hot plate at a temperature of 40 ° C. to 150 ° C., preferably 60 ° C. to 100 ° C. for 0.5 to 30 minutes, preferably 1 to 5 minutes, may be mentioned.

液晶配向剤を塗布することにより形成された塗膜の焼成温度は限定されず、例えば100〜350℃、好ましくは120〜350℃であり、さらに好ましくは150℃〜330℃である。焼成時間は5分〜240分、好ましくは10分〜90分であり、より好ましくは10分〜30分である。加熱は、通常公知の方法、例えば、ホットプレート、熱風循環炉、赤外線炉などで行うことができる。   The baking temperature of the coating film formed by applying the liquid crystal alignment agent is not limited, and is, for example, 100 to 350 ° C, preferably 120 to 350 ° C, and more preferably 150 to 330 ° C. The firing time is 5 minutes to 240 minutes, preferably 10 minutes to 90 minutes, and more preferably 10 minutes to 30 minutes. Heating can be performed by a generally known method, for example, a hot plate, a hot air circulation furnace, an infrared furnace, or the like.

また、焼成して得られる液晶配向膜の厚みは特に限定されないが、好ましくは5〜300nm、より好ましくは20〜200nmである。   The thickness of the liquid crystal alignment film obtained by firing is not particularly limited, but is preferably 5 to 300 nm, more preferably 20 to 200 nm.

液晶表示素子は、上記の方法により、基板に液晶配向膜を形成した後、公知の方法で液晶セルを作製できる。液晶表示素子の具体例としては、対向するように配置された2枚の基板と、基板間に設けられた液晶層と、基板と液晶層との間に設けられ液晶配向剤により形成された上記液晶配向膜とを有する液晶セルを具備する垂直配向方式の液晶表示素子である。具体的には、液晶配向剤を2枚の基板上に塗布して焼成することにより液晶配向膜を形成し、この液晶配向膜が対向するように2枚の基板を配置し、この2枚の基板の間に液晶で構成された液晶層を挟持することで作製される液晶セルを具備する垂直配向方式の液晶表示素子である。   In the liquid crystal display element, a liquid crystal cell can be manufactured by a known method after forming a liquid crystal alignment film on a substrate by the above method. Specific examples of the liquid crystal display element include two substrates disposed so as to face each other, a liquid crystal layer provided between the substrates, and a liquid crystal alignment agent provided between the substrates and the liquid crystal layer and formed by a liquid crystal alignment agent. This is a vertical alignment type liquid crystal display device including a liquid crystal cell having a liquid crystal alignment film. Specifically, a liquid crystal alignment agent is applied on two substrates and baked to form a liquid crystal alignment film, and the two substrates are arranged so that the liquid crystal alignment films face each other. A vertical alignment type liquid crystal display device including a liquid crystal cell manufactured by sandwiching a liquid crystal layer formed of liquid crystal between substrates.

本発明の特定重合体を含有する液晶配向剤により形成された液晶配向膜を用い、液晶配向膜及び液晶層に電圧を印加しながら紫外線を照射して液晶中に含まれる重合性化合物を反応させることにより、垂直配向能が顕著に優れたPSA方式液晶表示素子となる。   Using a liquid crystal alignment film formed of a liquid crystal alignment agent containing the specific polymer of the present invention, a liquid crystal alignment film and a liquid crystal layer are irradiated with ultraviolet rays while applying a voltage to react a polymerizable compound contained in the liquid crystal. As a result, a PSA mode liquid crystal display device having a remarkably excellent vertical alignment ability can be obtained.

液晶表示素子の基板としては、透明性の高い基板であれば特に限定されないが、通常は、基板上に液晶を駆動するための透明電極が形成された基板である。具体例としては、上記液晶配向膜で記載した基板と同様のものを挙げることができる。従来の電極パターンや突起パターンが設けられた基板を用いてもよいが、PSA方式液晶表示素子においては、本発明のポリイミド系重合体を含有する液晶配向剤を用いているため、片側基板に例えば1から10μmのライン/スリット電極パターンを形成し、対向基板にはスリットパターンや突起パターンを形成していない構造においても動作可能であり、この構造の液晶表示素子によって、製造時のプロセスを簡略化でき、高い透過率を得ることができる。   The substrate of the liquid crystal display element is not particularly limited as long as it is a substrate having high transparency, but is usually a substrate on which a transparent electrode for driving liquid crystal is formed. As a specific example, the same substrate as the substrate described for the liquid crystal alignment film can be used. A substrate provided with a conventional electrode pattern or projection pattern may be used.However, in the PSA mode liquid crystal display element, since the liquid crystal alignment agent containing the polyimide polymer of the present invention is used, for example, A line / slit electrode pattern of 1 to 10 μm is formed, and it can operate even in a structure in which a slit pattern or a protrusion pattern is not formed on the opposing substrate. The liquid crystal display element of this structure simplifies the manufacturing process. And high transmittance can be obtained.

また、TFT型の素子のような高機能素子においては、液晶駆動のための電極と基板の間にトランジスタの如き素子が形成されたものが用いられる。
透過型の液晶表示素子の場合は、上記の如き基板を用いることが一般的であるが、反射型の液晶表示素子では、片側の基板のみにならばシリコンウエハー等の不透明な基板も用いることが可能である。その際、基板に形成された電極には、光を反射するアルミニウムの如き材料を用いることもできる。
In the case of a high-performance element such as a TFT element, an element such as a transistor formed between an electrode for driving liquid crystal and a substrate is used.
In the case of a transmissive liquid crystal display device, it is common to use the above-described substrate, but in the case of a reflective liquid crystal display device, an opaque substrate such as a silicon wafer may be used if only one substrate is used. It is possible. At this time, a material such as aluminum which reflects light can be used for the electrode formed on the substrate.

液晶表示素子の液晶層を構成する液晶材料は特に限定されず、従来の垂直配向方式で使用される液晶材料、例えば、メルク社製のMLC−6608やMLC−6609、MLC-3023などのネガ型の液晶を用いることができる。また、PSA方式液晶表示素子では、例えば下記式で表されるような重合性化合物含有の液晶を使用することができる。   The liquid crystal material constituting the liquid crystal layer of the liquid crystal display element is not particularly limited, and liquid crystal materials used in a conventional vertical alignment system, for example, negative type such as MLC-6608, MLC-6609, and MLC-3023 manufactured by Merck & Co. Liquid crystal can be used. In the PSA-type liquid crystal display device, for example, a liquid crystal containing a polymerizable compound represented by the following formula can be used.

Figure 2018159733
Figure 2018159733

液晶層を2枚の基板の間に挟持させる方法としては、公知の方法を挙げることができる。例えば、液晶配向膜が形成された1対の基板を用意し、一方の基板の液晶配向膜上にビーズ等のスペーサーを散布し、液晶配向膜が形成された側の面が内側になるようにしてもう一方の基板を貼り合わせ、液晶を減圧注入して封止する方法が挙げられる。また、液晶配向膜が形成された1対の基板を用意し、一方の基板の液晶配向膜上にビーズ等のスペーサーを散布した後に液晶を滴下し、その後液晶配向膜が形成された側の面が内側になるようにしてもう一方の基板を貼り合わせて封止を行う方法でも液晶セルを作製できる。上記スペーサーの厚みは、好ましくは1〜30μm、より好ましくは2〜10μmである。   As a method of sandwiching the liquid crystal layer between two substrates, a known method can be used. For example, a pair of substrates on which a liquid crystal alignment film is formed is prepared, and spacers such as beads are scattered on the liquid crystal alignment film of one of the substrates so that the surface on which the liquid crystal alignment film is formed is inside. Then, the other substrate is bonded, and a liquid crystal is injected under reduced pressure and sealed. In addition, a pair of substrates on which a liquid crystal alignment film is formed is prepared, a spacer such as beads is scattered on the liquid crystal alignment film of one of the substrates, and then liquid crystal is dropped, and then the surface on which the liquid crystal alignment film is formed is formed. The liquid crystal cell can also be manufactured by a method in which the other substrate is bonded and sealed so that the inside is inside. The thickness of the spacer is preferably 1 to 30 μm, more preferably 2 to 10 μm.

液晶配向膜及び液晶層に電圧を印加しながら紫外線を照射することにより液晶セルを作製する工程は、例えば基板上に設置されている電極間に電圧をかけることで液晶配向膜及び液晶層に電界を印加し、この電界を保持したまま紫外線を照射する方法が挙げられる。ここで、電極間にかける電圧としては、例えば5〜30Vp−p、好ましくは5〜20Vp−pである。紫外線の照射量は、例えば、1〜60J、好ましくは40J以下であり、紫外線照射量が少ないほうが、液晶表示素子を構成する部材の破壊により生じる信頼性低下を抑制でき、かつ紫外線照射時間を減らせることで製造効率が上がるので好適である。   The step of manufacturing a liquid crystal cell by irradiating ultraviolet rays while applying a voltage to the liquid crystal alignment film and the liquid crystal layer includes, for example, applying a voltage between electrodes provided on a substrate to apply an electric field to the liquid crystal alignment film and the liquid crystal layer. And irradiating ultraviolet rays while maintaining the electric field. Here, the voltage applied between the electrodes is, for example, 5 to 30 Vp-p, preferably 5 to 20 Vp-p. The irradiation amount of the ultraviolet ray is, for example, 1 to 60 J, preferably 40 J or less. The smaller the irradiation amount of the ultraviolet ray, the more the reduction in reliability caused by the destruction of the members constituting the liquid crystal display element can be suppressed, and the shorter the irradiation time of the ultraviolet ray. This is preferable because the production efficiency increases.

上記のように、液晶配向膜及び液晶層に電圧を印加しながら紫外線を照射すると、重合性化合物が反応して重合体を形成し、この重合体により液晶分子が傾く方向が記憶されることで、得られる液晶表示素子の応答速度を速くすることができる。また、液晶配向膜及び液晶層に電圧を印加しながら紫外線を照射すると、液晶を垂直に配向させる側鎖と、光反応性の側鎖とを有するポリイミド前駆体、及び、このポリイミド前駆体をイミド化して得られるポリイミドから選択される少なくとも一種の重合体が有する光反応性の側鎖同士や、重合体が有する光反応性の側鎖と重合性化合物が反応するため、得られる液晶表示素子の応答速度を速くすることができる。   As described above, when ultraviolet rays are applied while applying a voltage to the liquid crystal alignment film and the liquid crystal layer, the polymerizable compound reacts to form a polymer, and the direction in which the liquid crystal molecules tilt is stored by the polymer. The response speed of the obtained liquid crystal display element can be increased. Further, when ultraviolet rays are applied to the liquid crystal alignment film and the liquid crystal layer while applying a voltage, a polyimide precursor having a side chain for vertically aligning the liquid crystal and a photoreactive side chain, and this polyimide precursor is an imide. Since the photoreactive side chains of at least one polymer selected from the polyimide obtained by the polymerization and the photoreactive side chains of the polymer react with the polymerizable compound, the resulting liquid crystal display element The response speed can be increased.

以下に実施例を挙げ、本発明をさらに詳しく説明するが、本発明は、これらに限定して解釈されるものではない。使用した化合物の略語は、以下の通りである。
(液晶)
MLC-3023(メルク社製、ネガ型重合性化合物含有液晶)
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention should not be construed as being limited thereto. The abbreviations of the compounds used are as follows:
(liquid crystal)
MLC-3023 (Merck, negative type polymerizable compound-containing liquid crystal)

(特定側鎖型ジアミン成分)
W−A1:式[W−A1]で表される化合物
W−A2:式[W−A2]で表される化合物
W−A3:式[W−A3]で表される化合物
W−A4:式[W−A4]で表される化合物
W−A5:式[W−A5]で表される化合物
W−A6:式[W−A6]で表される化合物
W−A7:式[W−A7]で表される化合物
W−A8:式[W−A8]で表される化合物
W−A9:式[W−A9]で表される化合物
W−A10:式[W−A10]で表される化合物
(Specific side chain type diamine component)
W-A1: Compound W-A2 represented by Formula [W-A1]: Compound W-A3 represented by Formula [W-A2]: Compound W-A4 represented by Formula [W-A3]: Formula Compound W-A5 represented by [W-A4]: Compound W-A6 represented by Formula [W-A5]: Compound WA-A7 represented by Formula [W-A6]: Formula [W-A7] Compound WA8 represented by the formula: Compound WA9 represented by the formula [W-A8]: Compound WA10 represented by the formula [W-A9]: Compound represented by the formula [W-A10]

Figure 2018159733
Figure 2018159733

(その他側鎖型ジアミン化合物)
A1:式[A1]で表される化合物
A2:式[A2]で表される化合物
A3:式[A3]で表される化合物
(Other side chain type diamine compounds)
A1: Compound represented by formula [A1] A2: Compound represented by formula [A2] A3: Compound represented by formula [A3]

Figure 2018159733
Figure 2018159733

(その他のジアミン化合物)
C1:式[C1]で表される化合物
C2:式[C2]で表される化合物
C3:式[C3]で表される化合物
C4:式[C4]で表される化合物
C5:式[C5]で表される化合物
C6:式[C6]で表される化合物
C7:式[C7]で表される化合物
C8:式[C8]で表される化合物
C9:式[C9]で表される化合物
C10:式[C10]で表される化合物
(Other diamine compounds)
C1: Compound represented by Formula [C1] C2: Compound represented by Formula [C2] C3: Compound represented by Formula [C3] C4: Compound represented by Formula [C4] C5: Formula [C5] C6: a compound represented by the formula [C6] C7: a compound represented by the formula [C7] C8: a compound represented by the formula [C8] C9: a compound represented by the formula [C9] C10 : Compound represented by formula [C10]

Figure 2018159733
Figure 2018159733

(テトラカルボン酸成分)
D1:1,2,3,4−シクロブタンテトラカルボン酸二無水物
D2:ビシクロ[3,3,0]オクタン−2,4,6,8−テトラカルボン酸二無水物
D3:ピロメリット酸二無水物
D4:2,3,5‐トリカルボキシシクロペンチル酢酸二無水物
D5:3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物
(Tetracarboxylic acid component)
D1: 1,2,3,4-cyclobutanetetracarboxylic dianhydride D2: Bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride D3: Pyromellitic dianhydride Compound D4: 2,3,5-tricarboxycyclopentylacetic acid dianhydride D5: 3,3 ', 4,4'-diphenylsulfonetetracarboxylic dianhydride

Figure 2018159733
Figure 2018159733

(溶媒)
NMP:N−メチル−2−ピロリドン
BCS:エチレングリコールモノブチルエーテル
NEP:N−エチル−2−ピロリドン
(架橋剤)
E1:下記式(E1)であらわされる架橋剤
(添加剤)
E2:3−ピコリルアミン
(solvent)
NMP: N-methyl-2-pyrrolidone BCS: ethylene glycol monobutyl ether NEP: N-ethyl-2-pyrrolidone (crosslinking agent)
E1: Crosslinking agent (additive) represented by the following formula (E1)
E2: 3-picolylamine

Figure 2018159733
Figure 2018159733

(分子量測定)
ポリイミド前駆体及びポリイミドの分子量は、常温ゲル浸透クロマトグラフィー(GPC)装置(GPC−101)(昭和電工社製)、カラム(KD−803,KD−805)(Shodex社製)を用いて、以下のようにして測定した。
カラム温度:50℃
溶離液:N,N’−ジメチルホルムアミド(添加剤として、臭化リチウム−水和物(LiBr・HO)が30mmol/L(リットル)、リン酸・無水結晶(o−リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0ml/分
検量線作成用標準サンプル:TSK 標準ポリエチレンオキサイド(分子量;約900,000、150,000、100,000及び30,000)(東ソー社製)及びポリエチレングリコール(分子量;約12,000、4,000及び1,000)(ポリマーラボラトリー社製)。
(Molecular weight measurement)
The molecular weights of the polyimide precursor and the polyimide were determined using a room temperature gel permeation chromatography (GPC) apparatus (GPC-101) (manufactured by Showa Denko KK) and a column (KD-803, KD-805) (manufactured by Shodex) using the following methods. Was measured as follows.
Column temperature: 50 ° C
Eluent: N, N'as dimethylformamide (additive, lithium bromide - hydrate (LiBr-H 2 O) is 30mmol / L (liter), phosphoric acid anhydride crystals (o-phosphoric acid) 30mmol / L, tetrahydrofuran (THF) is 10 ml / L)
Flow rate: 1.0 ml / min Standard sample for preparing a calibration curve: TSK standard polyethylene oxide (molecular weight; about 900,000, 150,000, 100,000 and 30,000) (manufactured by Tosoh Corporation) and polyethylene glycol (molecular weight; about 12,000, 4,000 and 1,000) (manufactured by Polymer Laboratory).

(ポリイミドのイミド化率の測定)
ポリイミド粉末20mgをNMR(核磁気共鳴)サンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO−d6,0.05質量%TMS(テトラメチルシラン)混合品)(0.53ml)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW−ECA500)(日本電子データム社製)にて、500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5〜10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
イミド化率(%)=(1−α・x/y)×100
上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
(Measurement of imidation ratio of polyimide)
20 mg of the polyimide powder is placed in an NMR (nuclear magnetic resonance) sample tube (NMR sampling tube standard, φ5 (manufactured by Kusano Science)), and deuterated dimethyl sulfoxide (DMSO-d6, 0.05% by mass TMS (tetramethylsilane)) (Mixture) (0.53 ml) was added, and the mixture was completely dissolved by sonication. The solution was measured for proton NMR at 500 MHz using an NMR measuring device (JNW-ECA500) (manufactured by JEOL Datum). The imidation rate is determined by using a proton derived from a structure that does not change before and after imidation as a reference proton, and a peak integrated value of this proton and a proton peak derived from an NH group of amic acid appearing around 9.5 to 10.0 ppm. It was determined by the following equation using the integrated value.
Imidation ratio (%) = (1−α · x / y) × 100
In the above formula, x is the integrated value of the proton peak derived from the NH group of the amic acid, y is the integrated value of the peak of the reference proton, and α is one NH group proton of the amic acid in the case of polyamic acid (imidation ratio is 0%) Is the ratio of the number of reference protons to

(粘度測定)
合成例または比較合成例において、ポリイミド系重合体の粘度はE型粘度計TVE−22H(東機産業株式会社製)を用い、サンプル量1.1mL、コーンロータTE−1(1°34’、R24)、温度25℃で測定した。
(Viscosity measurement)
In the synthesis example or the comparative synthesis example, the viscosity of the polyimide-based polymer was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), the sample amount was 1.1 mL, and the cone rotor TE-1 (1 ° 34 ′, R24), measured at a temperature of 25 ° C.

W−A1〜W−A3及びW−A4〜W−A10は文献等未公開の新規化合物であり、以下に合成法を詳述する。
下記合成例1〜3及び合成例4〜10に記載の生成物は1H−NMR分析により同定した(分析条件は下記の通り)。
装置:Varian NMR System 400 NB (400 MHz)。
測定溶媒:CDCl3、DMSO−d
基準物質:テトラメチルシラン(TMS)(δ0.0 ppm for H)。
W-A1 to W-A3 and W-A4 to W-A10 are novel compounds which have not been published yet in literatures, and the synthesis methods will be described in detail below.
The products described in Synthesis Examples 1 to 3 and 4 to 10 below were identified by 1 H-NMR analysis (analysis conditions are as follows).
Apparatus: Varian NMR System 400 NB (400 MHz).
Measurement solvent: CDCl 3, DMSO-d 6 .
Reference substance: tetramethylsilane (TMS) (δ0.0 ppm for 1 H).

<<合成例1 W−A1の合成>> << Synthesis Example 1 Synthesis of W-A1 >>

Figure 2018159733
Figure 2018159733

<化合物[1]及び化合物[2]の合成>
テトラヒドロフラン(165.6g)中、4,4’−ジニトロ−1,1’−ビフェニル−2,2’−ジメタノール(41.1g、135mmol)とトリエチルアミン(31.5g)を仕込み、窒素雰囲気氷冷条件にてメタンスルホニルクロリド(33.2g)を滴下し、1時間反応させることで化合物[1]を得た。続いて、テトラヒドロフラン(246.6g)に溶解させたp−(trans−4−ヘプチルシクロヘキシル)フェノール(77.8g)を加え、40℃で1時間撹拌後、純水(233g)に溶解させた水酸化カリウム(41.0g)を同温度にて加え、21時間反応させた。反応終了後、1.0M塩酸水溶液(311ml)及び純水(1050g)を加えて粗物を析出させ、ろ過により粗物を回収した。得られた粗物をテトラヒドロフラン(574g)に50℃加熱溶解させ、メタノール(328g)を加えて結晶を析出させ、ろ過、乾燥することで化合物[2]を得た(収量:97.9g、収率:89%)。
H−NMR(400MHz) in CDCl:0.87−0.90ppm(m,6H), 0.96−1.05ppm(m,4H), 1.19−1.39ppm(m,30H), 1.80−1.85ppm(m,8H), 2.33−2.40ppm(m,2H), 4.77ppm(s,4H), 6.66−6.70ppm(m,4H), 7.02−7.06ppm(m,4H),7.40ppm(d,2H,8.4), 8.25ppm(dd,2H,J=2.4Hz,J=8.4Hz), 8.54ppm(d,2H,J=2.4Hz).
<Synthesis of Compound [1] and Compound [2]>
In tetrahydrofuran (165.6 g), 4,4′-dinitro-1,1′-biphenyl-2,2′-dimethanol (41.1 g, 135 mmol) and triethylamine (31.5 g) were charged, and cooled in a nitrogen atmosphere under ice-cooling. Under the conditions, methanesulfonyl chloride (33.2 g) was added dropwise and allowed to react for 1 hour to obtain compound [1]. Subsequently, p- (trans-4-heptylcyclohexyl) phenol (77.8 g) dissolved in tetrahydrofuran (246.6 g) was added, and the mixture was stirred at 40 ° C. for 1 hour, and then dissolved in pure water (233 g). Potassium oxide (41.0 g) was added at the same temperature and reacted for 21 hours. After completion of the reaction, a 1.0 M aqueous hydrochloric acid solution (311 ml) and pure water (1050 g) were added to precipitate a crude product, and the crude product was recovered by filtration. The obtained crude product was heated and dissolved in tetrahydrofuran (574 g) at 50 ° C., and methanol (328 g) was added to precipitate crystals, which was filtered and dried to obtain compound [2] (yield: 97.9 g, yield). Rate: 89%).
1 H-NMR (400 MHz) in CDCl 3 : 0.87-0.90 ppm (m, 6H), 0.96-1.05 ppm (m, 4H), 1.9-1.39 ppm (m, 30H), 1.80-1.85 ppm (m, 8H), 2.33-2.40 ppm (m, 2H), 4.77 ppm (s, 4H), 6.66-6.70 ppm (m, 4H), 7. 02-7.06 ppm (m, 4H), 7.40 ppm (d, 2H, 8.4), 8.25 ppm (dd, 2H, J = 2.4 Hz, J = 8.4 Hz), 8.54 ppm (d , 2H, J = 2.4 Hz).

<W−A1の合成>
テトラヒドロフラン(1783g)中、化合物[2](74.3g,90.9mmol)と3%プラチナカーボン(5.94g)を仕込み、水素雰囲気室温条件で反応させた。反応終了後、反応混合物をろ過し、ろ液を減圧濃縮することで内部総重量を145gとした。続いて、濃縮溶液にメタノール(297g)を加え、氷冷撹拌し、ろ過、乾燥することでW−A1を得た(収量:59.2g、収率:86%)。
H−NMR(400MHz) in CDCl:0.87−0.90ppm(m,6H), 0.96−1.05ppm(m,4H), 1.19−1.40ppm(m,30H), 1.81−1.84ppm(m,8H), 2.32−2.38ppm(m,2H), 3.67ppm(s,4H),4.69ppm(d,2H,J=12.0Hz), 4.74ppm(d,2H,J=11.6Hz), 6.62ppm(dd,2H,J=2.4Hz,J=8.0Hz), 6.70−6.75ppm(m,4H), 6.91ppm(d,2H,J=2.4Hz), 6.97−7.03ppm(m,6H).
<Synthesis of W-A1>
Compound [2] (74.3 g, 90.9 mmol) and 3% platinum carbon (5.94 g) in tetrahydrofuran (1783 g) were charged and reacted under a hydrogen atmosphere at room temperature. After completion of the reaction, the reaction mixture was filtered, and the filtrate was concentrated under reduced pressure to a total internal weight of 145 g. Subsequently, methanol (297 g) was added to the concentrated solution, and the mixture was stirred under ice-cooling, filtered, and dried to obtain W-A1 (yield: 59.2 g, 86%).
1 H-NMR (400 MHz) in CDCl 3 : 0.87-0.90 ppm (m, 6H), 0.96-1.05 ppm (m, 4H), 1.19-1.40 ppm (m, 30H), 1.81-1.84 ppm (m, 8H), 2.32-2.38 ppm (m, 2H), 3.67 ppm (s, 4H), 4.69 ppm (d, 2H, J = 12.0 Hz), 4.74 ppm (d, 2H, J = 11.6 Hz), 6.62 ppm (dd, 2H, J = 2.4 Hz, J = 8.0 Hz), 6.70-6.75 ppm (m, 4H), 6 .91 ppm (d, 2H, J = 2.4 Hz), 6.97-7.03 ppm (m, 6H).

<<合成例2 W−A2の合成>> << Synthesis Example 2 Synthesis of W-A2 >>

Figure 2018159733
Figure 2018159733

<化合物[3]の合成>
テトラヒドロフラン(327.2g)中、4,4’−ジニトロ−2,2’−ジフェン酸(40.9g、123mmol)とp−(trans−4−ヘプチルシクロヘキシル)フェノール(72.1g)、4−ジメチルアミノピリジン(1.50g)を仕込み、窒素雰囲気室温条件下で1−(3−ジメチルアミノプロピル)−3−エチルカルボジイミド塩酸塩(56.6g)を投入し、3時間反応させた。反応終了後、純水(1226g)中に反応液を注ぎ込み、粗物を析出させ、ろ過により回収した。続いて、粗物をメタノール(245g)でスラリー洗浄後、ろ過し、得られた粗物をテトラヒドロフラン(245g)に60℃加熱溶解させた。ろ過により不溶物を除去後、減圧濃縮により内部総重量を232gとした後に、メタノール(163g)を加えて結晶を析出させ、氷冷条件下で撹拌後、ろ過、乾燥することで化合物[3]を得た(収量:73.9g、収率:71%)。
H−NMR(400MHz) in CDCl: 0.87−0.90ppm(m,6H), 0.98−1.06ppm(m,4H), 1.18−1.43ppm(m,30H), 1.83−1.86ppm(m,8H), 2.41−2.47ppm(m,2H), 6.89−6.92ppm(m,4H), 7.17−7.20ppm(m,4H), 7.48ppm(d,2H,8.4), 8.49ppm(dd,2H,J=2.4Hz,J=8.4Hz), 9.11ppm(d,2H,J=2.4Hz).
<Synthesis of Compound [3]>
4,4′-Dinitro-2,2′-diphenic acid (40.9 g, 123 mmol) and p- (trans-4-heptylcyclohexyl) phenol (72.1 g) in tetrahydrofuran (327.2 g), 4-dimethyl Aminopyridine (1.50 g) was charged, 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (56.6 g) was charged under a nitrogen atmosphere at room temperature, and the mixture was reacted for 3 hours. After completion of the reaction, the reaction solution was poured into pure water (1226 g) to precipitate a crude product, which was collected by filtration. Subsequently, the crude material was slurry-washed with methanol (245 g) and then filtered, and the obtained crude material was dissolved in tetrahydrofuran (245 g) by heating at 60 ° C. After removing insoluble matter by filtration, the total internal weight was reduced to 232 g by concentration under reduced pressure, and methanol (163 g) was added to precipitate crystals. The mixture was stirred under ice-cooling conditions, filtered, and dried to obtain compound [3]. Was obtained (yield: 73.9 g, yield: 71%).
1 H-NMR (400 MHz) in CDCl 3 : 0.87-0.90 ppm (m, 6H), 0.98-1.06 ppm (m, 4H), 1.18-1.43 ppm (m, 30H), 1.83-1.86 ppm (m, 8H), 2.41-2.47 ppm (m, 2H), 6.89-6.92 ppm (m, 4H), 7.17-7.20 ppm (m, 4H) ), 7.48 ppm (d, 2H, 8.4), 8.49 ppm (dd, 2H, J = 2.4 Hz, J = 8.4 Hz), 9.11 ppm (d, 2H, J = 2.4 Hz) .

<W−A2の合成>
テトラヒドロフラン(443g)及びメタノール(73.9g)中、化合物[3](73.9g、87.4mmol)と5%パラジウムカーボン(8.80g)を仕込み、水素雰囲気室温条件で反応させた。反応終了後、ろ過によりパラジウムカーボンを除去し、減圧濃縮により内部総重量を171gとした。続いて、濃縮溶液にメタノール(222g)を加えて結晶を析出させ、氷冷撹拌し、ろ過、乾燥することでW−A2を得た(収量:66.6g、収率:97%)。
H−NMR(400MHz) in CDCl: 0.87−0.90ppm(m,6H), 0.96−1.05ppm(m,4H), 1.17−1.42ppm(m,30H),1.82−1.85ppm(m,8H), 2.38−2.44ppm(m,2H), 3.77ppm(s,4H), 6.80−6.87ppm(m,6H),7.08−7.13ppm(m,6H), 7.41ppm(d,2H,J=2.4Hz).
<Synthesis of W-A2>
Compound [3] (73.9 g, 87.4 mmol) and 5% palladium carbon (8.80 g) in tetrahydrofuran (443 g) and methanol (73.9 g) were charged and reacted under a hydrogen atmosphere at room temperature. After completion of the reaction, palladium carbon was removed by filtration, and the total internal weight was reduced to 171 g by concentration under reduced pressure. Subsequently, methanol (222 g) was added to the concentrated solution to precipitate crystals, which were stirred under ice-cooling, filtered and dried to obtain W-A2 (yield: 66.6 g, yield: 97%).
1 H-NMR (400 MHz) in CDCl 3 : 0.87-0.90 ppm (m, 6H), 0.96-1.05 ppm (m, 4H), 1.17-1.42 ppm (m, 30H), 1.82-1.85 ppm (m, 8H), 2.38-2.44 ppm (m, 2H), 3.77 ppm (s, 4H), 6.80-6.87 ppm (m, 6H), 7. 08-7.13 ppm (m, 6H), 7.41 ppm (d, 2H, J = 2.4 Hz).

<<合成例3 W−A3の合成>> << Synthesis Example 3 Synthesis of W-A3 >>

Figure 2018159733
Figure 2018159733

<化合物[4]及び化合物[5]の合成>
トルエン(366g)中、4−(trans−4−ヘプチルシクロヘキシル)−安息香酸(73.1g、242mmol)とN,N−ジメチルホルムアミド(0.73g)を仕込み、窒素雰囲気50℃条件下で塩化チオニル(35.9g)を滴下した。滴下後、同温度で1時間反応させた後、反応溶液を減圧濃縮することで化合物[4]を得た。続いて、テトラヒドロフラン(210g)中、4,4’−ジニトロ−1,1’−ビフェニル−2,2’−ジメタノール(35.0g、115mmol)とトリエチルアミン(26.8g)を仕込み、窒素雰囲気氷冷条件下にて、テトラヒドロフラン(73.1g)に溶解させた化合物[4]を滴下した。滴下終了後、反応温度を室温にして18時間反応させた。反応終了後、ろ過によりトリエチルアミン塩酸塩を除去後、減圧濃縮によりオイル状化合物を得た。得られたオイル状化合物を純水(1015g)中に加えることで結晶を析出させ、ろ過により粗物を回収した。続いて、得られた粗物をメタノール(291g)で室温スラリー洗浄、酢酸エチル(175g)で室温スラリー洗浄し、ろ過、乾燥することで化合物[5]を得た(収量:92.7g、 収率:92%)。
H−NMR(400MHz) in CDCl: 0.89−0.91ppm(m,6H), 0.99−1.09ppm(m,4H), 1.20−1.47ppm(m,30H),1.85−1.88ppm(m,8H), 2.46−2.52ppm(m,2H), 5.14ppm(s,4H), 7.23−7.26ppm(m,4H),7.45ppm(d,2H,J=8.4Hz),7.83−7.86ppm(m,4H),8.27ppm(dd,2H,J=2.4Hz,J=8.4Hz), 8.47ppm(d,2H,J=2.4Hz).
<Synthesis of Compound [4] and Compound [5]>
In toluene (366 g), 4- (trans-4-heptylcyclohexyl) -benzoic acid (73.1 g, 242 mmol) and N, N-dimethylformamide (0.73 g) were charged, and thionyl chloride was placed under a nitrogen atmosphere at 50 ° C. (35.9 g) was added dropwise. After the dropwise addition, the mixture was reacted at the same temperature for 1 hour, and then the reaction solution was concentrated under reduced pressure to obtain compound [4]. Subsequently, 4,4′-dinitro-1,1′-biphenyl-2,2′-dimethanol (35.0 g, 115 mmol) and triethylamine (26.8 g) were charged in tetrahydrofuran (210 g), and the mixture was charged with ice in a nitrogen atmosphere. Under cold conditions, compound [4] dissolved in tetrahydrofuran (73.1 g) was added dropwise. After the completion of the dropwise addition, the reaction was carried out at room temperature for 18 hours. After completion of the reaction, triethylamine hydrochloride was removed by filtration, and then an oily compound was obtained by concentration under reduced pressure. Crystals were precipitated by adding the obtained oily compound to pure water (1015 g), and a crude product was recovered by filtration. Subsequently, the obtained crude product was washed with methanol (291 g) at room temperature, washed with ethyl acetate (175 g) at room temperature, filtered, and dried to obtain compound [5] (yield: 92.7 g, yield: 92.7 g). Rate: 92%).
1 H-NMR (400 MHz) in CDCl 3 : 0.89-0.91 ppm (m, 6H), 0.99-1.09 ppm (m, 4H), 1.20-1.47 ppm (m, 30H), 1.85-1.88 ppm (m, 8H), 2.46-2.52 ppm (m, 2H), 5.14 ppm (s, 4H), 7.23-7.26 ppm (m, 4H), 7. 45 ppm (d, 2H, J = 8.4 Hz), 7.83-7.86 ppm (m, 4H), 8.27 ppm (dd, 2H, J = 2.4 Hz, J = 8.4 Hz), 8.47 ppm (D, 2H, J = 2.4 Hz).

<W−A3の合成>
テトラヒドロフラン(484g)及びメタノール(161g)中、化合物[5](80.5g、92.2mmol)と3%プラチナカーボン(6.44g)を仕込み、水素雰囲気室温条件下で反応させた。反応終了後、ろ過によりプラチナカーボンを除去し、減圧濃縮により溶媒を除去することで内部総重量を96.6gとした。続いて、濃縮溶液にメタノール(322g)を加えて結晶を析出させ、氷冷撹拌し、ろ過することで粗物を得た。続いて、得られた粗物を酢酸エチル(322g)で60℃加熱溶解させ、メタノール(700g)を加え、氷冷条件下で結晶を析出させ、ろ過、乾燥することでW−A3を得た(収量:67.9g、収率:91%)。
H−NMR(400MHz) in CDCl: 0.87−0.91ppm(m,6H), 0.98−1.08ppm(m,4H), 1.19−1.47ppm(m,30H),1.84−1.87ppm(m,8H), 2.44−2.51ppm(m,2H), 3.71ppm(s,4H), 5.02ppm(d,2H,J=12.8Hz), 5.09ppm(d,2H,J=12.4Hz),6.66ppm(dd,2H,J=2.4Hz,J=8.0Hz),6.84ppm(d,2H,J=2.4Hz),7.03ppm(d,2H,J=8.0Hz),7.19−7.25ppm(m,4H),7.89−7.92ppm(m,4H).
<Synthesis of W-A3>
Compound [5] (80.5 g, 92.2 mmol) and 3% platinum carbon (6.44 g) in tetrahydrofuran (484 g) and methanol (161 g) were charged and reacted under a hydrogen atmosphere at room temperature. After completion of the reaction, platinum carbon was removed by filtration, and the solvent was removed by concentration under reduced pressure to make the total internal weight 96.6 g. Subsequently, methanol (322 g) was added to the concentrated solution to precipitate crystals, which were stirred with ice cooling and filtered to obtain a crude product. Subsequently, the obtained crude product was dissolved by heating at 60 ° C. with ethyl acetate (322 g), methanol (700 g) was added, crystals were precipitated under ice-cooling conditions, and the crystals were filtered and dried to obtain W-A3. (Yield: 67.9 g, yield: 91%).
1 H-NMR (400 MHz) in CDCl 3 : 0.87 to 0.91 ppm (m, 6H), 0.98 to 1.08 ppm (m, 4H), 1.19 to 1.47 ppm (m, 30H), 1.84-1.87 ppm (m, 8H), 2.44-2.51 ppm (m, 2H), 3.71 ppm (s, 4H), 5.02 ppm (d, 2H, J = 12.8 Hz), 5.09 ppm (d, 2H, J = 12.4 Hz), 6.66 ppm (dd, 2H, J = 2.4 Hz, J = 8.0 Hz), 6.84 ppm (d, 2H, J = 2.4 Hz) , 7.03 ppm (d, 2H, J = 8.0 Hz), 7.19-7.25 ppm (m, 4H), 7.89-7.92 ppm (m, 4H).

<<合成例4 W−A4の合成>> << Synthesis Example 4 Synthesis of W-A4 >>

Figure 2018159733
Figure 2018159733

<化合物[6]及び化合物[7]の合成>
トルエン(134g)中、trans, trans−4’−アミルビシクロヘキシル−4−カルボン酸(26.7g、95.1mmol)とN,N−ジメチルホルムアミド(0.401g)を仕込み、窒素雰囲気50℃条件下で塩化チオニル(13.6g、114mmol)を滴下した。滴下後、同温度で1時間反応させた後、反応溶液を減圧濃縮することで化合物[6]を得た。続いて、テトラヒドロフラン(63.0g)中、4,4’−ジニトロ−1,1’−ビフェニル−2,2’−ジメタノール(12.6g、41.4mmol)とトリエチルアミン(10.9g、108mmol)を仕込み、窒素雰囲気氷冷条件下にて、テトラヒドロフラン(12.6g)に溶解させた化合物[6]を滴下した。滴下終了後、反応温度を室温にして17時間反応させた。反応終了後、純水(731g)中に反応液を加える事で結晶を析出させ、ろ過、純水洗浄、メタノール洗浄した後に粗物を回収した。続いて、得られた粗物をトルエン(56.0g)に加熱溶解させ、ヘキサン(112g)を加えて結晶を析出させ、室温条件下で撹拌後、ろ過、乾燥することで化合物[7]を得た(収量:17.0g、20.6mmol、収率:50%)。
H−NMR(400MHz) in CDCl:0.82―1.38ppm(m,44H), 1.67−1.81ppm(m,12H), 1.90−1.98ppm(m,4H), 2.19−2.25ppm(m,2H), 4.82ppm(d,2H,J=13.6Hz), 4.88ppm(d,2H,J=13.6Hz), 7.39ppm(d,2H,J=8.4Hz), 8.26ppm(dd,2H,J=2.4Hz,J=8.4Hz), 8.38ppm(d,2H,J=2.0Hz)
<Synthesis of Compound [6] and Compound [7]>
In toluene (134 g), trans, trans-4′-amylbicyclohexyl-4-carboxylic acid (26.7 g, 95.1 mmol) and N, N-dimethylformamide (0.401 g) were charged, and a nitrogen atmosphere at 50 ° C. was used. Thionyl chloride (13.6 g, 114 mmol) was added dropwise underneath. After the dropwise addition, the mixture was reacted at the same temperature for 1 hour, and then the reaction solution was concentrated under reduced pressure to obtain compound [6]. Subsequently, 4,4′-dinitro-1,1′-biphenyl-2,2′-dimethanol (12.6 g, 41.4 mmol) and triethylamine (10.9 g, 108 mmol) in tetrahydrofuran (63.0 g). The compound [6] dissolved in tetrahydrofuran (12.6 g) was added dropwise under a nitrogen atmosphere and ice-cooled conditions. After completion of the dropwise addition, the reaction was carried out at room temperature for 17 hours. After completion of the reaction, the reaction solution was added to pure water (731 g) to precipitate crystals, which were filtered, washed with pure water, and washed with methanol to collect a crude product. Subsequently, the obtained crude product was dissolved in toluene (56.0 g) by heating, and hexane (112 g) was added to precipitate crystals. The mixture was stirred at room temperature, filtered, and dried to give compound [7]. Was obtained (yield: 17.0 g, 20.6 mmol, yield: 50%).
1 H-NMR (400 MHz) in CDCl 3 : 0.82-1.38 ppm (m, 44H), 1.67-1.81 ppm (m, 12H), 1.90-1.98 ppm (m, 4H), 2.19-2.25 ppm (m, 2H), 4.82 ppm (d, 2H, J = 13.6 Hz), 4.88 ppm (d, 2H, J = 13.6 Hz), 7.39 ppm (d, 2H) , J = 8.4 Hz), 8.26 ppm (dd, 2H, J = 2.4 Hz, J = 8.4 Hz), 8.38 ppm (d, 2H, J = 2.0 Hz)

<W−A4の合成>
テトラヒドロフラン(136g)及びメタノール(34.0g)中、化合物[7](17.0g、20.6mmol)と3%プラチナカーボン(1.36g)を仕込み、水素雰囲気室温条件下で約41時間反応させた。反応終了後、ろ過、減圧濃縮により内部総重量を40gとした。続いて、メタノール(68.0g)を加えて結晶を析出させ、ろ過、乾燥する事でW−A4を得た(収量:15.2g、19.9mmol、収率:97%)。
H−NMR(400MHz) in CDCl:0.81−1.39ppm(m,44H), 1.67−1.78ppm(m,12H), 1.90−1.97ppm(m,4H), 2.14−2.20ppm(m,2H), 3.71ppm(br,4H), 4.73ppm(d,2H,J=12.4Hz), 4.78ppm(d,2H,J=12.4Hz), 6.62ppm(dd,2H,J=2.4Hz,J=8.0Hz), 6.73ppm(d,2H,J=2.8Hz), 6.94ppm(d,2H,J=8.0Hz)
<Synthesis of W-A4>
Compound [7] (17.0 g, 20.6 mmol) and 3% platinum carbon (1.36 g) in tetrahydrofuran (136 g) and methanol (34.0 g) are charged and reacted under a hydrogen atmosphere at room temperature for about 41 hours. Was. After completion of the reaction, filtration and concentration under reduced pressure made the total internal weight 40 g. Subsequently, methanol (68.0 g) was added to precipitate crystals, which were filtered and dried to obtain W-A4 (yield: 15.2 g, 19.9 mmol, yield: 97%).
1 H-NMR (400 MHz) in CDCl 3 : 0.81-1.39 ppm (m, 44H), 1.67-1.78 ppm (m, 12H), 1.90-1.97 ppm (m, 4H), 2.14 to 2.20 ppm (m, 2H), 3.71 ppm (br, 4H), 4.73 ppm (d, 2H, J = 12.4 Hz), 4.78 ppm (d, 2H, J = 12.4 Hz) ), 6.62 ppm (dd, 2H, J = 2.4 Hz, J = 8.0 Hz), 6.73 ppm (d, 2H, J = 2.8 Hz), 6.94 ppm (d, 2H, J = 8.8 Hz). 0Hz)

<<合成例5 W−A5の合成>> << Synthesis Example 5 Synthesis of W-A5 >>

Figure 2018159733
Figure 2018159733

<化合物[8]の合成>
トルエン(227g)中、trans−1−ブロモ−4−(4−ヘプチルシクロヘキシル)ベンゼン(45.4g、135mmol)とリチウムビス(トリメチルシリル)アミド (約26%テトラヒドロフラン溶液、 約1.30mol/L、218mL) 、トリ−tert−ブチルホスホニウムテトラフルオロボラート(1.58g、5.44mmol)、ビス(ジベンジリデンアセトン)パラジウム(0)(3.14g、5.46mmol)を仕込み、窒素雰囲気室温条件下で17時間反応させた。反応終了後、5.7mol/L塩酸水溶液(80.0mL)を加えて結晶を析出させ、ろ過により化合物[8]の塩酸塩を回収した。得られた塩酸塩をトルエン(300g)及び酢酸エチル(200g)、テトラヒドロフラン(100g)混合溶液に分散させ、3.0 mol/L水酸化ナトリウム水溶液(200g)で分液し、更に有機相を飽和食塩水で洗浄した。続いて、有機相に活性炭(銘柄:特製白鷺、2.27g)を加えて撹拌した後、ろ過により活性炭を除去した。得られたろ液を減圧濃縮する事でオイル状化合物を得た。オイル状化合物をヘキサン(100g)に分散させ、ドライアイス/エタノール冷却条件下で結晶を析出させ、ろ過、乾燥する事で化合物[8]を得た(収量:27.5g、101mmol、収率:75%)。
H−NMR(400MHz) in CDCl:0.87−1.43ppm(m,20H), 1.83−1.85ppm(m,4H), 2.31−2.38ppm(m,1H), 3.54ppm(br,2H), 6.62−6.65ppm(m,2H), 6.99−7.02ppm(m,2H)
<Synthesis of Compound [8]>
In toluene (227 g), trans-1-bromo-4- (4-heptylcyclohexyl) benzene (45.4 g, 135 mmol) and lithium bis (trimethylsilyl) amide (about 26% tetrahydrofuran solution, about 1.30 mol / L, 218 mL) ), Tri-tert-butylphosphonium tetrafluoroborate (1.58 g, 5.44 mmol) and bis (dibenzylideneacetone) palladium (0) (3.14 g, 5.46 mmol) were charged under a nitrogen atmosphere at room temperature. The reaction was performed for 17 hours. After completion of the reaction, a 5.7 mol / L aqueous hydrochloric acid solution (80.0 mL) was added to precipitate crystals, and the hydrochloride of compound [8] was recovered by filtration. The obtained hydrochloride was dispersed in a mixed solution of toluene (300 g), ethyl acetate (200 g), and tetrahydrofuran (100 g), separated with a 3.0 mol / L aqueous sodium hydroxide solution (200 g), and further saturated with an organic phase. Washed with saline. Subsequently, activated carbon (brand: specially made Shirasagi, 2.27 g) was added to the organic phase and stirred, and then the activated carbon was removed by filtration. The obtained filtrate was concentrated under reduced pressure to obtain an oily compound. The oily compound was dispersed in hexane (100 g), and crystals were precipitated under dry ice / ethanol cooling conditions, followed by filtration and drying to obtain compound [8] (yield: 27.5 g, 101 mmol, yield: 75%).
1 H-NMR (400 MHz) in CDCl 3 : 0.87-1.43 ppm (m, 20H), 1.83-1.85 ppm (m, 4H), 2.31-2.38 ppm (m, 1H), 3.54 ppm (br, 2H), 6.62-6.65 ppm (m, 2H), 6.99-7.02 ppm (m, 2H)

<化合物[9]の合成>
テトラヒドロフラン(120g)及び塩化メチレン(60.0g)中、4,4’−ジニトロ−2,2’−ジフェン酸(14.9g、45.0mmol)と化合物[8](25.8g、94.3mmol)、4−ジメチルアミノピリジン(0.550g、4.50mmol)、1−(3−ジメチルアミノプロピル)−3−エチルカルボジイミド塩酸塩(20.0g、104mmol)を仕込み、窒素雰囲気室温条件下で14時間反応させた。反応終了後、酢酸エチル(375g)で希釈し、純水(149g)で有機相を3回洗浄後、得られた有機相を硫酸マグネシウム脱水処理した。続いて、有機相を減圧濃縮し、内部総重量を112gとした後にメタノール(120g)を加えて結晶を析出させ、ろ過、乾燥する事で化合物[9]を得た(収量:28.0g、33.2mmol、収率:74%)
H−NMR(400MHz) in CDCl:0.87−1.43ppm(m,40H), 1.82−1.84ppm(m,8H), 2.37−2.44ppm(m,2H), 7.10ppm(d,4H,J=8.8Hz), 7.26−7.30ppm(m,4H), 7.40ppm(d,2H,J=8.4Hz), 8.27ppm(dd,2H,J=2.4Hz,J=8.4Hz), 8.53ppm(d,2H,J=2.4Hz), 9.10ppm(s,2H)
<Synthesis of Compound [9]>
In tetrahydrofuran (120 g) and methylene chloride (60.0 g), 4,4′-dinitro-2,2′-diphenic acid (14.9 g, 45.0 mmol) and compound [8] (25.8 g, 94.3 mmol). ), 4-dimethylaminopyridine (0.550 g, 4.50 mmol) and 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (20.0 g, 104 mmol) were added under a nitrogen atmosphere at room temperature. Allowed to react for hours. After completion of the reaction, the mixture was diluted with ethyl acetate (375 g), and the organic phase was washed with pure water (149 g) three times, and the obtained organic phase was subjected to magnesium sulfate dehydration treatment. Subsequently, the organic phase was concentrated under reduced pressure to a total internal weight of 112 g, and methanol (120 g) was added to precipitate crystals. The crystals were filtered and dried to obtain compound [9] (yield: 28.0 g, 33.2 mmol, yield: 74%)
1 H-NMR (400 MHz) in CDCl 3 : 0.87-1.43 ppm (m, 40H), 1.82-1.84 ppm (m, 8H), 2.37-1.44 ppm (m, 2H), 7.10 ppm (d, 4H, J = 8.8 Hz), 7.26-7.30 ppm (m, 4H), 7.40 ppm (d, 2H, J = 8.4 Hz), 8.27 ppm (dd, 2H) , J = 2.4 Hz, J = 8.4 Hz), 8.53 ppm (d, 2H, J = 2.4 Hz), 9.10 ppm (s, 2H).

<W−A5の合成>
テトラヒドロフラン(140g)及びメタノール(56.0g)中、化合物[9](28.0g、33.2mmol)と5%パラジウムカーボン(2.10g)を仕込み、水素雰囲気室温条件下で約3日間反応させた。反応終了後、ろ過することでパラジウムカーボンを除去し、減圧濃縮する事で内部総重量を122gとした。得られた溶液にメタノール(168g)を加えて結晶を析出させ、ろ過、乾燥する事でW−A5を得た(収量:23.8g、30.4mmol、収率:92%)。
H−NMR(400MHz) in CDCl:0.87−1.42ppm(m,40H), 1.81−1.84ppm(m,8H), 2.36−2.42ppm(m,2H), 3.73ppm(br,4H), 6.58−6.60ppm(m,2H), 6.88−6.90ppm(m,4H), 7.07−7.09ppm(m,4H), 7.34−7.36ppm(m,4H), 8.85ppm(s,2H)
<Synthesis of W-A5>
Compound [9] (28.0 g, 33.2 mmol) and 5% palladium carbon (2.10 g) in tetrahydrofuran (140 g) and methanol (56.0 g) are charged and reacted under a hydrogen atmosphere at room temperature for about 3 days. Was. After completion of the reaction, palladium carbon was removed by filtration, and the mixture was concentrated under reduced pressure to a total internal weight of 122 g. Methanol (168 g) was added to the obtained solution to precipitate crystals, which were filtered and dried to obtain WA-5 (yield: 23.8 g, 30.4 mmol, yield: 92%).
1 H-NMR (400 MHz) in CDCl 3 : 0.87-1.42 ppm (m, 40H), 1.81-1.84 ppm (m, 8H), 2.36-2.42 ppm (m, 2H), 3.73 ppm (br, 4H), 6.58-6.60 ppm (m, 2H), 6.88-6.90 ppm (m, 4H), 7.07-7.09 ppm (m, 4H), 7. 34-7.36 ppm (m, 4H), 8.85 ppm (s, 2H)

<<合成例6 W−A6の合成>> << Synthesis Example 6 Synthesis of W-A6 >>

Figure 2018159733
Figure 2018159733

<化合物[10]の合成>
テトラヒドロフラン(113g)及び塩化メチレン(113g)中、4,4’−ジニトロ−2,2’−ジフェン酸(25.0g、75.4mmol)とコレステロール(61.7g、160mmol)、4−ジメチルアミノピリジン(0.919g、7.54mmol)、1−(3−ジメチルアミノプロピル)−3−エチルカルボジイミド塩酸塩(33.6g、175mmol)を仕込み、窒素雰囲気室温条件下で18時間反応させた。反応終了後、反応溶液に塩化メチレン(375g)を加え、有機相を飽和食塩水(200g)で3回洗浄後、有機相を硫酸マグネシウム脱水処理した。続いて、得られた溶液を減圧濃縮することで褐色オイル状化合物とし、酢酸エチル(200g)及びイソプロピルアルコール(200g)混合溶液を加えて結晶を析出させ、ろ過する事で粗物を得た。得られた粗物をクロロホルム(500g)及びメタノール(600g)混合溶液で2度再結晶し、ろ過、乾燥する事で化合物[10]を得た(収量:41.8g、39.1mmol、収率:52%)。
H−NMR(400MHz) in CDCl:0.67−2.21ppm(m,86H), 4.58−4.63ppm(m,2H), 5.31−5.33ppm(m,2H), 7.37−7.39ppm(m,2H), 8.42−8.44ppm(m,2H), 8.93ppm(m,2H)
<Synthesis of Compound [10]>
4,4′-Dinitro-2,2′-diphenic acid (25.0 g, 75.4 mmol) and cholesterol (61.7 g, 160 mmol) in tetrahydrofuran (113 g) and methylene chloride (113 g), 4-dimethylaminopyridine (0.919 g, 7.54 mmol) and 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (33.6 g, 175 mmol) were charged and reacted under a nitrogen atmosphere at room temperature for 18 hours. After completion of the reaction, methylene chloride (375 g) was added to the reaction solution, and the organic phase was washed three times with saturated saline (200 g), and then the organic phase was dehydrated with magnesium sulfate. Subsequently, the resulting solution was concentrated under reduced pressure to a brown oily compound, and a mixed solution of ethyl acetate (200 g) and isopropyl alcohol (200 g) was added to precipitate crystals, which were filtered to obtain a crude product. The obtained crude product was recrystallized twice from a mixed solution of chloroform (500 g) and methanol (600 g), filtered and dried to obtain compound [10] (yield: 41.8 g, 39.1 mmol, yield). : 52%).
1 H-NMR (400MHz) in CDCl 3: 0.67-2.21ppm (m, 86H), 4.58-4.63ppm (m, 2H), 5.31-5.33ppm (m, 2H), 7.37-7.39 ppm (m, 2H), 8.42-8.44 ppm (m, 2H), 8.93 ppm (m, 2H)

<W−A6の合成>
テトラヒドロフラン(320g)及びメタノール(80.8g)中、化合物[10](40.4g、37.8mmol)と5%パラジウムカーボン(3.03g)を仕込み、水素雰囲気室温条件下で約3日間反応させた。反応終了後、ろ過することでパラジウムカーボンを除去し、減圧濃縮する事で内部総重量を112gとした。得られた溶液にメタノール(160g)を加えて結晶を析出させ、ろ過、乾燥する事でW−A6を得た(収量:35.0g、34.7mmol、収率:92%)。
H−NMR(400MHz) in CDCl:0.66−2.17ppm(m,86H), 3.74ppm(br,4H), 4.50−4.56ppm(m,2H), 5.28ppm(m,2H), 6.78−6.80ppm(m,2H), 6.95−6.97ppm(m,2H), 7.26−7.28ppm(m,2H)
<Synthesis of W-A6>
Compound [10] (40.4 g, 37.8 mmol) and 5% palladium carbon (3.03 g) in tetrahydrofuran (320 g) and methanol (80.8 g) are charged and reacted under a hydrogen atmosphere at room temperature for about 3 days. Was. After completion of the reaction, palladium carbon was removed by filtration, and the mixture was concentrated under reduced pressure to a total internal weight of 112 g. Methanol (160 g) was added to the obtained solution to precipitate crystals, which were filtered and dried to obtain WA-6 (yield: 35.0 g, 34.7 mmol, yield: 92%).
1 H-NMR (400 MHz) in CDCl 3 : 0.66 to 2.17 ppm (m, 86H), 3.74 ppm (br, 4H), 4.50 to 4.56 ppm (m, 2H), 5.28 ppm ( m, 2H), 6.78-6.80 ppm (m, 2H), 6.95-6.97 ppm (m, 2H), 7.26-7.28 ppm (m, 2H)

<<合成例7 W−A7の合成>> << Synthesis Example 7 Synthesis of W-A7 >>

Figure 2018159733
Figure 2018159733

<化合物[11]及び化合物[12]の合成>
テトラヒドロフラン(152g)中、4,4’−ジニトロ−1,1’−ビフェニル−2,2’−ジメタノール(40.0g、132mmol)とトリエチルアミン(36.6g、362mmol)を仕込み、窒素雰囲気下氷冷条件にてエタンスルホニルクロリド(44.4g、 345mmol)を滴下した。滴下終了後、反応温度を40℃で3時間撹拌する事で化合物[11]を得た。続いて、テトラヒドロフラン(240g)に溶解させたp−(trans−4−プロピルシクロヘキシル)フェノール(63.1g、289mmol)と純水(228g)に溶解させた水酸化カリウム(85.0%品、45.1g、683mmol)を化合物[11]の反応溶液に加え、50℃に加熱し39時間反応させた。反応終了後、純水(1500g)中に反応液を注ぎ込み、粗物を析出させ、濾過および純水洗浄を行った。続いて、純水(378g)及びメタノール(378g)混合溶液でスラリー洗浄を行い、再度濾過およびメタノールで洗浄した。得られた結晶粗物をテトラヒドロフラン(600g)に60℃加熱溶解させ、メタノール(400g)を加えて結晶を析出させ、室温条件下で撹拌後、濾過、乾燥する事で化合物[12]を得た(収量:77.7g、110mmol、収率:83%)。
H−NMR(400MHz) in CDCl:0.87−0.97ppm(m,6H), 0.97−1.05ppm(m,4H), 1.12−1.62ppm(m,14H), 1.81−1.87ppm(m,8H), 2.34−2.40ppm(m,2H), 4.77ppm(s,4H),6.67−6.69ppm(m,4H), 7.00−7.05ppm(m,4H), 7.40ppm(d,2H,J=8.0Hz), 8.25ppm(dd,2H,J=2.0Hz,J=8.4Hz), 8.54ppm(s,2H).
<Synthesis of Compound [11] and Compound [12]>
In tetrahydrofuran (152 g), 4,4′-dinitro-1,1′-biphenyl-2,2′-dimethanol (40.0 g, 132 mmol) and triethylamine (36.6 g, 362 mmol) were charged, and ice was added under a nitrogen atmosphere. Under cold conditions, ethanesulfonyl chloride (44.4 g, 345 mmol) was added dropwise. After completion of the dropwise addition, the mixture was stirred at a reaction temperature of 40 ° C. for 3 hours to obtain a compound [11]. Subsequently, p- (trans-4-propylcyclohexyl) phenol (63.1 g, 289 mmol) dissolved in tetrahydrofuran (240 g) and potassium hydroxide (85.0%, 45%) dissolved in pure water (228 g). .1 g, 683 mmol) was added to the reaction solution of compound [11], and the mixture was heated to 50 ° C. and reacted for 39 hours. After completion of the reaction, the reaction solution was poured into pure water (1500 g) to precipitate a crude product, which was filtered and washed with pure water. Subsequently, slurry washing was performed with a mixed solution of pure water (378 g) and methanol (378 g), followed by filtration and washing again with methanol. The obtained crude crystal was heated and dissolved in tetrahydrofuran (600 g) at 60 ° C., and methanol (400 g) was added to precipitate crystals. After stirring at room temperature, the mixture was filtered and dried to obtain compound [12]. (Yield: 77.7 g, 110 mmol, yield: 83%).
1 H-NMR (400 MHz) in CDCl 3 : 0.87-0.97 ppm (m, 6H), 0.97-1.05 ppm (m, 4H), 1.12-1.62 ppm (m, 14H), 1.81-1.87 ppm (m, 8H), 2.34-2.40 ppm (m, 2H), 4.77 ppm (s, 4H), 6.67-6.69 ppm (m, 4H), 7. 00-7.05 ppm (m, 4H), 7.40 ppm (d, 2H, J = 8.0 Hz), 8.25 ppm (dd, 2H, J = 2.0 Hz, J = 8.4 Hz), 8.54 ppm (S, 2H).

<W−A7の合成>
テトラヒドロフラン(741g)及びメタノール(155g)中、化合物[12](77.7g、110mmol)と3%プラチナカーボン(6.22g)を仕込み、水素雰囲気下室温条件で約2日間反応させた。反応終了後、濾過することでプラチナカーボンを除去し、濾液を減圧濃縮した。得られた濃縮粗物にテトラヒドロフラン(122g)を加えて60℃加熱溶解させ、アセトニトリル(159g)を加えて結晶を析出させ、室温条件下で撹拌後、濾過、乾燥する事でW−A7を得た(収量:58.6g、88.1mmol、収率:80%)。
H−NMR(400MHz) in CDCl:0.86−0.91ppm(m,6H), 0.96−1.06ppm(m,4H), 1.12−1.44ppm(m,14H), 1.81−1.84ppm(m,8H), 2.32−2.34ppm(m,2H), 3.71−3.75ppm(br,4H), 4.67−4.76ppm(q,4H,J=10.0Hz), 6.61−6.64ppm(m,2H), 6.71−6.75ppm(m,4H), 6.91−6.92ppm(m,2H), 6.97−7.03ppm(m,6H).
<Synthesis of W-A7>
Compound [12] (77.7 g, 110 mmol) and 3% platinum carbon (6.22 g) in tetrahydrofuran (741 g) and methanol (155 g) were charged and reacted at room temperature under a hydrogen atmosphere for about 2 days. After completion of the reaction, platinum carbon was removed by filtration, and the filtrate was concentrated under reduced pressure. Tetrahydrofuran (122 g) was added to the obtained concentrated crude product, and the mixture was heated and dissolved at 60 ° C., and acetonitrile (159 g) was added to precipitate crystals. After stirring at room temperature, the mixture was filtered and dried to obtain W-A7. (Yield: 58.6 g, 88.1 mmol, yield: 80%).
1 H-NMR (400 MHz) in CDCl 3 : 0.86-0.91 ppm (m, 6H), 0.96-1.06 ppm (m, 4H), 1.12-1.44 ppm (m, 14H), 1.81-1.84 ppm (m, 8H), 2.32-2.34 ppm (m, 2H), 3.71-3.75 ppm (br, 4H), 4.67-4.76 ppm (q, 4H) , J = 10.0 Hz), 6.61-6.64 ppm (m, 2H), 6.71-6.75 ppm (m, 4H), 6.91-6.92 ppm (m, 2H), 6.97. -7.03 ppm (m, 6H).

<<合成例8 W−A8の合成>> << Synthesis Example 8 Synthesis of W-A8 >>

Figure 2018159733
Figure 2018159733

<化合物[11]及び化合物[13]の合成>
テトラヒドロフラン(156g)中、4,4’−ジニトロ−1,1’−ビフェニル−2,2’−ジメタノール(39.2g、129mmol)とトリエチルアミン(35.0g、346mmol)を仕込み、窒素雰囲気下氷冷条件にてエタンスルホニルクロリド(34.8g、 271mmol)を滴下した。滴下後、反応温度を40℃で3時間撹拌する事で化合物[11]を得た。続いて、テトラヒドロフラン(230g)に溶解させた4−シクロヘキシルフェノール(50.0g、284mmol)と純水(231g)に溶解させた水酸化カリウム(85.0%品、47.1g、714mmol)を化合物[11]の反応溶液に加え、50℃に加熱し39時間反応させた。反応終了後、純水(660g)中に反応液を注ぎ込み、クロロホルム(588g×4回)で分液抽出した。回収した有機相を減圧濃縮し、粗物をテトラヒドロフラン(118g)に60℃加熱溶解させ、メタノール(235g)を加えて結晶を析出させ、室温条件で撹拌後、濾過した。結晶を純水/メタノール=1/1混合溶媒(118g)、メタノール(118g×2回)でケーキ洗浄し、乾燥する事で化合物[13]を得た(収量:67.6g、120mmol、収率:93%)。
H−NMR(400MHz) in CDCl:1.18−1.30ppm(m,2H), 1.31−1.38ppm(m,8H), 1.71−1.75ppm(m,2H), 1.80−1.82ppm(m,8H), 2.36−2.44ppm(m,2H), 4.77ppm(s,4H),6.67−6.70ppm(m,4H), 7.03−7.06ppm(m,4H), 7.40ppm(d,2H,J=8.4Hz), 8.24ppm(d,1H,J=2.0Hz), 8.26ppm(d,1H,J=2.0Hz), 8.54ppm(d,2H,J=2.0Hz).
<Synthesis of Compound [11] and Compound [13]>
In tetrahydrofuran (156 g), 4,4'-dinitro-1,1'-biphenyl-2,2'-dimethanol (39.2 g, 129 mmol) and triethylamine (35.0 g, 346 mmol) were charged, and ice was added under a nitrogen atmosphere. Under cold conditions, ethanesulfonyl chloride (34.8 g, 271 mmol) was added dropwise. After the dropwise addition, the mixture was stirred at a reaction temperature of 40 ° C. for 3 hours to obtain a compound [11]. Subsequently, 4-cyclohexylphenol (50.0 g, 284 mmol) dissolved in tetrahydrofuran (230 g) and potassium hydroxide (85.0% product, 47.1 g, 714 mmol) dissolved in pure water (231 g) were used as compounds. The mixture was added to the reaction solution of [11], and the mixture was heated to 50 ° C. and reacted for 39 hours. After completion of the reaction, the reaction solution was poured into pure water (660 g), and separated and extracted with chloroform (588 g × 4 times). The collected organic phase was concentrated under reduced pressure, and the crude product was heated and dissolved in tetrahydrofuran (118 g) at 60 ° C., methanol (235 g) was added to precipitate crystals, and the mixture was stirred at room temperature and filtered. The crystals were washed with a cake of pure water / methanol = 1/1 mixed solvent (118 g) and methanol (118 g × 2) and dried to obtain compound [13] (yield: 67.6 g, 120 mmol, yield). : 93%).
1 H-NMR (400 MHz) in CDCl 3 : 1.18-1.30 ppm (m, 2H), 1.31-1.38 ppm (m, 8H), 1.71-1.75 ppm (m, 2H), 1.80-1.82 ppm (m, 8H), 2.36-2.44 ppm (m, 2H), 4.77 ppm (s, 4H), 6.67-6.70 ppm (m, 4H), 7. 03-7.06 ppm (m, 4H), 7.40 ppm (d, 2H, J = 8.4 Hz), 8.24 ppm (d, 1H, J = 2.0 Hz), 8.26 ppm (d, 1H, J = 2.0 Hz), 8.54 ppm (d, 2H, J = 2.0 Hz).

<W−A8の合成>
テトラヒドロフラン(325g)及びメタノール(65.0g)中、化合物[13](65.0g、105mmol)と3%プラチナカーボン(5.20g)を仕込み、水素雰囲気下室温条件で約2日間反応させた。反応終了後、濾過することでプラチナカーボンを除去し、減圧濃縮した。粗物をテトラヒドロフラン(70.4g)に60℃加熱溶解させ、メタノール(130g)を加えて結晶を析出させ、室温条件下で撹拌後、濾過した。結晶をメタノール(130g×2回)でケーキ洗浄し、乾燥する事でW−A8を得た(収量:54.2g、96.7mmol、収率:92%)。
H−NMR(400MHz) in CDCl:1.19−1.28ppm(m,2H), 1.31−1.41ppm(m,8H), 1.70−1.73ppm(m,2H), 1.79−1.87ppm(m,8H), 1.87−2.39ppm(m,2H), 3.60−3.79ppm(br,4H), 4.67−4.76ppm(q,4H,J=9.6Hz), 6.61−6.64ppm(m,2H), 6.72−6.75ppm(m,4H), 6.91−6.92ppm(d,2H,J=2.4Hz), 6.97−7.03ppm(m,6H).
<Synthesis of W-A8>
Compound [13] (65.0 g, 105 mmol) and 3% platinum carbon (5.20 g) in tetrahydrofuran (325 g) and methanol (65.0 g) were charged and reacted under a hydrogen atmosphere at room temperature for about 2 days. After the reaction was completed, platinum carbon was removed by filtration, and the mixture was concentrated under reduced pressure. The crude product was heated and dissolved in tetrahydrofuran (70.4 g) at 60 ° C., and methanol (130 g) was added to precipitate crystals. The mixture was stirred at room temperature and filtered. The crystals were washed with a cake of methanol (130 g × 2 times) and dried to obtain WA-8 (yield: 54.2 g, 96.7 mmol, yield: 92%).
1 H-NMR (400 MHz) in CDCl 3 : 1.19 to 1.28 ppm (m, 2H), 1.31-1.41 ppm (m, 8H), 1.70-1.73 ppm (m, 2H), 1.79-1.87 ppm (m, 8H), 1.87-2.39 ppm (m, 2H), 3.60-3.79 ppm (br, 4H), 4.67-4.76 ppm (q, 4H) , J = 9.6 Hz), 6.61-6.64 ppm (m, 2H), 6.72-6.75 ppm (m, 4H), 6.91-6.92 ppm (d, 2H, J = 2. 4 Hz), 6.97-7.03 ppm (m, 6H).

<<合成例9 W−A9の合成>> << Synthesis Example 9 Synthesis of W-A9 >>

Figure 2018159733
Figure 2018159733

<化合物[11]及び化合物[14]の合成>
テトラヒドロフラン(83.6g)中、4,4’−ジニトロ−1,1’−ビフェニル−2,2’−ジメタノール(20.9g,68.7mmol)とトリエチルアミン(15.3g、151mmol)を仕込み、窒素雰囲気氷冷条件にてエタンスルホニルクロリド(18.6g、145mmol)を滴下した。滴下後、反応温度を40℃で3時間撹拌する事で化合物[11]を得た。続いて、テトラヒドロフラン(188g)に溶解させた4−[(trans, trans)−4‘−ペンチル[1,1’−ビシクロヘキシル]−4−イル]フェノール(48.6g、149mmol)と純水(119.2g)に溶解させた水酸化カリウム(85.0%品、20.9g、317mmol)を化合物[11]の反応溶液に加え、20時間反応させた。反応終了後、純水(800g)中に反応液を注ぎ込み、粗物を析出させ、ろ過、純水洗浄を行った。続いて、純水(100g)及びメタノール(100g)混合溶液でスラリー洗浄を行い、再度ろ過、純水及びメタノールで洗浄した。粗物をテトラヒドロフラン(400g)に60℃加熱溶解させ、メタノール(100g)を加えて結晶を析出させ、室温条件下で撹拌後、ろ過、乾燥する事で化合物[14]を得た(収量:49.7g、53.9mmol、収率:78%)。
H−NMR(400MHz) in CDCl:0.83−1.34ppm(m,44H), 1.71−1.85ppm(m,16H), 2.29−2.36ppm(m,2H), 4.77ppm(s,4H), 6.66−6.68ppm(m,4H), 7.01−7.03ppm(m,4H), 7.39ppm(d,2H,J=8.0Hz), 8.24ppm(dd,2H,J=2.0Hz,J=8.4Hz), 8.54ppm(d,2H,J=2.4Hz)
<Synthesis of Compound [11] and Compound [14]>
In tetrahydrofuran (83.6 g), 4,4′-dinitro-1,1′-biphenyl-2,2′-dimethanol (20.9 g, 68.7 mmol) and triethylamine (15.3 g, 151 mmol) were charged. Under a nitrogen atmosphere and ice cooling conditions, ethanesulfonyl chloride (18.6 g, 145 mmol) was added dropwise. After the dropwise addition, the mixture was stirred at a reaction temperature of 40 ° C. for 3 hours to obtain a compound [11]. Subsequently, 4-[(trans, trans) -4′-pentyl [1,1′-bicyclohexyl] -4-yl] phenol (48.6 g, 149 mmol) dissolved in tetrahydrofuran (188 g) and pure water ( Potassium hydroxide (85.0% product, 20.9 g, 317 mmol) dissolved in 119.2 g) was added to the reaction solution of compound [11], and the mixture was reacted for 20 hours. After completion of the reaction, the reaction solution was poured into pure water (800 g) to precipitate a crude product, which was filtered and washed with pure water. Subsequently, slurry washing was performed with a mixed solution of pure water (100 g) and methanol (100 g), followed by filtration, and washing with pure water and methanol again. The crude product was dissolved in tetrahydrofuran (400 g) by heating at 60 ° C., and methanol (100 g) was added to precipitate crystals. After stirring at room temperature, the mixture was filtered and dried to obtain compound [14] (yield: 49). 0.7 g, 53.9 mmol, yield: 78%).
1 H-NMR (400 MHz) in CDCl 3 : 0.83-1.34 ppm (m, 44H), 1.71-1.85 ppm (m, 16H), 2.29-2.36 ppm (m, 2H), 4.77 ppm (s, 4H), 6.66-6.68 ppm (m, 4H), 7.01-7.03 ppm (m, 4H), 7.39 ppm (d, 2H, J = 8.0 Hz), 8.24 ppm (dd, 2H, J = 2.0 Hz, J = 8.4 Hz), 8.54 ppm (d, 2H, J = 2.4 Hz)

<W−A9の合成>
テトラヒドロフラン(361g)及びメタノール(90.2g)中、化合物[14](45.1g、48.7mmol)と3%プラチナカーボン(3.60g)を仕込み、0.4MPa水素圧雰囲気40℃条件下で約9時間反応させた。反応終了後、ろ過、減圧濃縮により溶媒を除去し、メタノール(135g)を加えてスラリー洗浄を実施した。続いて、ろ過により得られた粗物をテトラヒドロフラン(180g)に60℃加熱溶解させ、酢酸エチル(120g)を加え、室温条件下で撹拌する事で結晶を析出させ、ろ過、乾燥する事でW−A9を得た(収量:17.8g、20.7mmol、収率:43%)。
H−NMR(400MHz) in CDCl:0.88−1.34ppm(m,44H), 1.71−1.86ppm(m,16H), 2.29−2.36ppm(m,2H), 3.69ppm(br,4H), 4.70ppm(d,2H,J=12.4Hz), 4.76ppm(d,2H,J=12.4Hz), 6.62ppm(dd,2H,J=2.4Hz,J=8.0Hz), 6.71−6.73ppm(m,4H), 6.91ppm(d,2H,J=2.4Hz), 6.96−6.99ppm(m,6H)
<Synthesis of W-A9>
Compound [14] (45.1 g, 48.7 mmol) and 3% platinum carbon (3.60 g) in tetrahydrofuran (361 g) and methanol (90.2 g) were charged, and 0.4 MPa under a hydrogen pressure atmosphere at 40 ° C. The reaction was performed for about 9 hours. After the completion of the reaction, the solvent was removed by filtration and concentration under reduced pressure, and methanol (135 g) was added to carry out slurry washing. Subsequently, the crude product obtained by filtration was heated and dissolved in tetrahydrofuran (180 g) at 60 ° C., ethyl acetate (120 g) was added, and the mixture was stirred at room temperature to precipitate crystals. -A9 was obtained (yield: 17.8 g, 20.7 mmol, yield: 43%).
1 H-NMR (400 MHz) in CDCl 3 : 0.88-1.34 ppm (m, 44H), 1.71-1.86 ppm (m, 16H), 2.29-2.36 ppm (m, 2H), 3.69 ppm (br, 4H), 4.70 ppm (d, 2H, J = 12.4 Hz), 4.76 ppm (d, 2H, J = 12.4 Hz), 6.62 ppm (dd, 2H, J = 2) 0.4 Hz, J = 8.0 Hz), 6.71-6.73 ppm (m, 4H), 6.91 ppm (d, 2H, J = 2.4 Hz), 6.96-6.99 ppm (m, 6H)

<<合成例10 W−A10の合成>> << Synthesis Example 10 Synthesis of W-A10 >>

Figure 2018159733
Figure 2018159733

<化合物[15]の合成>
N−メチルピロリドン(540g)中、2−フルオロ−5−ニトロトルエン(91.0g、587mmol)、1,3−プロパンジオール(22.3g、291mmol)、水酸化カリウム(85.0%品、71.6g、1.08mol)を仕込み、窒素雰囲気下80℃で20時間撹拌した。反応終了後、純水(1440g)を加えて水割り晶析を行い、濾過後、結晶を純水(540g×3回)、メタノール(360g×2回)でそれぞれケーキ洗浄し、乾燥する事で化合物[15]を得た(収量:57.2g、165mmol、収率:54%)。
<Synthesis of Compound [15]>
In N-methylpyrrolidone (540 g), 2-fluoro-5-nitrotoluene (91.0 g, 587 mmol), 1,3-propanediol (22.3 g, 291 mmol), potassium hydroxide (85.0% product, 71.0%). 6 g, 1.08 mol) and stirred at 80 ° C. for 20 hours under a nitrogen atmosphere. After completion of the reaction, pure water (1440 g) was added to perform water splitting crystallization. After filtration, the crystals were washed with pure water (540 g × 3 times) and methanol (360 g × 2 times), and dried to obtain a compound. [15] was obtained (yield: 57.2 g, 165 mmol, yield: 54%).

<化合物[16]の合成>
1,2−ジクロロエタン(540g)中、化合物[15](40.0g、116mmol)、N−ブロモスクシンイミド(45.2g、254mmol)、2,2’−アゾビス(イソブチロニトリル)(3.79g、23.1mmol)を仕込み、窒素置換した後100℃で約7日間撹拌した。反応液を濾過し不溶のコハク酸イミドを除去後、濾液に酢酸エチル(250g)を加え、純水(250g×3回)で分液抽出および洗浄を行い、有機相を回収して濃縮した。得られた濃縮物に対し酢酸エチル(346g)およびヘキサン(395g)で晶析および濾過し、結晶を回収した。さらに、濾液を濃縮し、クロロホルム(223g)およびヘキサン(434g)で再度晶析および濾過し、それぞれ乾燥する事で化合物[16]の粗物を得た(粗収量:21.3g,粗収率:37%)。
<Synthesis of Compound [16]>
In 1,2-dichloroethane (540 g), compound [15] (40.0 g, 116 mmol), N-bromosuccinimide (45.2 g, 254 mmol), 2,2′-azobis (isobutyronitrile) (3.79 g) , 23.1 mmol), and the mixture was purged with nitrogen and stirred at 100 ° C. for about 7 days. After the reaction solution was filtered to remove insoluble succinimide, ethyl acetate (250 g) was added to the filtrate, liquid separation extraction and washing with pure water (250 g × 3 times) were performed, and the organic phase was recovered and concentrated. The obtained concentrate was crystallized from ethyl acetate (346 g) and hexane (395 g) and filtered to collect crystals. Further, the filtrate was concentrated, crystallized and filtered again with chloroform (223 g) and hexane (434 g), and dried to obtain a crude compound [16] (crude yield: 21.3 g, crude yield). : 37%).

<化合物[17]の合成>
N,N−ジメチルアセトアミド(96.0g)中、p−(trans−4−ヘプチルシクロヘキシル)フェノール(24.0g、87.5mmol)、炭酸カリウム(12.1g、87.5mmol)を仕込み100℃で撹拌した。N,N−ジメチルアセトアミド(54.0g)に溶解させた化合物[16]粗物(20.0g)を滴下し、24時間反応させた。反応液から析出した結晶を濾過で分離し、メタノール(66.0g)、純水(67.0g)でそれぞれスラリー洗浄した後再度濾過、乾燥する事で化合物[17]を得た(収量:4.23g、4.75mmol、収率:4.1%(仕込み化合物[15]を基準とした収率))。
H−NMR(400MHz) in CDCl:0.89ppm(t,6H,J=6.8Hz), 0.99−1.07ppm(m,4H), 1.19−1.43ppm(m,30H), 1.84−1.87ppm(m,8H), 2.36−2.44ppm(m,4H), 4.29ppm(t,4H,J=6.0Hz), 5.04ppm(s,4H), 6.84−6.90ppm(m,6H), 7.10−7.13ppm(m,4H), 8.17ppm(dd,2H,J=3.2Hz,9.0Hz), 8.38ppm(d,2H,J=2.8Hz).
<Synthesis of Compound [17]>
In N, N-dimethylacetamide (96.0 g), p- (trans-4-heptylcyclohexyl) phenol (24.0 g, 87.5 mmol) and potassium carbonate (12.1 g, 87.5 mmol) were charged at 100 ° C. Stirred. A crude compound [16] (20.0 g) dissolved in N, N-dimethylacetamide (54.0 g) was added dropwise and reacted for 24 hours. Crystals precipitated from the reaction solution were separated by filtration, washed with methanol (66.0 g) and pure water (67.0 g), respectively, and then filtered and dried again to obtain compound [17] (yield: 4). 0.23 g, 4.75 mmol, yield: 4.1% (yield based on charged compound [15])).
1 H-NMR (400 MHz) in CDCl 3 : 0.89 ppm (t, 6H, J = 6.8 Hz), 0.99-1.07 ppm (m, 4H), 1.19-1.43 ppm (m, 30H) ), 1.84-1.87 ppm (m, 8H), 2.36-2.44 ppm (m, 4H), 4.29 ppm (t, 4H, J = 6.0 Hz), 5.04 ppm (s, 4H). ), 6.84-6.90 ppm (m, 6H), 7.10-7.13 ppm (m, 4H), 8.17 ppm (dd, 2H, J = 3.2 Hz, 9.0 Hz), 8.38 ppm (D, 2H, J = 2.8 Hz).

<W−A10の合成>
テトラヒドロフラン(28.8g)及びメタノール(7.5g)中、化合物[17](3.60g、4.04mmol)と3%プラチナカーボン(0.290g)を仕込み、水素雰囲気0.4MPa加圧条件下、40℃で3時間撹拌した。反応終了後、濾過することでプラチナカーボンを除去し、減圧濃縮した。粗物を酢酸エチルおよびメタノールを加えて結晶を析出させ、室温条件下で撹拌後、濾過し、乾燥する事でW−A10を得た(収量:2.05g、2.47mmol、収率:54%)。
H−NMR(400MHz) in CDCl:0.89ppm(t,6H,J=6.8Hz), 0.98−1.06ppm(m,4H), 1.18−1.44ppm(m,30H), 1.83−1.86ppm(m,8H), 2.15−2.21ppm(m,2H), 2.36−2.42ppm(m,2H), 3.42ppm(br,4H), 4.09ppm(t,4H,J=6.0Hz), 5.00ppm(s,4H), 6.55−6.57ppm(m,2H), 6.70ppm(d,2H,J=8.8Hz), 6.82−6.89ppm(m,6H), 7.07−7.10ppm(m,4H).
<Synthesis of W-A10>
Compound [17] (3.60 g, 4.04 mmol) and 3% platinum carbon (0.290 g) in tetrahydrofuran (28.8 g) and methanol (7.5 g) were charged, and the pressure was increased under a hydrogen atmosphere at 0.4 MPa. And stirred at 40 ° C. for 3 hours. After the reaction was completed, platinum carbon was removed by filtration, and the mixture was concentrated under reduced pressure. Ethyl acetate and methanol were added to the crude product to precipitate crystals, which were stirred at room temperature, filtered, and dried to obtain W-A10 (yield: 2.05 g, 2.47 mmol, yield: 54). %).
1 H-NMR (400 MHz) in CDCl 3 : 0.89 ppm (t, 6H, J = 6.8 Hz), 0.98 to 1.06 ppm (m, 4H), 1.18 to 1.44 ppm (m, 30H) ), 1.83-1.86 ppm (m, 8H), 2.15-2.21 ppm (m, 2H), 2.36-2.42 ppm (m, 2H), 3.42 ppm (br, 4H), 4.09 ppm (t, 4H, J = 6.0 Hz), 5.00 ppm (s, 4H), 6.55-6.57 ppm (m, 2H), 6.70 ppm (d, 2H, J = 8.8 Hz) ), 6.82-6.89 ppm (m, 6H), 7.07-7.10 ppm (m, 4H).

<ポリイミド系重合体の合成>
[合成例1]
D2(2.50g,10.0mmol)、W−A1(3.03g,4.00mmol)、C1(1.73g,16.0mmol)をNMP(36.2g)中で混合し、60℃で3時間反応させた後、D1(1.78g,9.10mmol)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、840mPa・sであった。
得られたポリアミド酸溶液(20.0g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(4.43g)及びピリジン(1.37g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(382ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(1)を得た。このポリイミドのイミド化率は76.4%であり、数平均分子量は16,165であり、重量平均分子量は49,988であった。
<Synthesis of polyimide polymer>
[Synthesis Example 1]
D2 (2.50 g, 10.0 mmol), W-A1 (3.03 g, 4.00 mmol) and C1 (1.73 g, 16.0 mmol) were mixed in NMP (36.2 g), and mixed at 60 ° C. After reacting for an hour, D1 (1.78 g, 9.10 mmol) was added and reacted at 40 ° C. for 3 hours to obtain a polyamic acid solution having a resin solid content concentration of 20% by mass. When the viscosity of this polyamic acid solution was measured, it was 840 mPa · s.
After NMP was added to the obtained polyamic acid solution (20.0 g) to dilute it to 6.5% by mass, acetic anhydride (4.43 g) and pyridine (1.37 g) were added as imidation catalysts, and the mixture was heated at 80 ° C. The reaction was performed for 3 hours. This reaction solution was poured into methanol (382 ml), and the obtained precipitate was separated by filtration. The precipitate was washed with methanol and dried at 100 ° C. under reduced pressure to obtain a polyimide powder (1). The imidation ratio of this polyimide was 76.4%, the number average molecular weight was 16,165, and the weight average molecular weight was 49,988.

[合成例2]
D2(2.50g,10.0mmol)、W−A2(3.14g,4.00mmol)、C1(1.84g,16.0mmol)をNMP(36.9g)中で混合し、60℃で3時間反応させた後、D1(1.84g,9.38mmol)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、658mPa・sであった。
得られたポリアミド酸溶液(20.0g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(4.38g)及びピリジン(1.36g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(382ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(2)を得た。このポリイミドのイミド化率は75.8%であり、数平均分子量は15,430であり、重量平均分子量は45,756であった。
[Synthesis Example 2]
D2 (2.50 g, 10.0 mmol), WA2 (3.14 g, 4.00 mmol) and C1 (1.84 g, 16.0 mmol) were mixed in NMP (36.9 g), After reacting for an hour, D1 (1.84 g, 9.38 mmol) was added and reacted at 40 ° C. for 3 hours to obtain a polyamic acid solution having a resin solid concentration of 20% by mass. When the viscosity of this polyamic acid solution was measured, it was 658 mPa · s.
After NMP was added to the obtained polyamic acid solution (20.0 g) to dilute it to 6.5% by mass, acetic anhydride (4.38 g) and pyridine (1.36 g) were added as imidation catalysts, and the mixture was heated at 80 ° C. The reaction was performed for 3 hours. This reaction solution was poured into methanol (382 ml), and the obtained precipitate was separated by filtration. This precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide powder (2). The imidation ratio of this polyimide was 75.8%, the number average molecular weight was 15,430, and the weight average molecular weight was 45,756.

[合成例3]
D2(2.50g,10.0mmol)、W−A3(3.25g,4.00mmol)、C1(1.73g,16.0mmol)をNMP(37.3g)中で混合し、60℃で3時間反応させた後、D1(1.84g,9.38mmol)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、656mPa・sであった。
得られたポリアミド酸溶液(20.0g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(4.32g)及びピリジン(1.34g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(382ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(3)を得た。このポリイミドのイミド化率は74.7%であり、数平均分子量は13,340であり、重量平均分子量は41,948であった。
[Synthesis Example 3]
D2 (2.50 g, 10.0 mmol), WA3 (3.25 g, 4.00 mmol) and C1 (1.73 g, 16.0 mmol) were mixed in NMP (37.3 g), After reacting for an hour, D1 (1.84 g, 9.38 mmol) was added and reacted at 40 ° C. for 3 hours to obtain a polyamic acid solution having a resin solid concentration of 20% by mass. When the viscosity of this polyamic acid solution was measured, it was 656 mPa · s.
After NMP was added to the obtained polyamic acid solution (20.0 g) to dilute it to 6.5% by mass, acetic anhydride (4.32 g) and pyridine (1.34 g) were added as imidation catalysts, and the mixture was heated at 80 ° C. The reaction was performed for 3 hours. This reaction solution was poured into methanol (382 ml), and the obtained precipitate was separated by filtration. This precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide powder (3). The imidation ratio of this polyimide was 74.7%, the number average molecular weight was 13,340, and the weight average molecular weight was 41,948.

[コントロール合成例1]
D2(1.50g、 6.0mmol)、C2(1.83g、12.0mmol)、C3(2.18g、9.0mmol)、A1(3.43g、9.0mmol)をNMP(41.1g)中で溶解し、60℃で3時間反応させたのち、D3(1.31g、6.0mmol)、続いてD1(3.47g、17.7mmol)とNMP(13.71g)を加え、25℃で10時間反応させポリアミック酸溶液を得た。
このポリアミック酸溶液(50g)にNMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(11.1g)、およびピリジン(3.4g)を加え、60℃で3時間反応させた。この反応溶液をメタノール(700ml)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(4)を得た。このポリイミドのイミド化率は79%であり、数平均分子量は11000、重量平均分子量は24000であった。
[Control Synthesis Example 1]
D2 (1.50 g, 6.0 mmol), C2 (1.83 g, 12.0 mmol), C3 (2.18 g, 9.0 mmol) and A1 (3.43 g, 9.0 mmol) in NMP (41.1 g) After reacting at 60 ° C. for 3 hours, D3 (1.31 g, 6.0 mmol) was added, followed by D1 (3.47 g, 17.7 mmol) and NMP (13.71 g). For 10 hours to obtain a polyamic acid solution.
After NMP was added to this polyamic acid solution (50 g) to dilute it to 6.5% by mass, acetic anhydride (11.1 g) and pyridine (3.4 g) were added as imidation catalysts and reacted at 60 ° C. for 3 hours. Was. This reaction solution was poured into methanol (700 ml), and the obtained precipitate was separated by filtration. This precipitate was washed with methanol and dried at 100 ° C. under reduced pressure to obtain a polyimide powder (4). The imidation ratio of this polyimide was 79%, the number average molecular weight was 11,000, and the weight average molecular weight was 24,000.

[比較合成例1]
D2(2.88g,11.5mmol)、A1(3.50g,9.20mmol)、C1(1.49g,13.8mmol)をNMP(40.2g)中で混合し、60℃で3時間反応させた後、D1(2.19g,11.2mmol)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、680mPa・sであった。
得られたポリアミド酸溶液(20.0g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(4.64g)及びピリジン(1.44g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(382ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(R1)を得た。このポリイミドのイミド化率は75.1%であり、数平均分子量は15,322であり、重量平均分子量は45,800であった。
[Comparative Synthesis Example 1]
D2 (2.88 g, 11.5 mmol), A1 (3.50 g, 9.20 mmol) and C1 (1.49 g, 13.8 mmol) are mixed in NMP (40.2 g) and reacted at 60 ° C. for 3 hours. After that, D1 (2.19 g, 11.2 mmol) was added and reacted at 40 ° C. for 3 hours to obtain a polyamic acid solution having a resin solid concentration of 20% by mass. When the viscosity of this polyamic acid solution was measured, it was 680 mPa · s.
After NMP was added to the obtained polyamic acid solution (20.0 g) to dilute it to 6.5% by mass, acetic anhydride (4.64 g) and pyridine (1.44 g) were added as imidation catalysts. The reaction was performed for 3 hours. This reaction solution was poured into methanol (382 ml), and the obtained precipitate was separated by filtration. The precipitate was washed with methanol and dried at 100 ° C. under reduced pressure to obtain a polyimide powder (R1). The imidation ratio of this polyimide was 75.1%, the number average molecular weight was 15,322, and the weight average molecular weight was 45,800.

[合成例5]
D2(2.50g,10.0mmol)、W−A4(4.62g,6.00mmol)、C1(1.51g,14.0mmol)をNMP(24.5g)中で混合し、60℃で3時間反応させた後、D1(1.92g,9.80mmol)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、783mPa・sであった。
得られたポリアミド酸溶液(20.0g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(3.86g)及びピリジン(1.20g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(233ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(5)を得た。このポリイミドのイミド化率は76.7%であり、数平均分子量は14,399であり、重量平均分子量は38,573であった。
[Synthesis Example 5]
D2 (2.50 g, 10.0 mmol), WA4 (4.62 g, 6.00 mmol) and C1 (1.51 g, 14.0 mmol) were mixed in NMP (24.5 g), After reacting for an hour, D1 (1.92 g, 9.80 mmol) was added and reacted at 40 ° C. for 3 hours to obtain a polyamic acid solution having a resin solid content concentration of 20% by mass. When the viscosity of this polyamic acid solution was measured, it was 783 mPa · s.
After NMP was added to the obtained polyamic acid solution (20.0 g) to dilute it to 6.5% by mass, acetic anhydride (3.86 g) and pyridine (1.20 g) were added as imidation catalysts. The reaction was performed for 3 hours. This reaction solution was poured into methanol (233 ml), and the obtained precipitate was separated by filtration. The precipitate was washed with methanol and dried at 100 ° C. under reduced pressure to obtain a polyimide powder (5). The imidation ratio of this polyimide was 76.7%, the number average molecular weight was 14,399, and the weight average molecular weight was 38,573.

[合成例6]
D2(2.50g,10.0mmol)、W−A5(4.70g,6.00mmol)、C1(1.51g,14.0mmol)をNMP(24.9g)中で混合し、60℃で3時間反応させた後、D1(1.92g,9.80mmol)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、769mPa・sであった。
得られたポリアミド酸溶液(20.0g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(3.83g)及びピリジン(1.19g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(232ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(6)を得た。このポリイミドのイミド化率は73.4%であり、数平均分子量は13,841であり、重量平均分子量は37,284であった。
[Synthesis Example 6]
D2 (2.50 g, 10.0 mmol), WA5 (4.70 g, 6.00 mmol) and C1 (1.51 g, 14.0 mmol) were mixed in NMP (24.9 g), and mixed at 60 ° C. After reacting for an hour, D1 (1.92 g, 9.80 mmol) was added and reacted at 40 ° C. for 3 hours to obtain a polyamic acid solution having a resin solid content concentration of 20% by mass. The viscosity of this polyamic acid solution was measured to be 769 mPa · s.
After NMP was added to the obtained polyamic acid solution (20.0 g) to dilute it to 6.5% by mass, acetic anhydride (3.83 g) and pyridine (1.19 g) were added as imidation catalysts, and the mixture was heated at 80 ° C. The reaction was performed for 3 hours. This reaction solution was poured into methanol (232 ml), and the obtained precipitate was separated by filtration. This precipitate was washed with methanol and dried at 100 ° C. under reduced pressure to obtain a polyimide powder (6). The imidation ratio of this polyimide was 73.4%, the number average molecular weight was 13,841 and the weight average molecular weight was 37,284.

[合成例7]
D2(6.26g,25.0mmol)、W−A6(5.05g,5.00mmol)、C1(4.87g,45.0mmol)をNMP(62.0g)中で混合し、60℃で3時間反応させた後、D1(4.51g,23.0mmol)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、658mPa・sであった。
得られたポリアミド酸溶液(75.0g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(18.2g)及びピリジン(5.6g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(1000ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(7)を得た。このポリイミドのイミド化率は72.9%であり、数平均分子量は13,362であり、重量平均分子量は38,725であった。
[Synthesis Example 7]
D2 (6.26 g, 25.0 mmol), W-A6 (5.05 g, 5.00 mmol) and C1 (4.87 g, 45.0 mmol) were mixed in NMP (62.0 g), and mixed at 60 ° C. for 3 hours. After reacting for an hour, D1 (4.51 g, 23.0 mmol) was added and reacted at 40 ° C. for 3 hours to obtain a polyamic acid solution having a resin solid concentration of 20% by mass. When the viscosity of this polyamic acid solution was measured, it was 658 mPa · s.
After NMP was added to the obtained polyamic acid solution (75.0 g) to dilute it to 6.5% by mass, acetic anhydride (18.2 g) and pyridine (5.6 g) were added as imidation catalysts, and the mixture was heated at 80 ° C. The reaction was performed for 3 hours. This reaction solution was poured into methanol (1000 ml), and the obtained precipitate was separated by filtration. The precipitate was washed with methanol and dried at 100 ° C. under reduced pressure to obtain a polyimide powder (7). The imidation ratio of this polyimide was 72.9%, the number average molecular weight was 13,362 and the weight average molecular weight was 38,725.

[合成例8]
D2(6.26g,25.0mmol)、W−A7(8.06g,12.5mmol)、C1(4.06g,37.5mmol)をNMP(69.2g)中で混合し、60℃で3時間反応させた後、D1(4.71g,24.0mmol)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、725mPa・sであった。
得られたポリアミド酸溶液(75.0g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(16.5g)及びピリジン(5.1g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(1000ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(8)を得た。このポリイミドのイミド化率は73.1%であり、数平均分子量は13,628であり、重量平均分子量は39,937であった。
[Synthesis Example 8]
D2 (6.26 g, 25.0 mmol), W-A7 (8.06 g, 12.5 mmol) and C1 (4.06 g, 37.5 mmol) were mixed in NMP (69.2 g), and mixed at 60 ° C. for 3 hours. After reacting for an hour, D1 (4.71 g, 24.0 mmol) was added and reacted at 40 ° C. for 3 hours to obtain a polyamic acid solution having a resin solid concentration of 20% by mass. When the viscosity of this polyamic acid solution was measured, it was 725 mPa · s.
After NMP was added to the obtained polyamic acid solution (75.0 g) to dilute it to 6.5% by mass, acetic anhydride (16.5 g) and pyridine (5.1 g) were added as imidation catalysts, and the mixture was heated at 80 ° C. The reaction was performed for 3 hours. This reaction solution was poured into methanol (1000 ml), and the obtained precipitate was separated by filtration. This precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide powder (8). The imidation ratio of this polyimide was 73.1%, the number average molecular weight was 13,628, and the weight average molecular weight was 39,937.

[合成例9]
D2(6.26g,25.0mmol)、W−A8(7.01g,12.5mmol)、C1(4.06g,37.5mmol)をNMP(66.1g)中で混合し、60℃で3時間反応させた後、D1(4.71g,24.0mmol)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、674mPa・sであった。
得られたポリアミド酸溶液(75.0g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(17.2g)及びピリジン(5.3g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(1000ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(9)を得た。このポリイミドのイミド化率は73.2%であり、数平均分子量は10,425であり、重量平均分子量は37,759であった。
[Synthesis Example 9]
D2 (6.26 g, 25.0 mmol), W-A8 (7.01 g, 12.5 mmol) and C1 (4.06 g, 37.5 mmol) were mixed in NMP (66.1 g) and mixed at 60 ° C. for 3 hours. After reacting for an hour, D1 (4.71 g, 24.0 mmol) was added and reacted at 40 ° C. for 3 hours to obtain a polyamic acid solution having a resin solid concentration of 20% by mass. When the viscosity of this polyamic acid solution was measured, it was 674 mPa · s.
After NMP was added to the obtained polyamic acid solution (75.0 g) to dilute it to 6.5% by mass, acetic anhydride (17.2 g) and pyridine (5.3 g) were added as imidation catalysts. The reaction was performed for 3 hours. This reaction solution was poured into methanol (1000 ml), and the obtained precipitate was separated by filtration. This precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide powder (9). The imidation ratio of this polyimide was 73.2%, the number average molecular weight was 10,425, and the weight average molecular weight was 37,759.

[合成例10]
D2(6.26g,25.0mmol)、W−A9(2.16g,2.5mmol)、C1(5.14g,47.5mmol)をNMP(54.8g)中で混合し、60℃で3時間反応させた後、D1(4.71g,24.0mmol)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、823mPa・sであった。
得られたポリアミド酸溶液(75.0g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(20.7g)及びピリジン(6.4g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(1000ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(10)を得た。このポリイミドのイミド化率は71.5%であり、数平均分子量は13,732であり、重量平均分子量は38,921であった。
[Synthesis Example 10]
D2 (6.26 g, 25.0 mmol), W-A9 (2.16 g, 2.5 mmol) and C1 (5.14 g, 47.5 mmol) were mixed in NMP (54.8 g), After reacting for an hour, D1 (4.71 g, 24.0 mmol) was added and reacted at 40 ° C. for 3 hours to obtain a polyamic acid solution having a resin solid concentration of 20% by mass. When the viscosity of this polyamic acid solution was measured, it was 823 mPa · s.
After NMP was added to the obtained polyamic acid solution (75.0 g) to dilute it to 6.5% by mass, acetic anhydride (20.7 g) and pyridine (6.4 g) were added as imidation catalysts, and the mixture was heated at 80 ° C. The reaction was performed for 3 hours. This reaction solution was poured into methanol (1000 ml), and the obtained precipitate was separated by filtration. This precipitate was washed with methanol and dried at 100 ° C. under reduced pressure to obtain a polyimide powder (10). The imidation ratio of this polyimide was 71.5%, the number average molecular weight was 13,732, and the weight average molecular weight was 38,921.

[合成例11]
D2(2.50g,10.0mmol)、W−A10(3.31g,4.00mmol)、C1(1.73g,16.0mmol)をNMP(30.2g)中で混合し、60℃で3時間反応させた後、D1(1.84g,9.40mmol)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、695mPa・sであった。
得られたポリアミド酸溶液(20.0g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(4.35g)及びピリジン(1.35g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(235ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(11)を得た。このポリイミドのイミド化率は76.1%であり、数平均分子量は12,913であり、重量平均分子量は39,182であった。
[Synthesis Example 11]
D2 (2.50 g, 10.0 mmol), WA10 (3.31 g, 4.00 mmol) and C1 (1.73 g, 16.0 mmol) were mixed in NMP (30.2 g), After reacting for an hour, D1 (1.84 g, 9.40 mmol) was added and reacted at 40 ° C. for 3 hours to obtain a polyamic acid solution having a resin solid content concentration of 20% by mass. When the viscosity of this polyamic acid solution was measured, it was 695 mPa · s.
After NMP was added to the obtained polyamic acid solution (20.0 g) to dilute it to 6.5% by mass, acetic anhydride (4.35 g) and pyridine (1.35 g) were added as imidation catalysts. The reaction was performed for 3 hours. This reaction solution was poured into methanol (235 ml), and the obtained precipitate was separated by filtration. This precipitate was washed with methanol and dried at 100 ° C. under reduced pressure to obtain a polyimide powder (11). The imidation ratio of this polyimide was 76.1%, the number average molecular weight was 12,913, and the weight average molecular weight was 39,182.

[合成例12]
D2(25.0g,100mmol)、W−A1(37.9g,50.0mmol)、C3(12.1g,50.0mmol)、C8(33.0g,100mmol)をNMP(432g)中で混合し、60℃で3時間反応させた後、D1(18.8g,96.0mmol)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、721mPa・sであった。
得られたポリアミド酸溶液(100g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(16.0g)及びピリジン(4.96g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(1150ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(12)を得た。このポリイミドのイミド化率は75.1%であり、数平均分子量は14,736、重量平均分子量は39,645であった。
[Synthesis Example 12]
D2 (25.0 g, 100 mmol), W-A1 (37.9 g, 50.0 mmol), C3 (12.1 g, 50.0 mmol), and C8 (33.0 g, 100 mmol) were mixed in NMP (432 g). After reacting at 60 ° C. for 3 hours, D1 (18.8 g, 96.0 mmol) was added and reacted at 40 ° C. for 3 hours to obtain a polyamic acid solution having a resin solid content concentration of 20% by mass. When the viscosity of this polyamic acid solution was measured, it was 721 mPa · s.
After NMP was added to the obtained polyamic acid solution (100 g) to dilute it to 6.5% by mass, acetic anhydride (16.0 g) and pyridine (4.96 g) were added as imidation catalysts, and the mixture was heated at 80 ° C. for 3 hours. Reacted. This reaction solution was poured into methanol (1150 ml), and the obtained precipitate was separated by filtration. The precipitate was washed with methanol and dried at 100 ° C. under reduced pressure to obtain a polyimide powder (12). The imidation ratio of this polyimide was 75.1%, the number average molecular weight was 14,736 and the weight average molecular weight was 39,645.

[合成例13]
D2(25.0g,100mmol)、W−A1(37.9g,50.0mmol)、C6(20.5g,60.0mmol)、C8(6.61g,20,0mmol)、C7(27.9g,70,0mmol)をNMP(471g)中で混合し、60℃で3時間反応させた後、D1(18.8g,96.0mmol)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、771mPa・sであった。
得られたポリアミド酸溶液(100g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(14.9g)及びピリジン(4.63g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(1150ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末(13)を得た。このポリイミドのイミド化率は76.2%であり、数平均分子量は15,835、重量平均分子量は39,145であった。
[Synthesis Example 13]
D2 (25.0 g, 100 mmol), W-A1 (37.9 g, 50.0 mmol), C6 (20.5 g, 60.0 mmol), C8 (6.61 g, 20,0 mmol), C7 (27.9 g, 70,0 mmol) in NMP (471 g), and reacted at 60 ° C. for 3 hours. Then, D1 (18.8 g, 96.0 mmol) was added, and the mixture was reacted at 40 ° C. for 3 hours. A mass% polyamic acid solution was obtained. When the viscosity of this polyamic acid solution was measured, it was 771 mPa · s.
After NMP was added to the obtained polyamic acid solution (100 g) to dilute it to 6.5% by mass, acetic anhydride (14.9 g) and pyridine (4.63 g) were added as imidation catalysts, and the mixture was heated at 80 ° C. for 3 hours. Reacted. This reaction solution was poured into methanol (1150 ml), and the obtained precipitate was separated by filtration. The precipitate was washed with methanol and dried at 60 ° C. under reduced pressure to obtain a polyimide powder (13). The imidation ratio of this polyimide was 76.2%, the number average molecular weight was 15,835 and the weight average molecular weight was 39,145.

[合成例14]
D2(25.0g,100mmol)、W−A1(37.9g,50.0mmol)、C6(17.0g,50.0mmol)、C8(16.5g,50.0mmol)、C3(12.1g,50.0mmol)をNMP(434g)中で混合し、60℃で3時間反応させた後、D1(18.8g,96.0mmol)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、701mPa・sであった。
得られたポリアミド酸溶液(100g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(16.0g)及びピリジン(4.97g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(1150ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末(14)を得た。このポリイミドのイミド化率は74.8%であり、数平均分子量は17,635、重量平均分子量は41,647であった。
[Synthesis Example 14]
D2 (25.0 g, 100 mmol), W-A1 (37.9 g, 50.0 mmol), C6 (17.0 g, 50.0 mmol), C8 (16.5 g, 50.0 mmol), C3 (12.1 g, 50.0 mmol) was mixed in NMP (434 g) and reacted at 60 ° C. for 3 hours. Then, D1 (18.8 g, 96.0 mmol) was added, and the mixture was reacted at 40 ° C. for 3 hours. A mass% polyamic acid solution was obtained. When the viscosity of this polyamic acid solution was measured, it was 701 mPa · s.
After NMP was added to the obtained polyamic acid solution (100 g) to dilute it to 6.5% by mass, acetic anhydride (16.0 g) and pyridine (4.97 g) were added as imidation catalysts, and the mixture was heated at 80 ° C. for 3 hours. Reacted. This reaction solution was poured into methanol (1150 ml), and the obtained precipitate was separated by filtration. This precipitate was washed with methanol and dried at 60 ° C. under reduced pressure to obtain a polyimide powder (14). The imidation ratio of this polyimide was 74.8%, the number average molecular weight was 17,635 and the weight average molecular weight was 41,647.

[合成例15]
D4(43.9g,196mmol)、W−A1(30.3g,40.0mmol)、C4(13.9g,70.0mmol)、C8(16.5g,50.0mmol)、C5(7.59g,40.0mmol)をNMP(455g)中で混合し、60℃で15時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、662mPa・sであった。
得られたポリアミド酸溶液(100g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(17.9g)及びピリジン(5.55g)を加え、100℃で3時間反応させた。この反応溶液をメタノール(1160ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末(15)を得た。このポリイミドのイミド化率は71.7%であり、数平均分子量は13,329、重量平均分子量は40,527であった。
[Synthesis Example 15]
D4 (43.9 g, 196 mmol), W-A1 (30.3 g, 40.0 mmol), C4 (13.9 g, 70.0 mmol), C8 (16.5 g, 50.0 mmol), C5 (7.59 g, 40.0 mmol) in NMP (455 g) and reacted at 60 ° C. for 15 hours to obtain a polyamic acid solution having a resin solid content concentration of 20% by mass. When the viscosity of this polyamic acid solution was measured, it was 662 mPa · s.
After NMP was added to the obtained polyamic acid solution (100 g) to dilute it to 6.5% by mass, acetic anhydride (17.9 g) and pyridine (5.55 g) were added as imidation catalysts, and the mixture was added at 100 ° C. for 3 hours. Reacted. This reaction solution was poured into methanol (1160 ml), and the obtained precipitate was separated by filtration. The precipitate was washed with methanol and dried at 60 ° C. under reduced pressure to obtain a polyimide powder (15). The imidation ratio of this polyimide was 71.7%, the number average molecular weight was 13,329 and the weight average molecular weight was 40,527.

[合成例16]
D2(25.0g、100mmol)、C2(21.3g、140mmol)、C10(24.6g、60.0mmol)をNMP(284g)中で溶解し、60℃で3時間反応させたのち、D5(14.3g、40.0mmol)、続いてD1(11.0g、56.0mmol)とNMP(100g)を加え、25℃で10時間反応させポリアミック酸溶液を得た。
このポリアミック酸溶液(100g)にNMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(21.0g)、およびピリジン(6.52g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(1170ml)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(16)を得た。このポリイミドのイミド化率は75.8%であり、数平均分子量は14679、重量平均分子量は35747であった。
[Synthesis Example 16]
D2 (25.0 g, 100 mmol), C2 (21.3 g, 140 mmol) and C10 (24.6 g, 60.0 mmol) were dissolved in NMP (284 g) and reacted at 60 ° C. for 3 hours. 14.3 g, 40.0 mmol), followed by D1 (11.0 g, 56.0 mmol) and NMP (100 g) were reacted at 25 ° C. for 10 hours to obtain a polyamic acid solution.
After NMP was added to this polyamic acid solution (100 g) to dilute it to 6.5% by mass, acetic anhydride (21.0 g) and pyridine (6.52 g) were added as imidation catalysts, and reacted at 80 ° C. for 3 hours. Was. This reaction solution was poured into methanol (1170 ml), and the obtained precipitate was separated by filtration. This precipitate was washed with methanol and dried at 100 ° C. under reduced pressure to obtain a polyimide powder (16). The imidation ratio of this polyimide was 75.8%, the number average molecular weight was 14,679 and the weight average molecular weight was 35,747.

[合成例17]
D2(25.0g、100mmol)、C6(50.0g、120mmol)、C9(15.1g、60.0mmol)、W−A1(15.1g、20.0mmol)をNMP(385g)中で溶解し、60℃で3時間反応させたのち、D1(18.8g、96.0mmol)とNMP(75.3g)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、753mPa・sであった。
このポリアミック酸溶液(100g)にNMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(17.6g)、およびピリジン(5.47g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(1160ml)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末(17)を得た。このポリイミドのイミド化率は71.1%であり、数平均分子量は17635、重量平均分子量は38427であった。
[Synthesis Example 17]
D2 (25.0 g, 100 mmol), C6 (50.0 g, 120 mmol), C9 (15.1 g, 60.0 mmol), and W-A1 (15.1 g, 20.0 mmol) were dissolved in NMP (385 g). After reacting at 60 ° C. for 3 hours, D1 (18.8 g, 96.0 mmol) and NMP (75.3 g) were added, and the mixture was reacted at 40 ° C. for 3 hours to obtain a polyamic acid solution having a resin solid concentration of 20% by mass. Got. When the viscosity of this polyamic acid solution was measured, it was 753 mPa · s.
After NMP was added to this polyamic acid solution (100 g) to dilute it to 6.5% by mass, acetic anhydride (17.6 g) and pyridine (5.47 g) were added as imidation catalysts and reacted at 80 ° C. for 3 hours. Was. This reaction solution was poured into methanol (1160 ml), and the obtained precipitate was separated by filtration. The precipitate was washed with methanol and dried at 60 ° C. under reduced pressure to obtain a polyimide powder (17). The imidation ratio of this polyimide was 71.1%, the number average molecular weight was 17635 and the weight average molecular weight was 38427.

[比較合成例2]
D2(6.26g,25.0mmol)、A2(12.23g,30.0mmol)、C1(2.16g,20.0mmol)をNMP(76.7g)中で混合し、80℃で5時間反応させた後、D1(4.90g,25.0mmol)を加え、40℃で12時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、338mPa・sであった。
得られたポリアミド酸溶液(75.0g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(15.0g)及びピリジン(4.6g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(1000ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(R2)を得た。このポリイミドのイミド化率は73.0%であり、数平均分子量は10,175であり、重量平均分子量は23,642であった。
[Comparative Synthesis Example 2]
D2 (6.26 g, 25.0 mmol), A2 (12.23 g, 30.0 mmol) and C1 (2.16 g, 20.0 mmol) were mixed in NMP (76.7 g) and reacted at 80 ° C. for 5 hours. After that, D1 (4.90 g, 25.0 mmol) was added and reacted at 40 ° C. for 12 hours to obtain a polyamic acid solution having a resin solid concentration of 20% by mass. When the viscosity of this polyamic acid solution was measured, it was 338 mPa · s.
After NMP was added to the obtained polyamic acid solution (75.0 g) to dilute it to 6.5% by mass, acetic anhydride (15.0 g) and pyridine (4.6 g) were added as imidation catalysts. The reaction was performed for 3 hours. This reaction solution was poured into methanol (1000 ml), and the obtained precipitate was separated by filtration. This precipitate was washed with methanol and dried at 100 ° C. under reduced pressure to obtain a polyimide powder (R2). The imidation ratio of this polyimide was 73.0%, the number average molecular weight was 10,175, and the weight average molecular weight was 23,642.

[比較合成例3]
D2(6.26g,25.0mmol)、A3(7.06g,25.0mmol)、C1(2.70g,25.0mmol)をNMP(62.8g)中で混合し、80℃で5時間反応させた後、D1(4.90g,25.0mmol)を加え、40℃で12時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、446mPa・sであった。
得られたポリアミド酸溶液(75.0g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(18.3g)及びピリジン(5.7g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(1000ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(R3)を得た。このポリイミドのイミド化率は72.2%であり、数平均分子量は11,636であり、重量平均分子量は24,624であった。
合成例および比較合成例にて得られたポリイミド粉末の組成を表1にまとめる。
[Comparative Synthesis Example 3]
D2 (6.26 g, 25.0 mmol), A3 (7.06 g, 25.0 mmol) and C1 (2.70 g, 25.0 mmol) are mixed in NMP (62.8 g) and reacted at 80 ° C. for 5 hours. After that, D1 (4.90 g, 25.0 mmol) was added and reacted at 40 ° C. for 12 hours to obtain a polyamic acid solution having a resin solid concentration of 20% by mass. When the viscosity of this polyamic acid solution was measured, it was 446 mPa · s.
After NMP was added to the obtained polyamic acid solution (75.0 g) to dilute it to 6.5% by mass, acetic anhydride (18.3 g) and pyridine (5.7 g) were added as imidation catalysts, and the mixture was heated at 80 ° C. The reaction was performed for 3 hours. This reaction solution was poured into methanol (1000 ml), and the obtained precipitate was separated by filtration. The precipitate was washed with methanol and dried at 100 ° C. under reduced pressure to obtain a polyimide powder (R3). The imidation ratio of this polyimide was 72.2%, the number average molecular weight was 11,636, and the weight average molecular weight was 24,624.
Table 1 summarizes the compositions of the polyimide powders obtained in the synthesis examples and the comparative synthesis examples.

Figure 2018159733
Figure 2018159733

<液晶配向処理剤の調製>
実施例及び比較例では、液晶配向処理剤の調製例を記載する。実施例及び比較例で得られた液晶配向処理剤を用い、液晶表示素子の作製、及び各種評価を行った。
<Preparation of liquid crystal alignment treatment agent>
In Examples and Comparative Examples, preparation examples of liquid crystal alignment treatment agents will be described. Using the liquid crystal alignment treating agents obtained in Examples and Comparative Examples, production of liquid crystal display elements and various evaluations were performed.

<実施例1>
合成例1で得られたポリイミド粉末(1)(3.00g)に、NMP(28.2g)を加え70℃にて24時間撹拌して溶解させた。この溶液に、NMP(g)、BCS(18.8g)を加え、室温で5時間攪拌して、液晶配向処理剤(V−1)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 1>
NMP (28.2 g) was added to the polyimide powder (1) (3.00 g) obtained in Synthesis Example 1, and the mixture was stirred at 70 ° C. for 24 hours to be dissolved. NMP (g) and BCS (18.8 g) were added to this solution, and the mixture was stirred at room temperature for 5 hours to obtain a liquid crystal alignment agent (V-1). No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment treatment agent, and it was confirmed that the solution was a uniform solution.

<実施例2>及び<実施例3>
実施例1において、ポリイミド粉末(1)の代わりにポリイミド粉末(2)及び(3)を用いて、実施例1と同様の手順により、液晶配向処理剤(V−2)及び(V−3)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 2> and <Example 3>
In Example 1, the liquid crystal aligning agents (V-2) and (V-3) were prepared in the same manner as in Example 1, except that the polyimide powder (2) and (3) were used instead of the polyimide powder (1). Got. No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment treatment agent, and it was confirmed that the solution was a uniform solution.

<コントロール1>
実施例1において、ポリイミド粉末(1)の代わりに、コントロール合成例1で得たポリイミド粉末(4)を用いて、実施例1と同様の手順により、液晶配向処理剤(V−4)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Control 1>
In Example 1, a liquid crystal alignment agent (V-4) was obtained in the same procedure as in Example 1, except that the polyimide powder (4) obtained in Control Synthesis Example 1 was used instead of the polyimide powder (1). Was. No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment treatment agent, and it was confirmed that the solution was a uniform solution.

<実施例4>
実施例1から得られた液晶配向処理剤(V−1)を第一成分として3.0g、コントロール1で得られた液晶配向処理剤(V−4)を第2成分として7.0g混合し、1時間撹拌することにより液晶配向処理剤(V−5)を得た。
<Example 4>
3.0 g of the liquid crystal alignment agent (V-1) obtained in Example 1 as the first component and 7.0 g of the liquid crystal alignment agent (V-4) obtained in Control 1 as the second component were mixed. By stirring for 1 hour, a liquid crystal alignment treating agent (V-5) was obtained.

<実施例5>〜<実施例6>
実施例4において、第一成分として液晶配向処理剤(V−1)の代わりに液晶配向処理剤(V−2)又は(V−3)を用いて、実施例4と同様の手順により、それぞれ液晶配向処理剤(V−6)及び(V−7)を得た。
<Example 5> to <Example 6>
In Example 4, a liquid crystal alignment agent (V-2) or (V-3) was used as the first component instead of the liquid crystal alignment agent (V-1), and the procedure was the same as in Example 4. Liquid crystal aligning agents (V-6) and (V-7) were obtained.

<比較例1>
比較合成例1で得られたポリイミド粉末(R1)(3.00g)に、NMP(28.2g)及びBCS(18.8g)を加え、70℃で24時間攪拌して、液晶配向処理剤(R−V1)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
得られた液晶配向処理剤(R−V1)を用いて、液晶表示素子の作製、垂直配向性の評価、プレチルト角の評価、電圧保持率の評価、残像特性の評価を行った。
<Comparative Example 1>
NMP (28.2 g) and BCS (18.8 g) were added to the polyimide powder (R1) (3.00 g) obtained in Comparative Synthesis Example 1, and the mixture was stirred at 70 ° C. for 24 hours. R-V1) was obtained. No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment treatment agent, and it was confirmed that the solution was a uniform solution.
Using the obtained liquid crystal alignment treatment agent (R-V1), a liquid crystal display device, evaluation of vertical alignment, evaluation of pretilt angle, evaluation of voltage holding ratio, and evaluation of afterimage characteristics were performed.

<実施例7>
合成例5で得られたポリイミド粉末(5)(3.00g)に、NMP(22.0g)を加え70℃にて24時間撹拌して溶解させた。この溶液に、E2 (1wt%NMP溶液)3.0g、BCS(20.0g)を加え、室温で5時間攪拌して、液晶配向処理剤(V−8)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることを確認した。
<Example 7>
NMP (22.0 g) was added to the polyimide powder (5) (3.00 g) obtained in Synthesis Example 5 and dissolved by stirring at 70 ° C. for 24 hours. To this solution, 3.0 g of E2 (1 wt% NMP solution) and BCS (20.0 g) were added, and the mixture was stirred at room temperature for 5 hours to obtain a liquid crystal alignment agent (V-8). No abnormality such as turbidity or precipitation was observed in the liquid crystal alignment treatment agent, and it was confirmed that the solution was a uniform solution.

<実施例8〜13、15〜17、19、20、比較例2〜4>
実施例7と同様の操作で合成例6〜11、13〜15、17、比較合成例1〜3、コントロール合成例1で得られたポリイミド粉末(6)〜(11)、(13)〜(15)、(17)、(R1〜R3)、(4)を用いて液晶配向処理剤(V−9〜V−21)、(R−V2〜R−V4)を調製した。
<Examples 8 to 13, 15 to 17, 19, 20, Comparative Examples 2 to 4>
The polyimide powders (6) to (11), (13) to (13) obtained in Synthesis Examples 6 to 11, 13 to 15, and Comparative Synthesis Examples 1 to 3 and Control Synthesis Example 1 by the same operation as in Example 7. 15), (17), (R1 to R3) and (4) were used to prepare liquid crystal alignment treatment agents (V-9 to V-21) and (R-V2 to R-V4).

<実施例14>
合成例12で得られたポリイミド粉末(12)(3.00g)に、NEP(22.0g)を加え70℃にて24時間撹拌して溶解させた。この溶液に、NEP(3.0g)、BCS(20.0g)を加え、室温で5時間攪拌して、液晶配向処理剤(V−15)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることを確認した。
<Example 14>
NEP (22.0 g) was added to the polyimide powder (12) (3.00 g) obtained in Synthesis Example 12 and dissolved by stirring at 70 ° C. for 24 hours. To this solution, NEP (3.0 g) and BCS (20.0 g) were added, and the mixture was stirred at room temperature for 5 hours to obtain a liquid crystal alignment agent (V-15). No abnormality such as turbidity or precipitation was observed in the liquid crystal alignment treatment agent, and it was confirmed that the solution was a uniform solution.

<実施例18>
合成例16で得られたポリイミド粉末(16)についても実施例14と同様の操作を行い、液晶配向膜処理剤(V−19)を得た。
<Example 18>
The same operation as in Example 14 was performed on the polyimide powder (16) obtained in Synthesis Example 16 to obtain a liquid crystal alignment film treating agent (V-19).

Figure 2018159733
Figure 2018159733

<実施例21>
実施例14から得られた液晶配向処理剤(V−15)を第一成分として3.0g、実施例18で得られた液晶配向処理剤(V−19)を第2成分として7.0g、架橋剤E1を液晶配向膜剤中の樹脂成分に対し5重量%となるように混合し、1時間撹拌することで液晶配向処理剤(W−2)を得た。
<Example 21>
3.0 g of the liquid crystal alignment agent (V-15) obtained in Example 14 as the first component, 7.0 g of the liquid crystal alignment agent (V-19) obtained in Example 18 as the second component, The crosslinking agent E1 was mixed at 5% by weight with respect to the resin component in the liquid crystal alignment film agent, and stirred for 1 hour to obtain a liquid crystal alignment treatment agent (W-2).

<実施例22〜24>
実施例15〜20で得られた液晶配向処理剤(V−16)〜(V−21)について実施例21と同様の操作で液晶配向処理剤(W−3)〜(W−5)を得た。
<Examples 22 to 24>
With respect to the liquid crystal aligning agents (V-16) to (V-21) obtained in Examples 15 to 20, liquid crystal aligning agents (W-3) to (W-5) were obtained by the same operation as in Example 21. Was.

Figure 2018159733
Figure 2018159733

実施例で得られた液晶配向処理剤及び比較例で得られた液晶配向処理剤を用いて、液晶表示素子の作製、垂直配向性の評価、スクラッチ試験、プレチルト角の評価、電圧保持率の評価、残像特性の評価を行った。   Using the liquid crystal aligning agent obtained in the example and the liquid crystal aligning agent obtained in the comparative example, production of a liquid crystal display element, evaluation of vertical alignment, scratch test, evaluation of pretilt angle, evaluation of voltage holding ratio The afterimage characteristics were evaluated.

<電圧保持率測定用液晶表示素子の作製>
実施例で得られた液晶配向処理剤及び比較例で得られた液晶配向処理剤を、細孔径1μmのメンブランフィルタで加圧濾過した。得られた溶液を純水及びIPA(イソプロピルアルコール)で洗浄した40mm×30mmのITO電極付きガラス基板(縦:40mm、横:30mm、厚さ:1.1mm)のITO面上にスピンコートし、ホットプレート上にて70℃で90秒間、熱循環型クリーンオーブンにて230℃で30分間の加熱処理をして、膜厚が100nmの液晶配向膜付きのITO基板を得た。得られた液晶配向膜付きのITO基板を2枚用意し、その一方の基板の液晶配向膜面に、直径4μmのビーズスペーサー(日揮触媒化成社製、真絲球、SW−D1)を塗布した。
次に、シール剤(三井化学製XN−1500T)で周囲を塗布した。次いで、もう一方の基板の液晶配向膜が形成された側の面を内側にして、先の基板と張り合わせた後、シール材を硬化させて空セルを作成した。この空セルに液晶MLC−3023(メルク社製商品名)を減圧注入法によって注入し、液晶セルを作成した。
その後、得られた液晶セルに15Vの直流電圧を印加した状態で、光源に高圧水銀ランプを使用した紫外線照射装置を用いて、波長365nmのバンドパスフィルターを通した紫外線を15J/cm照射して、垂直配向型液晶表示素子を得た。なお、紫外線照射量の測定にはORC社製UV−M03AにUV−35の受光器を接続し用いた。
<Preparation of liquid crystal display element for voltage holding ratio measurement>
The liquid crystal aligning agent obtained in the example and the liquid crystal aligning agent obtained in the comparative example were filtered under pressure with a membrane filter having a pore diameter of 1 μm. The obtained solution was spin-coated on a 40 mm × 30 mm glass substrate with an ITO electrode (length: 40 mm, width: 30 mm, thickness: 1.1 mm) washed with pure water and IPA (isopropyl alcohol), Heat treatment was performed on a hot plate at 70 ° C. for 90 seconds and in a heat-circulating clean oven at 230 ° C. for 30 minutes to obtain a 100-nm-thick ITO substrate with a liquid crystal alignment film. Two ITO substrates with the obtained liquid crystal alignment film were prepared, and a bead spacer (manufactured by Nikki Shokubai Kasei Co., Ltd., Shin-yoku ball, SW-D1) having a diameter of 4 μm was applied to the liquid crystal alignment film surface of one of the substrates.
Next, the periphery was applied with a sealing agent (XN-1500T manufactured by Mitsui Chemicals, Inc.). Next, the other substrate was bonded to the previous substrate with the surface on the side where the liquid crystal alignment film was formed facing inside, and then the sealing material was cured to form empty cells. Liquid crystal MLC-3023 (trade name, manufactured by Merck) was injected into the empty cell by a reduced pressure injection method to prepare a liquid crystal cell.
Thereafter, while applying a DC voltage of 15 V to the obtained liquid crystal cell, an ultraviolet ray irradiating apparatus using a high-pressure mercury lamp as a light source was irradiated with 15 J / cm 2 of ultraviolet light through a band-pass filter having a wavelength of 365 nm. Thus, a vertical alignment type liquid crystal display device was obtained. Note that a UV-35 light receiver was connected to UV-M03A manufactured by ORC for measurement of the amount of ultraviolet irradiation.

<プレチルト角及び残像評価用液晶表示素子の作製>
実施例で得られた液晶配向処理剤を、細孔径1μmのメンブランフィルタで加圧濾過した。得られた溶液を純水及びIPA(イソプロピルアルコール)で洗浄した、画素サイズが200μm×600μmでライン/スペースがそれぞれ3μmのITO電極パターンが形成されているITO電極基板(縦:35mm、横:30mm、厚さ:0.7mm)と、高さ3.2μmのフォトスペーサーがパターニングされているITO電極付きガラス基板(縦:35mm、横:30mm、厚さ:0.7mm)のITO面上にそれぞれスピンコートし、ホットプレート上にて70℃で90秒間、熱循環型クリーンオーブンにて230℃で30分間の加熱処理をして、膜厚が100nmの液晶配向膜付きのITO基板を得た。
なお、このITO電極パターンが形成されているITO電極基板は、クロスチェッカー(市松)模様に4分割されており4つのエリアごとで別々に駆動ができるようになっている。
次に、シール剤(三井化学製XN−1500T)で周囲を塗布した。次いで、もう一方の基板の液晶配向膜が形成された側の面を内側にして、先の基板と張り合わせた後、シール材を硬化させて空セルを作成した。この空セルに液晶MLC−3023(メルク社製商品名)を減圧注入法によって注入し、液晶セルを作成した。
その後、得られた液晶セルに15Vの直流電圧を印加し、全ての画素エリアが駆動した状態で、光源に高圧水銀ランプを使用した紫外線照射装置を用いて、波長365nmのバンドパスフィルターを通した紫外線を10J/cm照射して、垂直配向型液晶表示素子を得た。紫外線照射量の測定にはORC社製UV−M03AにUV−35の受光器を接続し用いた。
更に、実施例1〜3、比較例1では、上記の標準条件に加えて、過酷条件として、加熱処理を230℃で120分間として液晶配向膜を形成した以外は、上記と同条件で垂直配向型液晶表示素子を作成した。
<Preparation of pretilt angle and afterimage evaluation liquid crystal display element>
The liquid crystal aligning agent obtained in the example was subjected to pressure filtration with a membrane filter having a pore diameter of 1 μm. The obtained solution was washed with pure water and IPA (isopropyl alcohol), and an ITO electrode substrate (length: 35 mm, width: 30 mm) on which an ITO electrode pattern having a pixel size of 200 μm × 600 μm and a line / space of 3 μm each was formed. , Thickness: 0.7 mm) and a 3.2 μm-height photo spacer on the ITO surface of a glass substrate with an ITO electrode (length: 35 mm, width: 30 mm, thickness: 0.7 mm). Spin coating was performed on a hot plate at 70 ° C. for 90 seconds and in a heat circulating clean oven at 230 ° C. for 30 minutes to obtain a 100 nm thick ITO substrate with a liquid crystal alignment film.
The ITO electrode substrate on which the ITO electrode pattern is formed is divided into four in a cross checker (checkered) pattern, and can be driven separately for each of the four areas.
Next, the periphery was applied with a sealing agent (XN-1500T manufactured by Mitsui Chemicals, Inc.). Next, the other substrate was bonded to the previous substrate with the surface on the side where the liquid crystal alignment film was formed facing inside, and then the sealing material was cured to form empty cells. Liquid crystal MLC-3023 (trade name, manufactured by Merck) was injected into the empty cell by a reduced pressure injection method to prepare a liquid crystal cell.
Then, a DC voltage of 15 V was applied to the obtained liquid crystal cell, and in a state where all the pixel areas were driven, the liquid crystal cell was passed through a band-pass filter having a wavelength of 365 nm using an ultraviolet irradiation apparatus using a high-pressure mercury lamp as a light source. Ultraviolet rays were irradiated at 10 J / cm 2 to obtain a vertical alignment type liquid crystal display device. A UV-35 light receiver was connected to ORC's UV-M03A for measurement of the amount of ultraviolet irradiation.
Further, in Examples 1 to 3 and Comparative Example 1, in addition to the above standard conditions, vertical alignment was performed under the same conditions as above except that the heat treatment was performed at 230 ° C. for 120 minutes as a severe condition. Type liquid crystal display device was prepared.

<評価>
(垂直配向性)
液晶表示素子の液晶配向性は、偏光顕微鏡(ECLIPSE E600WPOL)(ニコン社製)で観察し、液晶が垂直に配向しているかどうかを確認した。具体的には、液晶の流動による不良や配向欠陥による輝点が見られていないものを、良好とした。評価結果を、表2に示す。
<Evaluation>
(Vertical orientation)
The liquid crystal orientation of the liquid crystal display element was observed with a polarizing microscope (ECLIPSE E600WPOL) (manufactured by Nikon Corporation) to confirm whether the liquid crystal was vertically aligned. More specifically, samples in which no defect due to liquid crystal flow and no bright spot due to alignment defects were observed were evaluated as good. Table 2 shows the evaluation results.

(電圧保持率)
上記で作製した電圧保持率評価用の液晶表示素子に、1Vの電圧を60マイクロ秒の印加時間、1667ミリ秒の間隔で印加した後、印加解除から1667ミリ秒後の電圧保持率(%)を測定した。測定装置は東陽テクニカ製VHR−1を使用した。評価結果を、表2に示す。
(Voltage holding ratio)
After applying a voltage of 1 V to the liquid crystal display device for voltage holding ratio evaluation prepared above at an application time of 60 microseconds and at an interval of 1667 milliseconds, the voltage holding ratio (%) after 1667 milliseconds after the application was released. Was measured. The measuring device used was VHR-1 manufactured by Toyo Technica. Table 2 shows the evaluation results.

(プレチルト角)
LCDアナライザー(名菱テクニカ社製LCA−LUV42A)を使用して、上記で作製したプレチルト角評価用の液晶表示素子の内、液晶の流動による不良が見られていない液晶表示素子について測定を行った。評価結果を表2に示す。
(Pretilt angle)
Using an LCD analyzer (LCA-LUV42A manufactured by Meisho Technica Co., Ltd.), the liquid crystal display element for evaluation of the pretilt angle prepared above was measured for a liquid crystal display element in which no defect due to liquid crystal flow was observed. . Table 2 shows the evaluation results.

(残像特性)
上記で作製した残像評価用液晶表示素子を用いて、4つの画素エリアのうち対角線の2つのエリアに60Hz、20Vp−pの交流電圧を印加し、23℃の温度下で168時間駆動させた。その後、4つの画素エリアすべてを5Vp−pの交流電圧で駆動させ、画素の輝度差を目視で観察した。輝度差がほぼ確認できない状態を良好とした。評価結果を表3に示す。
(Afterimage characteristics)
Using the above-prepared liquid crystal display device for image lag evaluation, an alternating voltage of 60 Hz and 20 Vp-p was applied to two diagonal areas of the four pixel areas, and driving was performed at a temperature of 23 ° C. for 168 hours. Thereafter, all four pixel areas were driven with an AC voltage of 5 Vp-p, and the luminance difference between the pixels was visually observed. A state in which a luminance difference was hardly confirmed was regarded as good. Table 3 shows the evaluation results.

(スクラッチ試験)
実施例で得たポリイミド塗膜付き基板の配向膜面に対して、UMT−2(ブルカー・エイエックスエス株式会社製)を用いてスクラッチ試験を行った。
UMT−2のセンサーにはFVLを選択し、スクラッチ部先端には1.6mmのサファイア球を取り付けた。
スクラッチ部先端を液晶配向膜表面に荷重1mNで接触させた状態で、横0.5mm、縦2.0mmの範囲を、100秒間かけて1mNから20mNまで荷重を変化させスクラッチ試験をおこなった。この時スクラッチ部先端の移動方向は横への往復とし、移動速度は5.0mm/秒で行った。スクラッチエリアの縦方向への移動は、液晶配向膜付きの基板を縦方向に20μm/秒で移動させ行った。
スクラッチ試験後、MLC−3022(メルク社製ネガ型液晶)をスクラッチ試験済の液晶配向膜面へ滴下した。そこへ実施例1で得たもう1枚の液晶配向膜付き基板に4μmのスペーサーを散布したものを、互いの液晶配向膜面が向かい合うように重ね合わせ、滴下したMLC−3022を挟み込んだ。
偏光顕微鏡(ECLIPSE E600WPOL)(ニコン社製)の上下の偏光板の偏光軸が90°(クロスニコル)となるようにした状態で、スクラッチ試験を行った箇所を観察し、光が透過するかを観察した。スクラッチ試験を行った箇所について、輝点や光抜けが全く見られない状態を○、僅かな輝点や光抜けが見られる状態を△、スクラッチした箇所全体が光抜けとなった状態を×として表6に示す。
(Scratch test)
A scratch test was performed using UMT-2 (manufactured by Bruker AXS) on the alignment film surface of the polyimide-coated substrate obtained in the example.
FVL was selected for the UMT-2 sensor, and a 1.6 mm sapphire ball was attached to the tip of the scratch part.
With the tip of the scratch portion in contact with the surface of the liquid crystal alignment film at a load of 1 mN, a scratch test was performed in a range of 0.5 mm in width and 2.0 mm in length while changing the load from 1 mN to 20 mN over 100 seconds. At this time, the moving direction of the tip of the scratch portion was reciprocating sideways, and the moving speed was 5.0 mm / sec. The vertical movement of the scratch area was performed by moving the substrate provided with the liquid crystal alignment film in the vertical direction at 20 μm / sec.
After the scratch test, MLC-3022 (negative liquid crystal manufactured by Merck) was dropped onto the liquid crystal alignment film surface after the scratch test. Thereto, another 4 μm spacer with a liquid crystal alignment film obtained in Example 1 on which a 4 μm spacer was scattered was overlapped so that the surfaces of the liquid crystal alignment films faced each other, and the dropped MLC-3022 was sandwiched.
In a state where the polarization axes of the upper and lower polarizing plates of a polarizing microscope (ECLIPSE E600WPOL) (manufactured by Nikon Corporation) are set to 90 ° (crossed Nicols), the place where the scratch test was performed is observed, and it is determined whether light is transmitted. Observed. Regarding the places where the scratch test was performed, the state where no bright spots or light leakage was observed was marked as ○, the state where slight bright spots or light leakage was seen was marked as △, and the state where the entire scratched area became light lost was marked as x It is shown in Table 6.

Figure 2018159733
Figure 2018159733

Figure 2018159733
Figure 2018159733

Figure 2018159733
Figure 2018159733

上記の結果、具体的には、表4に示す実施例1〜3と比較例1との比較からわかるように、本発明の液晶配向処理剤から得られる液晶配向膜を用いた液晶表示素子は、過酷条件においてもプレチルト角に変化はなく、液晶配向性が良好であることがわかった。
また、表5に示すように液晶配向処理剤(V−4)を混合した実施例4〜実施例6では残像特性は良好な結果になることがわかった。
さらに、本実施例から、特定の側鎖型ジアミンを用いて得られる液晶配向膜は過酷な条件で焼成された場合でもプレチルト角の安定性に優れることがわかった。また、スクラッチ試験のように液晶配向膜へ物理的接触があった場合でも、配向膜へのダメージが少なく良好な垂直配向性を維持できることも確認された。
As a result, specifically, as can be seen from the comparison between Examples 1 to 3 and Comparative Example 1 shown in Table 4, the liquid crystal display device using the liquid crystal alignment film obtained from the liquid crystal alignment agent of the present invention is It was also found that there was no change in the pretilt angle even under severe conditions, and the liquid crystal orientation was good.
Further, as shown in Table 5, it was found that in Examples 4 to 6 in which the liquid crystal alignment agent (V-4) was mixed, good results were obtained in the afterimage characteristics.
Further, from this example, it was found that the liquid crystal alignment film obtained by using a specific side chain type diamine was excellent in pretilt angle stability even when fired under severe conditions. Further, it was confirmed that even when there was physical contact with the liquid crystal alignment film as in the scratch test, it was possible to maintain good vertical alignment with little damage to the alignment film.

本発明の液晶配向処理剤から得られる液晶配向膜を用いた液晶表示素子は、液晶表示素子に、好適に用いることができる。そして、これらの素子は、表示を目的とする液晶ディスプレイ、さらには、光の透過と遮断を制御する調光窓や光シャッターなどにおいても有用である。   A liquid crystal display device using a liquid crystal alignment film obtained from the liquid crystal alignment agent of the present invention can be suitably used for a liquid crystal display device. These elements are also useful in a liquid crystal display for display purposes, and also in a light control window or an optical shutter for controlling transmission and blocking of light.

Claims (9)

下記式[1]で表されるジアミンを含有するジアミン成分と、テトラカルボン酸成分との反応物であるポリイミド前駆体及びそのイミド化物であるポリイミドから選ばれる少なくとも1種の重合体を含有する液晶配向剤:
式[1]中、Xは、単結合、−O−、−C(CH−、−NH−、−CO−、−(CH−、−SO−、及びそれらの任意の組み合わせからなる2価の有機基を表し、mは1〜8の整数を表し、Yはそれぞれ独立して下記式[1−1]の構造を表す;
式[1−1]中、Y及びYはそれぞれ独立して、単結合、−(CH−(aは1〜15の整数である)、−O−、−CHO−、−CONH−、−NHCO−、−COO−及び−OCO−からなる群から選ばれる少なくとも1種を示す;
は単結合又は−(CH−(bは1〜15の整数である)を示す(ただし、Y又はYが単結合、−(CH−である場合、Yは単結合であり、Yが−O−、−CHO−、−CONH−、−NHCO−、−COO−及び−OCO−からなる群から選ばれる少なくとも1種であるか、及び/又はYが−O−、−CHO−、−CONH−、−NHCO−、−COO−及び−OCO−からなる群から選ばれる少なくとも1種である場合、Yは単結合又は−(CH−である(ただし、Yが−CONH−である場合、Y及びY単結合である));
はベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の2価の環状基、又はステロイド骨格およびトコフェノール骨格を有する炭素数17〜51の2価の有機基を示し、前記環状基上の任意の水素原子は、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシ基、炭素数1〜3のフッ素含有アルキル基、炭素数1〜3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい;
はベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の環状基を示し、これらの環状基上の任意の水素原子は、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシ基、炭素数1〜3のフッ素含有アルキル基、炭素数1〜3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい;
は炭素数1〜18のアルキル基、炭素数2〜18のアルケニル基、炭素数1〜18のフッ素含有アルキル基、炭素数1〜18のアルコキシ基及び炭素数1〜18のフッ素含有アルコキシ基からなる群から選ばれる少なくとも1種を示す;
nは0〜4の整数を示す。
Figure 2018159733
Liquid crystal containing at least one polymer selected from a polyimide precursor which is a reaction product of a diamine component containing a diamine represented by the following formula [1] and a tetracarboxylic acid component, and a polyimide which is an imidized product thereof. Alignment agent:
Wherein [1], X is a single bond, -O -, - C (CH 3) 2 -, - NH -, - CO -, - (CH 2) m -, - SO 2 -, and combinations of any Wherein m represents an integer of 1 to 8, and Y independently represents a structure of the following formula [1-1];
In the formula [1-1], Y 1 and Y 3 are each independently a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O— , -CONH-, -NHCO-, -COO- and -OCO- at least one selected from the group consisting of:
Y 2 represents a single bond or — (CH 2 ) b — (b is an integer of 1 to 15) (provided that when Y 1 or Y 3 is a single bond or — (CH 2 ) a —, 2 is a single bond, and Y 1 is at least one selected from the group consisting of —O—, —CH 2 O—, —CONH—, —NHCO—, —COO—, and —OCO—, and / or Or when Y 3 is at least one selected from the group consisting of —O—, —CH 2 O—, —CONH—, —NHCO—, —COO—, and —OCO—, Y 2 is a single bond or — ( CH 2 ) b — (however, when Y 1 is —CONH—, it is a single bond of Y 2 and Y 3 ));
Y 4 represents a benzene ring, at least one divalent cyclic group selected from the group consisting of a cyclohexane ring and a heterocyclic ring, or a divalent organic group having 17 to 51 carbon atoms having a steroid skeleton and a tocophenol skeleton; An arbitrary hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, and a fluorine-containing alkoxy group having 1 to 3 carbon atoms. Or may be substituted with a fluorine atom;
Y 5 represents at least one cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring, and a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, An alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxy group having 1 to 3 carbon atoms, or a fluorine atom;
Y 6 is an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, and a fluorine-containing alkoxy group having 1 to 18 carbon atoms. At least one member selected from the group consisting of groups;
n shows the integer of 0-4.
Figure 2018159733
前記式[1]で表されるジアミンが、下記式[1’]で表される請求項1に記載の液晶配向剤。
Figure 2018159733
The liquid crystal aligning agent according to claim 1, wherein the diamine represented by the formula [1] is represented by the following formula [1 '].
Figure 2018159733
前記式[1]で表されるジアミンが、下記式[1]−a1、下記式[1]−a2、又は下記式[1]−a3で表される請求項1又は請求項2に記載の液晶配向剤。
Figure 2018159733
The diamine represented by the formula [1] is represented by the following formula [1] -a1, the following formula [1] -a2, or the following formula [1] -a3. Liquid crystal alignment agent.
Figure 2018159733
前記式[1]で表されるジアミンが、下記式[1]−a1−1、下記式[1]−a2−1〜下記式[1]−a2−4、下記式[1]−a3−1又は下記式[1]−a3−2で表される請求項1〜3のいずれか一項に記載の液晶配向剤。
Figure 2018159733
The diamine represented by the formula [1] is represented by the following formula [1] -a1-1, the following formula [1] -a2-1 to the following formula [1] -a2-4, or the following formula [1] -a3- The liquid crystal aligning agent according to any one of claims 1 to 3, which is represented by the following formula [1] -a3-2.
Figure 2018159733
前記式[1−1]の構造で表されるYが、下記式[1−1]−1〜[1−1]−22(式中、*は、前記式[1]、前記式[1’]、前記式[1]−a1〜前記式[1]−a3におけるフェニル基との結合している位置を示す;mは1〜15の整数を示し、nは0〜18の整数を示す)のいずれかで表される請求項1〜4のいずれか一項に記載の液晶配向剤。
Figure 2018159733
Y represented by the structure of the formula [1-1] is represented by the following formulas [1-1] -1 to [1-1] -22 (where * represents the formulas [1] and [1] '] Indicates the position of the bond with the phenyl group in the formulas [1] -a1 to [1] -a3; m indicates an integer of 1 to 15, and n indicates an integer of 0 to 18 The liquid crystal aligning agent according to any one of claims 1 to 4, which is represented by any one of the above.
Figure 2018159733
前記ジアミン成分が、下記式[2]で表されるジアミンをさらに含有する
(式[2]中、A及びAは、それぞれ独立して、水素原子又は、炭素数1〜5のアルキル基、炭素数2〜5のアルケニル基、又は炭素数2〜5のアルキニル基を表す;
は、2価の有機基を表す。)
請求項1〜5のいずれか一項に記載の液晶配向剤。
Figure 2018159733
The diamine component further contains a diamine represented by the following formula [2] (wherein A 1 and A 2 are each independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms) Represents an alkenyl group having 2 to 5 carbon atoms or an alkynyl group having 2 to 5 carbon atoms;
Y 1 represents a divalent organic group. )
The liquid crystal aligning agent according to claim 1.
Figure 2018159733
請求項1〜6のいずれか一項に記載の液晶配向剤を用いて形成された液晶配向膜。   A liquid crystal alignment film formed using the liquid crystal alignment agent according to claim 1. 請求項1〜6のいずれか一項に記載の液晶配向剤を基板上に塗布して塗膜を形成する工程;
前記塗膜を焼成する工程;及び
焼成して得られた膜を配向処理する工程;
を有することにより、液晶配向膜を形成する、液晶配向膜の製造方法。
A step of applying a liquid crystal aligning agent according to any one of claims 1 to 6 on a substrate to form a coating film;
Baking the coating film; and orienting the film obtained by baking;
A method for producing a liquid crystal alignment film, comprising: forming a liquid crystal alignment film.
請求項7に記載の液晶配向膜;又は請求項8に記載の製造方法により得られた液晶配向膜;を具備する液晶表示素子。   A liquid crystal display device comprising: the liquid crystal alignment film according to claim 7; or a liquid crystal alignment film obtained by the manufacturing method according to claim 8.
JP2019503096A 2017-03-02 2018-03-01 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element Active JP7096534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022090434A JP7409431B2 (en) 2017-03-02 2022-06-02 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017039880 2017-03-02
JP2017039880 2017-03-02
PCT/JP2018/007686 WO2018159733A1 (en) 2017-03-02 2018-03-01 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022090434A Division JP7409431B2 (en) 2017-03-02 2022-06-02 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element

Publications (2)

Publication Number Publication Date
JPWO2018159733A1 true JPWO2018159733A1 (en) 2019-12-26
JP7096534B2 JP7096534B2 (en) 2022-07-06

Family

ID=63370317

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019503096A Active JP7096534B2 (en) 2017-03-02 2018-03-01 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP2022090434A Active JP7409431B2 (en) 2017-03-02 2022-06-02 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022090434A Active JP7409431B2 (en) 2017-03-02 2022-06-02 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element

Country Status (5)

Country Link
JP (2) JP7096534B2 (en)
KR (1) KR102588036B1 (en)
CN (2) CN110573952B (en)
TW (2) TWI752177B (en)
WO (1) WO2018159733A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3438157B1 (en) 2017-08-02 2025-01-22 Samsung Electronics Co., Ltd. Monomer, polymer, compensation film, optical film, and display device
US11518734B2 (en) 2017-08-02 2022-12-06 Samsung Electronics Co., Ltd. Monomer and polymer, compensation film, optical film, and display device
WO2020105561A1 (en) * 2018-11-19 2020-05-28 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
WO2020121979A1 (en) * 2018-12-10 2020-06-18 日産化学株式会社 Liquid-crystal alignment agent, liquid-crystal alignment film, and liquid-crystal display element
KR102815610B1 (en) * 2019-03-29 2025-05-30 닛산 가가쿠 가부시키가이샤 Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element and diamine
KR20220151604A (en) * 2020-03-06 2022-11-15 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
WO2021206003A1 (en) * 2020-04-10 2021-10-14 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment layer, and liquid crystal display element
JP7622744B2 (en) 2020-06-26 2025-01-28 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2022014467A1 (en) * 2020-07-17 2022-01-20 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN114545668B (en) * 2022-02-23 2024-04-23 深圳市尊绅投资有限公司 Screen impurity processing method, device and system and electronic equipment
WO2025105278A1 (en) * 2023-11-15 2025-05-22 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11322927A (en) * 1998-05-11 1999-11-26 Mitsui Toatsu Chem Inc Polyamic acid copolymer and polyimide copolymer, and heat resistant adhesive
WO2003034102A2 (en) * 2001-10-16 2003-04-24 Lightwave Microsystems Corporation Waveplate and optical circuit formed from mesogen-containing polymer

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3117152A1 (en) * 1981-04-30 1982-11-18 Merck Patent Gmbh, 6100 Darmstadt "FLUORINE 4,4'-BIS (CYCLOHEXYL) BIPHENYL DERIVATIVES, THESE DIELECTRICS AND ELECTRO-OPTICAL DISPLAY ELEMENT"
JP4175826B2 (en) 2002-04-16 2008-11-05 シャープ株式会社 Liquid crystal display
CN101057178B (en) 2004-12-28 2010-06-02 日产化学工业株式会社 Liquid-crystal alignment material for vertical alignment, liquid-crystal alignment film, and liquid-crystal display element employing the same
JP4788896B2 (en) * 2006-02-22 2011-10-05 Jsr株式会社 Vertical alignment type liquid crystal aligning agent and vertical alignment type liquid crystal display element
JP2010101999A (en) * 2008-10-22 2010-05-06 Chisso Corp Liquid crystal alignment layer, liquid crystal aligning agent, and liquid crystal display element
JP2013011755A (en) * 2011-06-29 2013-01-17 Sony Corp Liquid crystal display and method of manufacturing the same
JP6102745B2 (en) * 2011-11-30 2017-03-29 日産化学工業株式会社 Method for producing liquid crystal alignment film
JP6561834B2 (en) * 2013-09-03 2019-08-21 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN105659155B (en) * 2013-10-23 2020-01-21 日产化学工业株式会社 Liquid crystal aligning agent containing polyimide precursor and/or polyimide having thermally-releasable group
KR102609036B1 (en) * 2015-03-04 2023-12-01 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
TWI773689B (en) * 2016-09-29 2022-08-11 日商日產化學工業股份有限公司 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11322927A (en) * 1998-05-11 1999-11-26 Mitsui Toatsu Chem Inc Polyamic acid copolymer and polyimide copolymer, and heat resistant adhesive
WO2003034102A2 (en) * 2001-10-16 2003-04-24 Lightwave Microsystems Corporation Waveplate and optical circuit formed from mesogen-containing polymer

Also Published As

Publication number Publication date
TWI752177B (en) 2022-01-11
KR20190125992A (en) 2019-11-07
JP7096534B2 (en) 2022-07-06
CN110573952B (en) 2022-03-22
CN114609830A (en) 2022-06-10
TW202214749A (en) 2022-04-16
TWI767870B (en) 2022-06-11
CN110573952A (en) 2019-12-13
JP2022113743A (en) 2022-08-04
TW201842172A (en) 2018-12-01
CN114609830B (en) 2025-02-21
WO2018159733A1 (en) 2018-09-07
JP7409431B2 (en) 2024-01-09
KR102588036B1 (en) 2023-10-11

Similar Documents

Publication Publication Date Title
JP7409431B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
TW201534656A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
KR101742838B1 (en) Liquid crystal aligning agent and liquid crystal display element using same
JP7176601B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using the same
JP7093059B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using it
JP7652074B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP7582305B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP7428145B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same
JP7348597B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP7694561B2 (en) Novel diamine, polymer, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same
CN114466882B (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, polymer, and diamine
TWI865340B (en) Liquid crystal alignment agent for photo-alignment, liquid crystal alignment film and liquid crystal display element
JP7409375B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same
JPWO2018230617A1 (en) Liquid crystal aligning agent, liquid crystal aligning film, liquid crystal display device using the same, and method for producing the liquid crystal aligning film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220607

R151 Written notification of patent or utility model registration

Ref document number: 7096534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151