[go: up one dir, main page]

JPWO2014184923A1 - Gasification method and gasification apparatus for solid organic raw material - Google Patents

Gasification method and gasification apparatus for solid organic raw material Download PDF

Info

Publication number
JPWO2014184923A1
JPWO2014184923A1 JP2015516833A JP2015516833A JPWO2014184923A1 JP WO2014184923 A1 JPWO2014184923 A1 JP WO2014184923A1 JP 2015516833 A JP2015516833 A JP 2015516833A JP 2015516833 A JP2015516833 A JP 2015516833A JP WO2014184923 A1 JPWO2014184923 A1 JP WO2014184923A1
Authority
JP
Japan
Prior art keywords
raw material
circular cavity
solid organic
oxidant
gasification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015516833A
Other languages
Japanese (ja)
Other versions
JP6041451B2 (en
Inventor
ペトロフ,スタニスラブ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GLOBAL ENERGY TRADE
Original Assignee
GLOBAL ENERGY TRADE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GLOBAL ENERGY TRADE filed Critical GLOBAL ENERGY TRADE
Application granted granted Critical
Publication of JP6041451B2 publication Critical patent/JP6041451B2/en
Publication of JPWO2014184923A1 publication Critical patent/JPWO2014184923A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/22Arrangements or dispositions of valves or flues
    • C10J3/24Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed
    • C10J3/26Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed downwardly
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/34Grates; Mechanical ash-removing devices
    • C10J3/36Fixed grates
    • C10J3/38Fixed grates with stirring beams
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/152Nozzles or lances for introducing gas, liquids or suspensions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/156Sluices, e.g. mechanical sluices for preventing escape of gas through the feed inlet
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0976Water as steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/123Heating the gasifier by electromagnetic waves, e.g. microwaves
    • C10J2300/1238Heating the gasifier by electromagnetic waves, e.g. microwaves by plasma

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

固形有機原料のガス化を比較的安価なガス化装置を使用して,低ランニングコストで行う。中間領域の内径を拡張して形成した第1円形空洞11と第2円形空洞12を備えた円筒形の反応炉10の上端より,乾燥及び破砕された固形有機原料を投入し,第1円形空洞11内に電気アークプラズマジェット30で発生した蒸気プラズマを噴射し,第2円形空洞12内に200〜600℃に加熱した空気等の酸化剤を噴射すると共に,排出ガス通路21を介して反応炉10の下端部内を吸引する。蒸気プラズマの導入により第1円形空洞11内の固形有機原料中の有機成分が一部ガス化し,第2円形空洞12内に導入されて酸化剤と反応して燃焼し,燃焼時の発熱とプラズマによる加熱との相乗効果によって原料中に残留する有機成分をガス化することで効率的なガス化を可能とした。Gasification of solid organic raw materials is performed at a low running cost using a relatively inexpensive gasifier. From the upper end of the cylindrical reactor 10 having the first circular cavity 11 and the second circular cavity 12 formed by expanding the inner diameter of the intermediate region, the dried and crushed solid organic raw material is charged, and the first circular cavity 11, vapor plasma generated by an electric arc plasma jet 30 is injected into the second circular cavity 12, and an oxidant such as air heated to 200 to 600 ° C. is injected into the second circular cavity 12. The inside of the lower end of 10 is sucked. Due to the introduction of the vapor plasma, the organic components in the solid organic raw material in the first circular cavity 11 are partially gasified and introduced into the second circular cavity 12 to react with the oxidant and burn, thereby generating heat and plasma during combustion. Efficient gasification was made possible by gasifying organic components remaining in the raw material by a synergistic effect with heating by means of.

Description

本発明は,固形有機原料のガス化方法,及び前記方法を実施するためのガス化装置に関し,より詳細には,各種の廃棄物,石炭,木材,バイオマス等の固形物の状態で得られる有機成分を含んだ原料(固形有機原料)を被処理対象として,この固形有機原料を熱分解によりガス化して燃料ガスを得る方法,及び前記燃料ガスを得るための装置に関する。   TECHNICAL FIELD The present invention relates to a gasification method for solid organic raw materials and a gasification apparatus for carrying out the method, and more specifically, an organic material obtained in the state of solids such as various wastes, coal, wood, and biomass. The present invention relates to a method of obtaining a fuel gas by gasifying the solid organic raw material by pyrolysis using a raw material containing a component (solid organic raw material) as an object to be treated, and an apparatus for obtaining the fuel gas.

固形有機原料,一例として石炭を燃料として利用する方法としては,石炭を直接燃焼させて熱エネルギーを取り出す方法と,石炭を一旦熱分解してガス化することにより可燃性の燃料ガスを得,この燃料ガスを燃焼させることによりエネルギーを取り出す方法がある。   As a method of using solid organic raw materials, for example, coal as fuel, there are a method of directly combusting coal to extract thermal energy, and a method of obtaining a combustible fuel gas by once pyrolyzing and gasifying coal. There is a method for extracting energy by burning fuel gas.

一例として,このような石炭を火力発電の燃料として使用する場合を例に挙げて説明すると,前者の方法では,石炭をボイラ内で直接燃焼させて燃焼時の熱により水蒸気を発生させ,この水蒸気の圧力で蒸気タービンを回転させて発電を行う,旧来型の火力発電となる。   As an example, the case where such coal is used as a fuel for thermal power generation will be described as an example. In the former method, the coal is directly combusted in a boiler, and steam is generated by the heat during combustion. It becomes a conventional thermal power generation that generates electricity by rotating a steam turbine at a pressure of.

これに対し,後者の例では石炭を先ずガス化炉内で熱分解し,この熱分解よって発生させた燃料ガスをガスタービン内で燃焼させた際に得られる膨張力によってガスタービンを回して発電が行われる。   In contrast, in the latter example, coal is first pyrolyzed in a gasifier, and the gas turbine is rotated by the expansion force obtained when the fuel gas generated by the pyrolysis is burned in the gas turbine. Is done.

この場合,ガスタービンからの排気熱を更に利用して水蒸気を発生させ,この水蒸気によって蒸気タービンを回転させることで,ガスタービンからの排熱からも電力を回収する複合発電を行うことも可能で,より効率的なエネルギーの回収を行うことができるようになっている。   In this case, it is also possible to perform combined power generation that recovers electric power from exhaust heat from the gas turbine by generating steam by further utilizing the exhaust heat from the gas turbine and rotating the steam turbine by this steam. , More efficient energy recovery can be performed.

なお,上記の例では一例として石炭を使用した火力発電を例に挙げて説明したが,熱分解によって固形有機原料をガス化して燃料ガスを得ることは,廃棄物の焼却によって電力や熱等のエネルギーを得る,ゼロエミッション型の廃棄物焼却施設等においても利用が期待されている技術である。   In the above example, thermal power generation using coal was described as an example. However, to obtain fuel gas by gasifying solid organic raw material by pyrolysis, it is necessary to incinerate waste, such as electric power and heat. It is a technology that is expected to be used even in zero-emission type waste incineration facilities that obtain energy.

ここで,一般に固相の形態を取る廃棄物等の原料の燃焼は不安定であり,固形有機原料に直接点火した場合,反応領域におけるガス化工程に必要とされる温度に迄,温度を上昇させることが困難である。   Here, in general, combustion of raw materials such as waste in the form of solid phase is unstable, and when solid organic raw materials are directly ignited, the temperature is raised to the temperature required for the gasification process in the reaction zone. It is difficult to do.

特に,水分を多く含む廃棄物の燃焼では,水分の蒸発によって熱が奪われるために,発熱量が低くなり,燃焼自体を継続させることが難しくなる。   In particular, in the combustion of waste containing a lot of water, heat is taken away by the evaporation of water, so the calorific value is low and it is difficult to continue the combustion itself.

また,固形廃棄物の直接焼却では,熱分解領域において有害性及び毒性成分を効率的に燃焼させる温度の達成が困難で,低い燃焼温度(一例として850℃以下)では,ダイオキシンやこれと類似の化学構造をもつ塩素化ベンゾフラン(以下,「フラン」と略称する。)を排出する可能性が高く,この点からも,固形有機原料を直接燃焼することなく,一旦,ガス化して利用することの有利性が指摘されている。   In direct incineration of solid waste, it is difficult to achieve a temperature that efficiently burns harmful and toxic components in the pyrolysis region. At low combustion temperatures (for example, 850 ° C. or lower), dioxins and similar substances can be used. Chlorinated benzofuran (hereinafter abbreviated as “furan”) with a chemical structure is highly likely to be discharged. From this point of view as well, solid organic raw materials can be used once gasified without direct combustion. Advantages have been pointed out.

このような固形有機原料のガス化に関し,熱エネルギーの利用効率の最大化及び灰・スラグ残物量の最小化を目的とし,プラズマアークを利用して廃棄物の有機性燃料成分をガス化する方法とその装置は既に提案されている(米国特許第5,958,264号公報:特許文献1)。   Regarding the gasification of such solid organic raw materials, a method of gasifying waste organic fuel components using plasma arc for the purpose of maximizing the utilization efficiency of thermal energy and minimizing the amount of ash / slag residue And its device have already been proposed (US Pat. No. 5,958,264: Patent Document 1).

この発明では,2つまた3つの可変電極を使った加熱ゾーンを設けたシャフト炉内に廃棄物を投入し,電気入力エネルギーを最小化させるように流量及び比率が最適化された空気及び水蒸気を前記高炉内の加熱ゾーンに供給する。   In this invention, waste and waste are put into a shaft furnace provided with a heating zone using two or three variable electrodes, and air and water vapor whose flow rate and ratio are optimized so as to minimize electric input energy. Supply to the heating zone in the blast furnace.

ここでガス化工程におけるガス化速度,生成ガス成分,有機物からの炭素取除き,スラグのガラス化等は加熱ゾーンの温度によって左右され,炉内で必要とされる温度条件を確保する為の主要なエネルギー源はプラズマアークであるが,既存設備に関し公開されているデータより算出したプラズマアークによる炉内入力エネルギー分は0.1〜1.2kWh/原料kgで,最新の商業化プラント(後掲の非特許文献1記載の北海道歌志内のゴミ処理施設)においても0.3kWh/原料kg程度である。   Here, the gasification rate in the gasification process, the generated gas components, the removal of carbon from organic substances, the vitrification of slag, etc. depend on the temperature of the heating zone, and are the main factors for ensuring the required temperature conditions in the furnace. The main energy source is plasma arc, but the energy input in the furnace by plasma arc calculated from the data publicly available for existing equipment is 0.1-1.2kWh / kg of raw material. The waste disposal facility in Hokkaido Utashi described in Non-Patent Document 1) is about 0.3 kWh / kg of raw material.

プラズマ式熱分解・ガラス化システムも既に提案されている (米国特許第7,665,407 В2号公報:特許文献2)。この発明では,プラズマ熱分解で生成するガスと一緒に出てくる揮発性灰量を減少させるために,プラズマトーチが主反応器内の排ガスを循環させる。揮発性灰の粒子は溶融し,遠心力で炉内壁に吸着される。   A plasma-type pyrolysis and vitrification system has also been proposed (US Pat. No. 7,665,407 В2: Patent Document 2). In the present invention, the plasma torch circulates the exhaust gas in the main reactor in order to reduce the amount of volatile ash generated together with the gas generated by plasma pyrolysis. Volatile ash particles melt and are adsorbed on the furnace wall by centrifugal force.

プラズマ式ガス化反応炉も既に提案されており(米国出願公開第2010/0199557 А1号公報:特許文献3),ここにおいて高発熱量の固形有機原料層,例えばコークスの位置する底部においてプラズマを発生させ,上部に行くに従い広がる側壁形状の上蓋のある反応容器が開示されている。この発明に於いては反応容器形状,そして生成ガス出口管及び原料投入管の形状に関する3点に特徴がある。   A plasma type gasification reactor has already been proposed (US 2010/0199557 А1 publication: Patent Document 3), where plasma is generated at the bottom portion where a solid organic material layer having a high calorific value, for example, coke is located. A reaction vessel having a side-wall-shaped top lid that expands toward the top is disclosed. The present invention is characterized by three points regarding the shape of the reaction vessel and the shapes of the product gas outlet pipe and the raw material input pipe.

米国特許第5,958,264号公報US Pat. No. 5,958,264 米国特許第7,665,407 В2号公報US Pat. No. 7,665,407 В2 米国出願公開第2010/0199557А1号公報US Application Publication No. 2010 / 0199557А1

「Achieving “Zero Waste” with Plasma Arc Technology」Louis J. Circeo, Ph.D.他(http://www.slideserve.com/kaili/achieving-zero-waste-with-plasma-arc-technology)“Achieving“ Zero Waste ”with Plasma Arc Technology” Louis J. Circeo, Ph.D. and others (http://www.slideserve.com/kaili/achieving-zero-waste-with-plasma-arc-technology)

以上で説明したように,固形有機原料をガス化して燃料ガスを得る方法及び装置は,従来より種々提案されているものの,このようなガス化方法及びガス化装置の工業的,商業的な利用は依然として進んでいない。   As described above, although various methods and apparatuses for obtaining fuel gas by gasifying solid organic raw materials have been proposed in the past, industrial and commercial use of such gasification methods and gasifiers. Is still not progressing.

このような固形有機原料のガス化方法やガス化装置の工業的あるいは商業的な利用が進んでいない主な原因は,ガス化装置の製作費が高いこと,及びガス化装置のランニングコストが,得られた燃料ガスを利用して得られる電気エネルギーや熱エネルギーの販売益を上回ることにある〔参照:「Technical and economic analysis of Plasma-assisted Waste-to-Energy processes」Caroline Ducharme, Columbia University September 2010 (http://www.seas.columbia.edu/earth/wtert/sofos/ducharme_thesis.pdf#search='Technical+and+economic+analysis+of++Plasmaassisted+WastetoEnergy+processes+By+Caroline+Ducharme')〕。   The main reasons for the lack of industrial or commercial use of such solid organic raw material gasification methods and gasifiers are the high production costs of gasifiers and the running costs of gasifiers. It is to exceed the sales profit of electric energy and thermal energy obtained by using the obtained fuel gas [Ref: "Technical and economic analysis of Plasma-assisted Waste-to-Energy processes" Caroline Ducharme, Columbia University September 2010 (http://www.seas.columbia.edu/earth/wtert/sofos/ducharme_thesis.pdf#search='Technical+and+economic+analysis+of++Plasmaassisted+WastetoEnergy+processes+By+Caroline+Ducharme ') ].

ここで,それぞれの国や地方の経済的な条件に拘わらず,ガス化装置の製作費及びランニングコストは,ガス化装置に装備するプラズマ発生装置の出力に比例し,高出力のプラズマ発生装置を装備する程,ガス化装置の製作費及びランニングコストは高くなり,また,ガス化装置自体も大型化する。   Here, regardless of the economic conditions of each country or region, the production cost and running cost of the gasifier are proportional to the output of the plasma generator installed in the gasifier, and the high-power plasma generator is The more equipped, the higher the production cost and running cost of the gasifier, and the larger the gasifier itself.

従ってガス化装置全体の処理能力を低下させることなく,ガス化装置に装備するプラズマ発生装置として,より小型で低出力のものを使用することができれば,ガス化装置の製作費とランニングコストを減少させることができるだけでなく,ガス化装置全体の小型,軽量化をも実現することが可能となる。   Therefore, the production cost and running cost of the gasifier can be reduced if a smaller and lower output plasma generator can be used in the gasifier without reducing the overall processing capacity of the gasifier. In addition to making it possible, it is possible to reduce the overall size and weight of the gasifier.

なお,既存の装置におけるプラズマによるガス化の平均的な効率(原料の保有エネルギー量と合成ガス生成に使われたエネルギー量の総和に対する,生成された合成ガスの熱エネルギー量の比率)は42%程度であり,また,プラズマ以外での一般的なガス化による平均的な効率は72%程度であり,未だ改善の余地は大きい。   In addition, the average efficiency of gasification by plasma in the existing equipment (ratio of the amount of heat energy of the generated synthesis gas to the sum of the amount of energy held in the raw material and the amount of energy used to generate the synthesis gas) is 42%. In addition, the average efficiency of gasification other than plasma is about 72%, and there is still much room for improvement.

そこで本発明は,上記従来技術における欠点を解消するために成されたものであり,ガス化における上記平均的な効率を前提とし,この効率を高めることができるようにすることで,従来の処理装置と同等以上の処理能力の実現を,従来の処理装置に比較してより小型,低出力のブラズマ発生装置を使用して行うことができるようにすることで,プラズマ方式によるガス化のメリットと能力を維持しながら,装置全体の小型軽量化,製作費やランニングコストの抑制を実現することを目的とする。   Therefore, the present invention has been made to eliminate the above-mentioned drawbacks of the prior art, and on the premise of the above-mentioned average efficiency in gasification, it is possible to increase the efficiency of the conventional processing. By realizing a processing capacity equal to or better than that of the equipment using a plasma generator that is smaller and has a lower output compared to conventional processing equipment, the advantages of gasification by the plasma method can be achieved. The objective is to reduce the size and weight of the entire device, and reduce manufacturing and running costs while maintaining the capability.

以下に,課題を解決するための手段を,発明を実施するための形態で使用する符号と共に記載する。この符号は,特許請求の範囲の記載と発明を実施するための形態の記載との対応を明らかにするために記載したものであり,言うまでもなく,本願発明の技術的範囲の解釈に制限的に用いられるものではない。   Hereinafter, means for solving the problem will be described together with reference numerals used in the embodiment for carrying out the invention. This code is used to clarify the correspondence between the description of the scope of claims and the description of the mode for carrying out the invention. Needless to say, this code is limited to the interpretation of the technical scope of the present invention. Not used.

上記目的を達成するために,本発明の固形有機原料のガス化方法は,
円筒形の反応炉10内の一端(上端)側より乾燥した粒状の固形有機原料を導入し,前記反応炉10内に前記一端(上端)側から他端(下端)側に向かって前記反応炉10の軸線方向に移動する原料柱を形成し,
前記反応炉10の中間領域(第1円形空洞11)において電気アークプラズマジェット30で発生した高温度の水蒸気噴流を噴射して前記固体有機原料中の有機成分を一部ガス化させて燃料ガスを発生させ,
前記燃料ガスを発生させた領域(第1円形空洞11)に対し前記他端(下端)寄りの領域(第2円形空洞12)において反応炉10内に酸化剤(空気,富酸素空気,又は酸素)を吹き込んで,前記燃料ガスを燃焼させ,前記酸化剤の供給を行った領域(第2円形空洞12)の内部平均温度を1100〜1600℃に加熱して,この酸化剤の導入を行った領域(第2円形空洞12)と該領域に対し前記他端(下端)寄りにある領域(ガス化促進領域13)において前記固形有機原料中に残留する有機分を完全にガス化し,
前記他端(下端)側において前記反応炉10内を(排出ガス通路21を介して)吸引し,固形有機原料より生成した燃料ガスを850℃以上,一例として850〜1000℃の温度で取り出すことを特徴とする(請求項1)。
In order to achieve the above object, the gasification method of the solid organic raw material of the present invention comprises:
A granular solid organic raw material dried from one end (upper end) side in a cylindrical reaction furnace 10 is introduced, and the reaction furnace 10 moves from the one end (upper end) side to the other end (lower end) side. Forming a raw material column moving in the axial direction of 10;
In the intermediate region (first circular cavity 11) of the reactor 10, a high-temperature water vapor jet generated by the electric arc plasma jet 30 is injected to partially gasify organic components in the solid organic raw material, thereby generating fuel gas. Generated,
Oxidant (air, oxygen-rich air, or oxygen) in the reactor 10 in the region (second circular cavity 12) near the other end (lower end) with respect to the region where the fuel gas is generated (first circular cavity 11). ), The fuel gas is combusted, and the internal average temperature of the region where the oxidant is supplied (second circular cavity 12) is heated to 1100 to 1600 ° C. to introduce the oxidant. In the region (second circular cavity 12) and the region (gasification promoting region 13) closer to the other end (lower end) with respect to the region, the organic component remaining in the solid organic raw material is completely gasified,
At the other end (lower end) side, the inside of the reactor 10 is sucked (through the exhaust gas passage 21), and the fuel gas generated from the solid organic raw material is taken out at a temperature of 850 ° C. or higher, for example, 850 to 1000 ° C. (Claim 1).

上記固形有機原料のガス化において,前記酸化剤の吹き込みを,燃料当量比が0.7〜3.0の混合気とすることが好適である(請求項2)。   In the gasification of the solid organic raw material, it is preferable that the oxidizing agent is blown into an air-fuel mixture having a fuel equivalent ratio of 0.7 to 3.0.

上記固形有機原料のガス化において,前記水蒸気噴流が,2000〜3500℃の過熱水蒸気の噴流であり,1機またそれ以上の前記電気アークプラズマジェット30を通じて前記反応炉10の内壁の周方向における接線方向に前記水蒸気噴流を吹き込むことにより反応炉内を周方向に循環する前記水蒸気噴流の循環流を形成し,
前記循環流が形成された部分における反応炉内壁(第1円形空洞11の内壁)を1000〜1600℃まで加熱する(請求項3)。
In the gasification of the solid organic raw material, the steam jet is a superheated steam jet of 2000 to 3500 ° C., and is tangential in the circumferential direction of the inner wall of the reactor 10 through one or more electric arc plasma jets 30. Forming a circulation flow of the steam jet circulating in the circumferential direction in the reactor by blowing the steam jet in a direction,
The inner wall of the reactor (the inner wall of the first circular cavity 11) in the portion where the circulating flow is formed is heated to 1000 to 1600 ° C. (Claim 3).

更に,前記酸化剤は,200〜600℃に加熱した状態で前記反応炉10内に吹き込む(請求項4)。   Furthermore, the oxidizing agent is blown into the reaction furnace 10 while being heated to 200 to 600 ° C. (Claim 4).

前記酸化剤の供給を行った領域(第2円形空洞12)を通過した固形有機原料の温度(ガス化促進領域13における固形有機原料の温度)を900〜1100℃の範囲に維持すると共に,ガス化における酸化剤消費率αoを0.90〜0.95の範囲に維持するようにする(請求項5)。   While maintaining the temperature of the solid organic raw material that has passed through the region (second circular cavity 12) to which the oxidant has been supplied (the temperature of the solid organic raw material in the gasification promotion region 13) in the range of 900 to 1100 ° C., the gas The oxidant consumption rate αo in the conversion is maintained in the range of 0.90 to 0.95 (Claim 5).

又は,前記酸化剤の供給を行った領域(第2円形空洞12)において前記酸化剤に過熱水蒸気を混合して導入する場合,該領域(第2円形空洞12)を通過した固形有機原料の温度(ガス化促進領域13における固形有機原料の温度)を900〜1100℃の範囲に維持し,ガス化における酸化剤消費率αoを1.05〜1.20の範囲とする(請求項6)。   Alternatively, when the superheated steam is mixed and introduced into the oxidant in the region where the oxidant is supplied (second circular cavity 12), the temperature of the solid organic raw material that has passed through the region (second circular cavity 12) (The temperature of the solid organic raw material in the gasification promotion region 13) is maintained in the range of 900 to 1100 ° C., and the oxidant consumption rate αo in the gasification is set in the range of 1.05 to 1.20.

前記酸化剤の供給を行う領域(第2円形空洞12)において,該領域を通過する前記原料柱の移動速度を減速させる(請求項7)。   In the region where the oxidant is supplied (second circular cavity 12), the moving speed of the raw material column passing through the region is reduced (Claim 7).

また,本発明の固形有機原料のガス化装置1は,
一端(上端)より投入された原料を他端(下端)側に移動させつつ処理する円筒形の反応炉10内の中間領域に,該反応炉10の内径を拡張して形成した第1円形空洞11と,
前記第1円形空洞11に対し前記反応炉10の内径の0.1〜0.5倍の距離を隔てた前記他端寄りの位置で前記反応炉の内径を拡張して形成した第2円形空洞12を設け,
前記反応炉10外に配置された電気アークプラズマジェット30が噴射した高温の水蒸気噴流を導入する蒸気プラズマ導入路22を前記第1円形空洞11において前記反応炉10内の空間に連通し,
加熱された酸化剤を導入する酸化剤導入路23を前記第2円形空洞12において前記反応炉10内の空間に連通すると共に,
前記反応炉10内を吸引する排出ガス通路21を,前記他端側において前記反応炉10内に連通したことを特徴とする(請求項8)。
Moreover, the gasification apparatus 1 of the solid organic raw material of this invention is
A first circular cavity formed by expanding the inner diameter of the reaction furnace 10 in an intermediate region in the cylindrical reaction furnace 10 for processing while moving the raw material charged from one end (upper end) to the other end (lower end) side 11 and
A second circular cavity formed by expanding the inner diameter of the reaction furnace at a position near the other end that is 0.1 to 0.5 times the inner diameter of the reaction furnace 10 with respect to the first circular cavity 11. 12
A vapor plasma introduction path 22 for introducing a high-temperature steam jet jetted by an electric arc plasma jet 30 arranged outside the reactor 10 is communicated with the space in the reactor 10 in the first circular cavity 11;
An oxidant introduction path 23 for introducing a heated oxidant communicates with the space in the reaction furnace 10 in the second circular cavity 12, and
An exhaust gas passage 21 for sucking the inside of the reaction furnace 10 communicates with the inside of the reaction furnace 10 on the other end side (claim 8).

上記構成の固形有機原料のガス化装置1において,前記蒸気プラズマ導入路22は,これを前記第1円形空洞11の内壁の周方向における接線方向に,内壁面に沿った水蒸気噴流の循環流を生じるように配置する(請求項9)。   In the solid organic raw material gasification apparatus 1 having the above-described configuration, the vapor plasma introduction path 22 circulates the water vapor jet flow along the inner wall surface in the tangential direction in the circumferential direction of the inner wall of the first circular cavity 11. It arrange | positions so that it may arise (Claim 9).

また,前記酸化剤導入路23を,前記第2円形空洞12の内壁の周方向における接線方向であって,前記第1円形空洞11で生じた水蒸気噴流の循環流と同一回転方向の循環流が生じるように配置する(請求項10)。   In addition, the oxidant introduction path 23 is tangential in the circumferential direction of the inner wall of the second circular cavity 12, and has a circulation flow in the same rotational direction as the circulation flow of the water vapor jet generated in the first circular cavity 11. It arrange | positions so that it may arise (Claim 10).

更に,前述の排出ガス通路21は,これを二重管構造とし,該排出ガス通路21の一方の通路(内側通路21a)を介して前記反応炉10内を吸引すると共に,他方の通路(外側通路21b)を介して前記酸化剤導入路23を酸化剤供給源(図示せず)に連通する(請求項11)。   Further, the above-described exhaust gas passage 21 has a double pipe structure, and the inside of the reaction furnace 10 is sucked through one passage (inner passage 21a) of the exhaust gas passage 21, and the other passage (outer side). The oxidant introduction path 23 is communicated with an oxidant supply source (not shown) via the passage 21b).

なお,前記第2円形空洞12は,その出口(下端)側の直径を,入口(上端)側の直径の0.7〜0.9倍の直径に狭めた形状とする(請求項12)。   The second circular cavity 12 has a shape in which the diameter on the outlet (lower end) side is narrowed to a diameter 0.7 to 0.9 times the diameter on the inlet (upper end) side.

また,前記第2円形空洞12の出口から,前記反応炉10の前記他端に至る領域(ガス化促進領域13)を,前記第2円形空洞12の出口から前記反応炉10の前記他端に向かって徐々に内径を拡大する形状に形成する(請求項13)。   Further, a region (gasification promoting region 13) from the outlet of the second circular cavity 12 to the other end of the reaction furnace 10 is connected to the other end of the reactor 10 from the outlet of the second circular cavity 12. It forms in the shape which expands an internal diameter gradually toward (claim 13).

以上で説明した本発明の構成により,本発明の固体有機原料のガス化方法及びガス化装置1によれば,以下の顕著な効果を得ることができた。   According to the configuration of the present invention described above, according to the solid organic raw material gasification method and gasification apparatus 1 of the present invention, the following remarkable effects can be obtained.

反応炉10の中間領域に設けられた第1円形空洞11において蒸気プラズマにより固形有機原料中の有機成分の一部をガス化して,高反応性の燃料ガスを生成すると共に,この燃料ガスを第2円形空洞12において酸化剤(空気,富酸素空気,又は酸素)と合流させて燃焼させることで,蒸気プラズマによるエネルギー量の数倍(約2〜5倍)の熱量を発生させ,これらのエネルギーの総和(プラズマの電気エネルギーと,高反応性の燃料ガスを燃焼させることにより得られる熱エネルギーの総和)によって,固体有機原料中に残留している有機成分の完全なガス化を行うことで,従来のプラズマ型のガス発生装置に比較して,小型のプラズマ発生装置を使用した場合であっても,効率的に燃料ガスを発生させることができた。   A part of the organic component in the solid organic raw material is gasified by vapor plasma in the first circular cavity 11 provided in the intermediate region of the reaction furnace 10 to generate highly reactive fuel gas. Two round cavities 12 are combined with an oxidant (air, oxygen-rich air, or oxygen) and burned to generate heat that is several times (approximately 2 to 5 times) the amount of energy generated by vapor plasma. By total gasification (total of electric energy of plasma and thermal energy obtained by burning highly reactive fuel gas), the organic components remaining in the solid organic raw material are completely gasified, Compared with the conventional plasma type gas generator, even when a small plasma generator was used, fuel gas could be generated efficiently.

このように,本発明では,より小型のプラズマ発生装置を使用することが可能となった結果,ガス化装置の製造費,ランニングコストを低く抑えることができると共に,ガス化装置全体を小型,軽量化することができた。   As described above, in the present invention, as a result of using a smaller plasma generator, it is possible to keep the manufacturing cost and running cost of the gasifier low, and to make the entire gasifier small and light. I was able to.

また,ガス化装置の製造費及びランニングコストを低く抑えることで,ガス化で得た燃料ガスによって得られる電力や熱等の販売益が相対的に高まり,その結果,工業的,あるいは商業的なベースに乗り得る,固体有機原料のガス化方法及びガス化装置を提供することができた。   In addition, by keeping the production cost and running cost of the gasifier low, sales profits such as electric power and heat obtained from the fuel gas obtained by gasification are relatively increased. As a result, industrial or commercial It was possible to provide a gasification method and gasification apparatus for a solid organic material that can be used as a base.

本発明のガス化装置の正面断面図。The front sectional view of the gasifier of the present invention. 図1のII―II線断面図。II-II sectional view taken on the line of FIG. 本発明のガス化装置の側面要部断面図。Side surface principal part sectional drawing of the gasification apparatus of this invention. 図3のIV−IV線断面図。IV-IV sectional view taken on the line of FIG. 固形有機原料の分解により合成された燃料ガスの温度と成分の相関図であり,原料1kgあたりの分解に,(A)は空気プラズマ245g,(B)は空気プラズマ1200g,(C)は蒸気プラズマ64g,(D)は蒸気プラズマ314gを使用した例。It is a correlation diagram of the temperature and components of fuel gas synthesized by the decomposition of the solid organic raw material. (A) is the air plasma 245g, (B) is the air plasma 1200g, (C) is the vapor plasma. 64g, (D) is an example using 314g of vapor plasma. 単位質量(1kg)あたりの原料に対する電力消費量を示したグラフ。The graph which showed the power consumption with respect to the raw material per unit mass (1 kg). 単位質量(1kg)の原料から得られる燃料ガスの出力エネルギーを示したグラフ。The graph which showed the output energy of the fuel gas obtained from the raw material of a unit mass (1 kg). 蒸気プラズマで木材をガス化した際の温度と生成物成分の相関図。Correlation diagram of temperature and product components when wood is gasified with vapor plasma. 原料(木材)の粒子径毎の反応ガス温度と原料粒子表面温度の相関図。The correlation diagram of the reaction gas temperature for every particle diameter of raw material (wood), and raw material particle surface temperature. 原料(木材)の粒子径毎の反応ガス温度とガス化率の相関図。The correlation figure of the reaction gas temperature and gasification rate for every particle diameter of a raw material (wood). 燃料ガス燃焼時における成分及び温度変化を示したグラフ。The graph which showed the component and temperature change at the time of fuel gas combustion. 燃料ガスの燃焼時における燃料当量比と火炎伝播速度の相関図であり,燃料ガスとして,(A)は5%CO+95%H2,(B)は50%CO+50%H2,(B)は75%CO+25%H2を使用した例。A correlation diagram of a fuel equivalence ratio and the flame propagation speed at the time of combustion of the fuel gas, as a fuel gas, (A) is 5% CO + 95% H 2 , (B) is 50% CO + 50% H 2 , (B) 75 Example using% CO + 25% H 2 .

次に,本発明の実施形態につき添付図面を参照しながら以下説明する。   Next, embodiments of the present invention will be described below with reference to the accompanying drawings.

〔ガス化装置の構成〕
図1〜4中の符合1は,本発明のガス化装置であり,このガス化装置1は,断熱材3によって囲まれた,耐火材料から成る円筒形の反応炉10と,前記反応炉10内に固形有機原料を投入する供給装置40,前記反応炉10内に蒸気プラズマを導入するプラズマジェット30(図3,4参照),及び,前記反応炉10内に空気,富酸素空気,あるいは酸素等の酸化剤を導入する,図示せざる酸化剤供給源を備えている。
[Configuration of gasifier]
1 to 4 is a gasifier according to the present invention. The gasifier 1 is a cylindrical reactor 10 made of a refractory material surrounded by a heat insulating material 3 and the reactor 10. A supply device 40 for introducing solid organic raw material into the inside, a plasma jet 30 for introducing vapor plasma into the reaction furnace 10 (see FIGS. 3 and 4), and air, oxygen-rich air, or oxygen in the reaction furnace 10 An oxidant supply source (not shown) for introducing an oxidant such as the above is provided.

前述の反応炉10上には,電動機41付きの供給装置40が設けられており,この供給装置40により,反応炉10内に破砕した廃棄物,木材,木炭,石炭等の粒状の固形有機原料が,電動機41によって回転する攪拌羽根42によって定量ずつ供給できるようになっている。   A supply device 40 with an electric motor 41 is provided on the reaction furnace 10 described above. By this supply device 40, granular solid organic raw materials such as waste, wood, charcoal, and coal crushed in the reaction furnace 10 are provided. However, a constant amount can be supplied by the stirring blade 42 rotated by the electric motor 41.

この反応炉10の中間領域には,反応炉10の内径を拡張して形成された第1円形空洞11が形成されていると共に,この第1円筒空洞11に対し,反応炉10の内径を0.2〜0.5倍した距離を介した下方に,同様に反応炉10の内径を拡張して形成された第2円形空洞12が設けられている。   A first circular cavity 11 formed by expanding the inner diameter of the reaction furnace 10 is formed in an intermediate region of the reaction furnace 10, and the inner diameter of the reaction furnace 10 is set to 0 with respect to the first cylindrical cavity 11. A second circular cavity 12 formed by similarly expanding the inner diameter of the reaction furnace 10 is provided below the distance of 2 to 0.5 times.

この第2円形空洞12は,その底部において徐々に直径を狭める形状に形成されており,最狭部となる第2円形空洞12の出口は,第2円形空洞12の入口の直径に対し0.7〜0.9倍の直径にまで狭められている。   The second circular cavity 12 is formed in a shape that gradually decreases in diameter at the bottom, and the outlet of the second circular cavity 12 that is the narrowest part is 0. 0 relative to the diameter of the inlet of the second circular cavity 12. It is narrowed to a diameter of 7 to 0.9 times.

そして,前述の第2円形空洞12の出口は,第2円形空洞12の出口の直径から下方に向かって直径を拡大する形状に形成されたガス化促進領域13に連通されている。   The outlet of the second circular cavity 12 described above communicates with a gasification promoting region 13 formed in a shape whose diameter increases downward from the diameter of the outlet of the second circular cavity 12.

このように形成された反応炉10の外部には,少なくとも1機の電気アークプラズマジェット30が設けられており,この電気アークプラズマジェット30で発生した蒸気プラズマを,蒸気プラズマ導入路22を介して前述した第1円形空洞11内に導入することができるようになっている。   At least one electric arc plasma jet 30 is provided outside the reactor 10 formed as described above, and vapor plasma generated by the electric arc plasma jet 30 is passed through the vapor plasma introduction path 22. It can be introduced into the first circular cavity 11 described above.

この蒸気プラズマ導入路22は,前述の第1円形空間11の内壁面において,該内壁面の円周方向に対する接線方向に蒸気プラズマを導入することができるように設けられており,蒸気プラズマ導入路22を介して第1円形空洞11内に蒸気プラズマを導入することで,過熱水蒸気の噴流を第1円形空洞11内で循環させることができるようになっている。   The vapor plasma introduction path 22 is provided on the inner wall surface of the first circular space 11 so that the vapor plasma can be introduced in a direction tangential to the circumferential direction of the inner wall surface. By introducing the vapor plasma into the first circular cavity 11 through 22, the jet of superheated steam can be circulated in the first circular cavity 11.

反応炉10の底部には,反応炉10内に水蒸気を供給することができるよう,導入された水を熱交換によって加熱して水蒸気を発生させる円形交換器9が取り付けられており,ここで発生させた水蒸気をプラズマジェットや,必要に応じて第2円形空洞12に導入される酸化剤に混入し,あるいは,ガス化促進領域13の下部より流入させる蒸気として使用することで,水蒸気発生の際の熱交換により反応炉下部の冷却が図られていると共に,この円形交換器9の下に,残灰を強制排出するための電動機51を備えた残灰排出装置50を取り付けている。   At the bottom of the reaction furnace 10, a circular exchanger 9 for generating steam by heating the introduced water by heat exchange is attached so that steam can be supplied into the reaction furnace 10. The generated water vapor is mixed with a plasma jet or an oxidant introduced into the second circular cavity 12 as necessary, or is used as a vapor flowing from the lower part of the gasification promoting region 13, so that water vapor is generated. The lower part of the reaction furnace is cooled by heat exchange, and a residual ash discharge device 50 equipped with an electric motor 51 for forcibly discharging residual ash is attached below the circular exchanger 9.

反応炉10内の下部付近には,反応炉10内の生成ガス(燃料ガス)を排出するための排出ガス通路21が設けられている。この排出ガス通路21は,図示の実施形態において二重管によって構成されており,内側通路21aを介して反応炉10内で生成した燃料ガスを吸引して排出することができる他,外側通路21bを介して第2円形空洞12に対し酸化剤(空気,富酸素空気,酸素)を導入するために使用できるようになっている。   An exhaust gas passage 21 for discharging the generated gas (fuel gas) in the reaction furnace 10 is provided near the lower part in the reaction furnace 10. The exhaust gas passage 21 is constituted by a double pipe in the illustrated embodiment, and can suck and discharge the fuel gas generated in the reaction furnace 10 through the inner passage 21a, and can also discharge the outer passage 21b. It can be used to introduce an oxidant (air, oxygen-rich air, oxygen) into the second circular cavity 12 via.

このような酸化剤の導入を可能とするために,排出ガス通路21の反応路10とは反対側の端部付近に酸化剤供給用の継手21cが設けられており,この継手21cに図示せざる酸化剤供給源からの配管等を接続可能にしていると共に,反応炉10寄りの位置において,外側通路21bに第2円形空洞12に酸化剤を導入する酸化剤導入路23を連通することで,図示せざる酸化剤供給源より供給された酸化剤は,排出ガス通路21の外側通路21bを通過する際に,内側通路21aを通過する燃料ガスとの熱交換によって加熱され,このようにして加熱された酸化剤を第2円形空洞12内に導入することができるようになっている。   In order to enable the introduction of such an oxidant, a joint 21c for supplying an oxidant is provided near the end of the exhaust gas passage 21 opposite to the reaction path 10, and this joint 21c is not shown. By connecting a pipe or the like from the oxidant supply source, the oxidant introduction path 23 for introducing the oxidant into the second circular cavity 12 is connected to the outer passage 21b at a position near the reaction furnace 10. The oxidant supplied from the oxidant supply source (not shown) is heated by heat exchange with the fuel gas passing through the inner passage 21a when passing through the outer passage 21b of the exhaust gas passage 21, and in this way. A heated oxidant can be introduced into the second circular cavity 12.

前述の酸化剤導入路23は,第2円形空洞12の内壁面において,該内壁の周方向に対する接線方向に開口されており(図2参照),この酸化剤導入路23を介して酸化剤を導入することで,前述した第1円形空洞11内で生じる水蒸気噴流の循環方向と同一の回転方向を成す酸化剤の循環流が生じるように構成されている。   The aforementioned oxidant introduction path 23 is opened in a tangential direction with respect to the circumferential direction of the inner wall on the inner wall surface of the second circular cavity 12 (see FIG. 2), and the oxidant is passed through the oxidant introduction path 23. By introducing the oxidant, a circulating flow of the oxidizing agent having the same rotational direction as the circulating direction of the water vapor jet generated in the first circular cavity 11 is generated.

〔ガス化方法〕
以上のように構成された本発明のガス化装置1を使用して,下記の方法で固形有機原料のガス化が行われる。
[Gasification method]
Using the gasifier 1 of the present invention configured as described above, gasification of a solid organic raw material is performed by the following method.

含有水分量を15〜20%にまで乾燥し,破砕した固体有機原料を供給装置40に投入すると,供給装置40は,電動機41によって回転される攪拌羽根42によって原料を定量ずつ反応炉10内に供給する。   When the moisture content is dried to 15 to 20% and the crushed solid organic raw material is put into the supply device 40, the supply device 40 puts the raw material into the reactor 10 by a fixed amount by the stirring blades 42 rotated by the electric motor 41. Supply.

反応炉10内で熱分解されて生じた固形有機原料の残灰は,反応炉10の下部に設けられた残灰排出装置50によって機外に強制的に排出されることから,反応炉10内に投入された固形有機原料は,重力によって固形有機原料の粒子同士に隙間が形成された状態で折り重なって,全体として多孔質体に類似した状態で,反応炉10内を軸線方向に通過する,原料柱を形成する。   The residual ash of the solid organic raw material generated by thermal decomposition in the reaction furnace 10 is forcibly discharged out of the apparatus by a residual ash discharge device 50 provided at the lower part of the reaction furnace 10. The solid organic raw material charged in is folded in a state where a gap is formed between the particles of the solid organic raw material by gravity, and passes through the reactor 10 in the axial direction in a state similar to a porous body as a whole. Form raw material pillars.

電気アークプラズマジェット30において発生した高温度(2000〜3500℃)の蒸気プラズマは,蒸気プラズマ導入路22を介して第1円形空洞11内に接線方向に導入された後,固形有機原料の粒子間の隙間を介して前方へ流れて,第1円形空洞11内を循環する渦状の流れを形成する。   The high temperature (2000-3500 ° C.) vapor plasma generated in the electric arc plasma jet 30 is introduced into the first circular cavity 11 through the vapor plasma introduction path 22 in the tangential direction, and then between the particles of the solid organic raw material. A vortex-like flow circulating in the first circular cavity 11 is formed by flowing forward through the gap.

この蒸気プラズマの渦流によって,第1円形空洞11の内壁面は1000〜1600℃に加熱され,蒸気プラズマによる直接の過熱と,反応炉の赤熱壁との接触によって第1円形空洞11内の固形有機原料中の有機成分の一部(15〜30質量%)がガス化すると共に,水蒸気と反応して下記の総括反応式で示される反応によって燃料ガスが生成される。

Figure 2014184923
The inner wall surface of the first circular cavity 11 is heated to 1000 to 1600 ° C. by the vortex flow of the vapor plasma, and the solid organic matter in the first circular cavity 11 is brought into contact with the direct heat from the vapor plasma and the red hot wall of the reactor. A part (15 to 30% by mass) of the organic component in the raw material is gasified, and reacts with water vapor to generate fuel gas by the reaction shown by the following general reaction formula.
Figure 2014184923

2000℃以下の蒸気プラズマを反応炉10内に噴射する場合,反応炉壁の過熱温度が低下すると共に原料柱に対する加熱量も減少するためガス化速度も低下する一方,第1円形空洞11内に導入する過熱蒸気の温度を3500℃以上とする場合,解離再結合が起こり水蒸気の熱伝導が急激に上昇することで,電気アークプラズマジェット30及び蒸気プラズマ導入路22の冷却にかかるロスが急速に増加することから,前述したように第1円形空洞11内に導入する蒸気プラズマの温度は2000〜3500℃とする。   When steam plasma of 2000 ° C. or less is injected into the reaction furnace 10, the superheat temperature of the reaction furnace wall is lowered and the amount of heating to the raw material column is also reduced. When the temperature of the superheated steam to be introduced is 3500 ° C. or higher, dissociation recombination occurs and the heat conduction of the water vapor rapidly increases, so that the loss for cooling the electric arc plasma jet 30 and the steam plasma introduction path 22 is rapidly increased. Since it increases, the temperature of the vapor plasma introduced into the first circular cavity 11 is 2000 to 3500 ° C. as described above.

また,反応炉壁の加熱温度が1000℃未満では有機物の反応速度が低下して変換率が低下する一方,反応炉壁温度が1600℃を越えると,反応炉の寿命や耐久性に関して深刻な問題が生じ得ることから,反応炉壁の加熱温度が1000〜1600℃の範囲となるよう,第1円形空洞11に対し導入する蒸気プラズマの温度を,前述した2000〜3500℃の範囲内で調整する。   Moreover, when the heating temperature of the reaction furnace wall is less than 1000 ° C., the reaction rate of the organic matter is reduced and the conversion rate is lowered. On the other hand, when the reaction furnace wall temperature exceeds 1600 ° C., serious problems regarding the life and durability of the reaction furnace Therefore, the temperature of the vapor plasma introduced into the first circular cavity 11 is adjusted within the range of 2000 to 3500 ° C. so that the heating temperature of the reaction furnace wall is in the range of 1000 to 1600 ° C. .

反応炉10内の空間は,排出ガス通路21を介して機外より吸引されていることから,この影響によって第1円形空洞11において生成された燃料ガスは,1100〜1200℃程度の温度で反応炉10の内壁に沿って下方へ移動し,第2円形空洞12(図1参照)内に導入される。   Since the space in the reactor 10 is sucked from outside the apparatus through the exhaust gas passage 21, the fuel gas generated in the first circular cavity 11 due to this influence reacts at a temperature of about 1100 to 1200 ° C. It moves downward along the inner wall of the furnace 10 and is introduced into the second circular cavity 12 (see FIG. 1).

この第2円形空洞12には,前述した第1円形空洞11で発生させた水蒸気噴流の循環(回転)方向と同一の循環(回転)方向の渦流が生じるように,第2円形空洞12の内壁面の円周方向に対する接線方向に,符合23(図2参照)で示す酸化剤導入路を介して酸化剤(空気,富酸素空気,又は酸素)が吹き込まれる。   In the second circular cavity 12, a vortex flow in the same circulation (rotation) direction as the circulation (rotation) direction of the water vapor jet generated in the first circular cavity 11 is generated. An oxidant (air, oxygen-rich air, or oxygen) is blown in a tangential direction with respect to the circumferential direction of the wall surface through an oxidant introduction path indicated by reference numeral 23 (see FIG. 2).

この酸化剤は,継手21cを介して二重管として構成された排出ガス通路21の外側流路21bを介して前述の酸化剤導入路23に導入されるように構成されており,排出ガス通路21において,排出ガス通路21の内側通路21aを通って排出される燃料ガスとの熱交換によって200〜600℃に加熱され,このようにして加熱された酸化剤を第2円形空洞12内に導入することで,第1円形空洞11内で発生し,その後,第2円形空洞12内に導入された燃料ガスは,酸化剤の噴流と合流後においても点火温度(650℃以上)を越えており,酸化剤と激しく反応して燃焼し,これにより第2円形空洞12内において局部温度2227℃以上の火炎流が発生する。   This oxidant is configured to be introduced into the oxidant introduction path 23 via the outer flow path 21b of the exhaust gas path 21 configured as a double pipe through the joint 21c. 21 is heated to 200-600 ° C. by heat exchange with the fuel gas discharged through the inner passage 21 a of the exhaust gas passage 21, and the oxidant thus heated is introduced into the second circular cavity 12. As a result, the fuel gas generated in the first circular cavity 11 and then introduced into the second circular cavity 12 exceeds the ignition temperature (650 ° C. or higher) even after merging with the oxidant jet. , Reacts violently with the oxidant and burns, thereby generating a flame flow having a local temperature of 2227 ° C. or more in the second circular cavity 12.

酸化剤の加熱温度が200℃未満の場合では酸化及びガス化のプロセスに殆ど影響を及ぼさず,600℃を越えるように加熱する場合,熱交換によって燃料ガスの熱を過剰に奪い,排出される燃料ガスの温度が許容温度である850℃よりも低下して,反応炉を出た後,ハロゲンと炭化水素との結合により,ダイオキシンやフランを発生させる可能性があり,導入する酸化剤の温度は200〜600℃とした。   When the heating temperature of the oxidant is less than 200 ° C, it hardly affects the oxidation and gasification process. When heating to over 600 ° C, the heat of the fuel gas is excessively removed by heat exchange and discharged. After the temperature of the fuel gas falls below the allowable temperature of 850 ° C and exits the reactor, dioxins and furans may be generated due to the combination of halogen and hydrocarbons. Was 200-600 degreeC.

この燃料ガスの燃焼による出力の最高値を達成するには,燃料当量比(燃料ガスの質量/酸化剤の質量)αfを0.7〜3.0,好ましくは1.5〜3.0とする濃混合の状態で燃焼を行う。酸化における総括主反応は,

Figure 2014184923
となる。In order to achieve the maximum value of the output due to combustion of the fuel gas, the fuel equivalent ratio (mass of fuel gas / mass of oxidant) αf is 0.7 to 3.0, preferably 1.5 to 3.0 Combustion is performed in a dense mixed state. The overall reaction in oxidation is
Figure 2014184923
It becomes.

このようにして燃料ガスを燃焼させることで,反応炉の第2円形空洞12の周辺に存在する原料柱の部分には酸化領域が発生し,第2円形空洞12の内部平均温度は1100〜1600℃に達する。   By burning the fuel gas in this manner, an oxidation region is generated in the portion of the raw material column existing around the second circular cavity 12 of the reactor, and the internal average temperature of the second circular cavity 12 is 1100 to 1600. Reach ℃.

このようにして,第2円形空洞12で発生した熱の影響で,原料柱全体が,断熱された濾過燃焼条件の下で1100〜1600℃の平均温度にまで加熱された後,第2円形空洞12の下方に設けられたガス化促進領域13に導入される。   In this way, the entire raw material column is heated to an average temperature of 1100-1600 ° C. under the insulated filtration combustion conditions under the influence of heat generated in the second circular cavity 12, and then the second circular cavity. 12 is introduced into the gasification promotion region 13 provided below the gas.

反応炉内の第2円形空洞12の下方に位置するガス化促進領域13において,第2円形空洞12で酸化に使用されなかった過剰の酸化剤と燃料ガスの燃焼生成物とが,落下する原料柱に対し横方向に吹き付けられ,固形有機原料中に残留している主要な有機成分の熱分解が行われる。   In the gasification promotion region 13 located below the second circular cavity 12 in the reactor, the raw material from which excess oxidant and combustion products of fuel gas that have not been used for oxidation in the second circular cavity 12 fall. The main organic components remaining in the solid organic raw material are thermally decomposed, sprayed laterally to the column.

第2円形空洞12内で加熱された固形有機原料は,平均温度を900〜11000℃の範囲で,化学量論のガス化に対する酸化剤消費率αを0.90〜0.95の範囲に維持する。   The solid organic raw material heated in the second circular cavity 12 maintains an average temperature in the range of 900 to 11000 ° C. and an oxidant consumption rate α for stoichiometric gasification in the range of 0.90 to 0.95. To do.

固形有機原料の温度が900℃未満の場合,残留炭分が増加し,1100℃を越える場合では,固形有機原料の溶けた塊が残留し,有機性不純物の焼却性能が悪化する。   When the temperature of the solid organic raw material is less than 900 ° C., the residual carbon content increases, and when it exceeds 1100 ° C., a molten mass of the solid organic raw material remains and the incineration performance of organic impurities deteriorates.

また,酸化剤消費率αが0.90未満の場合,熱分解にかかる消費電力が増加し,熱分解段階では,排ガスにおいて不完全燃焼が増加する一方,酸化剤消費率αが0.95を越えると,熱分解の温度レベルが上昇し,装置の底部に設けた火格子が燃えるおそれがある。   Further, when the oxidant consumption rate α is less than 0.90, the power consumption for pyrolysis increases, and in the pyrolysis stage, incomplete combustion increases in the exhaust gas, while the oxidant consumption rate α becomes 0.95. If exceeded, the temperature level of pyrolysis rises and the grate provided at the bottom of the device may burn.

なお,第2円形空洞12に対し導入する酸化剤としては,前述の空気,富酸素空気,酸素である酸化剤と共に,過熱水蒸気を導入するものとしても良い。この場合,ガス化促進領域13内における残留有機成分の熱分解段階における温度を,900〜1100℃の範囲で,酸化剤消費率αを1.05〜1.20の範囲に維持する。   As the oxidant to be introduced into the second circular cavity 12, superheated steam may be introduced together with the above-mentioned oxidant which is air, oxygen-rich air, and oxygen. In this case, the temperature in the thermal decomposition stage of the residual organic component in the gasification promotion region 13 is maintained in the range of 900 to 1100 ° C., and the oxidant consumption rate α is maintained in the range of 1.05 to 1.20.

900℃以下の場合,スラグにおける未燃焼が増加し,1100℃以上の場合,灰分の溶解及び格子の汚染が起こす。   When the temperature is 900 ° C. or lower, unburned slag increases, and when the temperature is 1100 ° C. or higher, ash is dissolved and lattice contamination occurs.

酸素消費率αが1.05未満の場合,酸化剤の残留炭素との質量交換が悪化し,不完全燃焼が増加する。酸化剤消費率αが1.20を越える場合,プロセスにかかるエネルギー消費(燃料と電力)の増大に繋がる。   When the oxygen consumption rate α is less than 1.05, the mass exchange with the residual carbon of the oxidant deteriorates and incomplete combustion increases. When the oxidant consumption rate α exceeds 1.20, it leads to an increase in energy consumption (fuel and electric power) applied to the process.

反応炉10内に投入された原料柱の減少速度はガス化速度に比例し,ガス化された固形有機原料の有機分の質量は,揮発性成分の分離量,残留炭素がガス化された質量に等しく,固形有機原料の減少と残灰の排出に伴って原料柱が下方に移動して連続的な処理が行われると共に,生成された燃料ガスは,排出ガス通路21を介して通風機により吸引されて,排出ガス通路21を通過する際に酸化剤との熱交換が行われて850〜1000℃の温度で機外に排出される。   The rate of decrease of the raw material column introduced into the reactor 10 is proportional to the gasification rate, the mass of the organic component of the gasified solid organic material is the amount of volatile components separated, and the mass of residual carbon gasified. The raw material column moves downward as the solid organic raw material is reduced and the residual ash is discharged, and the continuous processing is performed, and the generated fuel gas is discharged by the ventilator through the exhaust gas passage 21. When it is sucked and passes through the exhaust gas passage 21, heat exchange with the oxidant is performed and discharged outside the apparatus at a temperature of 850 to 1000 ° C.

第2円形空洞12における固形有機原料の平均温度範囲が1100〜1600℃,反応炉の出口における燃料ガスの温度範囲が850〜1000℃の範囲となるよう,プラズマにより生成した過熱蒸気により供給される熱量とこれにより生成された燃料ガスの燃焼による化学的熱量との比率を決定する。   It is supplied by superheated steam generated by plasma so that the average temperature range of the solid organic raw material in the second circular cavity 12 is 1100 to 1600 ° C., and the temperature range of the fuel gas at the outlet of the reactor is 850 to 1000 ° C. The ratio between the amount of heat and the amount of chemical heat generated by the combustion of the fuel gas produced thereby is determined.

なお,本発明のガス化装置1では,原料柱の移動方向(反応炉の高さ方向)に沿って温度ゾーンが設定されることとなり,各温度ゾーンにおいて,前述したプロセスが行われる。   In the gasifier 1 of the present invention, the temperature zone is set along the moving direction of the raw material column (the height direction of the reactor), and the above-described process is performed in each temperature zone.

反応炉の上部(第1円形空洞11よりも上方)では,内部の平均温度が100〜250℃となり廃棄物等である固形有機原料の乾燥が行われ,第1円形空洞11では内部平均温度1000〜1300℃にて原料の一部が蒸気プラズマによりガス化され,その下部の第2円形空洞12では1100〜1600℃の内部平均温度にて燃料ガスの一部の酸化(燃焼)による発熱が行われ,第2円形空洞12からその下方にあるガス化促進領域13において,固形有機原料中の残留有機分を濾過燃焼させると共に,固形有機原料の分解により生じた無機分の無酸素ガス化及び,完全燃焼生成物の還元による合成ガス生成が行われ,主にCO+Hの成分となる。In the upper part of the reactor (above the first circular cavity 11), the internal average temperature is 100 to 250 ° C., and the solid organic raw material such as waste is dried. In the first circular cavity 11, the internal average temperature is 1000 Part of the raw material is gasified by vapor plasma at ˜1300 ° C., and heat generation due to oxidation (combustion) of part of the fuel gas occurs in the second circular cavity 12 below it at an internal average temperature of 1100 to 1600 ° C. In the gasification promotion region 13 below the second circular cavity 12, the residual organic component in the solid organic raw material is filtered and burned, and the inorganic oxygen-free gasification caused by the decomposition of the solid organic raw material and The synthesis gas is generated by the reduction of the complete combustion product, and mainly becomes a component of CO + H 2 .

第1円形空洞11において,蒸気プラズマによって加えられた熱により,固形有機原料は吸熱反応を起こし,その一部が燃料ガスへと変換される。固形有機原料の化学的エネルギーはここでロスするものではなく,燃料ガスの化学的エネルギーと熱エネルギーに変換される。   In the first circular cavity 11, the solid organic material undergoes an endothermic reaction due to the heat applied by the vapor plasma, and a part thereof is converted into fuel gas. The chemical energy of the solid organic material is not lost here, but is converted into chemical energy and thermal energy of the fuel gas.

原料がバイオマスの場合,生成されるエネルギーは入力電力エネルギーのおよそ3倍となり,このエネルギーは第2円形空洞12において生成され,固形有機原料の全体を1100〜1600℃に加熱することで,固形有機原料の完全なガス化に使用される。   When the raw material is biomass, the generated energy is approximately three times the input power energy. This energy is generated in the second circular cavity 12, and the whole solid organic raw material is heated to 1100-1600 ° C. Used for complete gasification of raw materials.

本発明のガス化方法によれば,固形有機原料の処理能力を維持しつつ,電気アークプラズマジェット30に対して初期入力される電気エネルギー,及び稼働中の消費電力を3〜5分の1に迄減少させることができ,既存の工業プロセス(先に非特許文献1として紹介した北海道歌志内の処理施設)を基に比較すると,本発明のガス化装置1では,非特許文献1の処理装置において300kWのプラズマジェットを4機使用していたのに対し,同様の処理能力を,75kWのプラズマジェット4機の設計に変更することができ,プラズマジェットの小型化に伴い,ガス化装置の製作費を低減出来ると共に,使用電力が4分の1(75kW/300kW=1/4)程度に減少できることで,ランニングコストの削減に繋がり,商業ベースで考えた場合の大きな利点と成る。   According to the gasification method of the present invention, the electric energy initially input to the electric arc plasma jet 30 and the power consumption during operation are reduced to 1/5 while maintaining the processing capability of the solid organic raw material. Compared to the existing industrial process (processing facility in Hokkaido Utashi introduced as Non-Patent Document 1 above), the gasifier 1 of the present invention is Although four 300kW plasma jets were used, the same processing capacity could be changed to the design of four 75kW plasma jets. Can be reduced, and the power consumption can be reduced to about one-quarter (75kW / 300kW = 1/4), leading to a reduction in running costs, which is large when considered on a commercial basis. Is an advantage.

本発明において,ガス化装置1を構成する各部の新規な連通構造,形状,サイズ及びこれらの組み合わせは重要な特徴であり,既に説明したように本願のガス化装置1では,円筒状の反応炉10の中間部分に設けた第1円形空洞11が構成され,この第1円形空洞11の下方に,反応炉の直径の0.2〜0.5倍の距離を隔てて,第2円形空洞12を構成したこと,第2円形空洞12底部の直径を徐々に減じて最狭部(第2円形空洞12の出口)の直径を上端部(第2円形空洞12の入口)の直径の0.7〜0.9倍の直径に狭めたこと,さらに,第2円形空洞12の下方に形成したガス化促進領域13の形状を,前記最狭部から更に下方に向かって直径を拡大する形状に構成している。   In the present invention, the novel communication structure, shape, size, and combination thereof of each part constituting the gasifier 1 are important features. As already described, in the gasifier 1 of the present application, the cylindrical reactor A first circular cavity 11 provided in an intermediate portion of the first circular cavity 11 is formed, and a second circular cavity 12 is provided below the first circular cavity 11 with a distance of 0.2 to 0.5 times the diameter of the reactor. The diameter of the bottom of the second circular cavity 12 is gradually reduced so that the diameter of the narrowest part (the outlet of the second circular cavity 12) is 0.7 of the diameter of the upper end (the inlet of the second circular cavity 12). The diameter of the gasification promoting region 13 formed below the second circular cavity 12 is further expanded from the narrowest portion to the lower side by reducing the diameter to .about.0.9 times. doing.

また,電気アークプラズマジェット30で発生した蒸気プラズマを,前記第1円形空洞11内に蒸気プラズマ導入路22を介して接線方向に導入して水蒸気噴流の循環流を発生させ,また,第2円形空洞12内に加熱した酸化剤を,第1円形空洞11における水蒸気噴流の循環流と同一の回転方向の循環流が生じる向きで,酸化剤導入路23を介して接線方向に導入する。   Further, the vapor plasma generated by the electric arc plasma jet 30 is introduced into the first circular cavity 11 in the tangential direction via the vapor plasma introduction path 22 to generate a circulation flow of the water vapor jet, and the second circular shape. The oxidant heated in the cavity 12 is introduced in a tangential direction via the oxidant introduction path 23 in a direction in which a circulation flow in the same rotational direction as the circulation flow of the water vapor jet flow in the first circular cavity 11 is generated.

このように各部を構成することにより,本発明のガス化装置1では,比較的燃え難い,粒状の固形有機原料の一部が,第1円形空洞11において主にCOとHを含有する高反応性の燃焼ガスとなり,その後,第2円形空洞12において,先に生じた燃料ガスが燃焼することにより,固形有機原料全体が激しく加熱され,これにより固形有機原料に残留する有機成分がガス化される。By configuring each part in this manner, in the gasifier 1 of the present invention, a part of the granular solid organic raw material that is relatively incombustible mainly contains CO and H 2 in the first circular cavity 11. After the fuel gas generated in the second circular cavity 12 burns in the second circular cavity 12, the entire solid organic raw material is heated intensely, thereby gasifying the organic components remaining in the solid organic raw material. Is done.

酸性環境において粒状の固形有機原料がガス化する速度,すなわち,燃焼のみでガス化する速度に比べ,本発明では,蒸気プラズマによる有機成分の一部ガス化と,このガス化により得られた燃料ガスの燃焼という混合プロセスによって,固体有機原料中に残留する有機分の完全なガス化を行うことから,ガス化速度を大幅に向上させることができ,その結果,固形有機原料の化学的エネルギー出力の効率上昇により,電気アークプラズマジェット30の消費電力を3〜5分の1にまで低減することができる。   Compared to the rate of gasification of granular solid organic raw materials in an acidic environment, that is, the rate of gasification only by combustion, in the present invention, partial gasification of organic components by vapor plasma and the fuel obtained by this gasification The gasification rate can be greatly improved because of the complete gasification of the organic components remaining in the solid organic raw material through a gas combustion mixing process, resulting in a chemical energy output of the solid organic raw material. As a result, the power consumption of the electric arc plasma jet 30 can be reduced to 3 to 1/5.

蒸気プラズマによるガス化を行う第1円形空洞11と,生成された燃料ガスの燃焼を行う第2円形空洞12間の距離を,反応炉の直径の0.1〜0.5倍の範囲に選定する理由は,0.1倍未満の距離で設ける場合,水蒸気噴流が第2円形空洞12に迄流れ込み,燃焼反応を抑制させるためであり,また,0.5倍を越える距離で設ける場合,第1円形空洞11で発生した燃料ガスが固形有機原料の粒子間の隙間に流れ込んでしまい,第2円形空洞12に導入される燃料ガスが減少して発熱量が大幅に低下してしまうためである。   The distance between the first circular cavity 11 for gasification by vapor plasma and the second circular cavity 12 for burning the generated fuel gas is selected within a range of 0.1 to 0.5 times the diameter of the reactor. The reason for this is that when it is provided at a distance less than 0.1 times, the steam jet flows into the second circular cavity 12 to suppress the combustion reaction, and when it is provided at a distance exceeding 0.5 times, This is because the fuel gas generated in the first circular cavity 11 flows into the gaps between the particles of the solid organic raw material, the fuel gas introduced into the second circular cavity 12 is reduced, and the calorific value is greatly reduced. .

また,第2円形空洞12の底部直径を徐々に狭め,最狭部である第2円形空洞12の出口の直径を,第2円形空洞12の入口の直径に対し0.7〜0.9倍の範囲に迄狭めたこと,この第2円形空洞12の出口から更に下向きに直径を拡げる形状のガス化促進領域13を設けたことにより,固形有機原料の第2円形空洞12の出口通過が規制されることにより,最も熱出力が高い,第2円形空洞12内における固形有機原料の滞留時間が長くなり,原料の加熱が促進されると共に,第2円形空洞12において固形有機原料の量が一部ガス化する事により少なくなる事と,その下部にあるガス化促進領域13において,壁面温度がスラジ溶解温度より高くなることから,ガス化促進領域13の裾を広げることで,スラジが炉の内壁に付着することを防止している。   Also, the bottom diameter of the second circular cavity 12 is gradually narrowed, and the diameter of the outlet of the second circular cavity 12 which is the narrowest part is 0.7 to 0.9 times the diameter of the inlet of the second circular cavity 12. The gasification promoting region 13 having a shape that expands further downward from the outlet of the second circular cavity 12 is provided, so that the passage of the solid organic raw material through the second circular cavity 12 is restricted. As a result, the residence time of the solid organic raw material in the second circular cavity 12 having the highest heat output is prolonged, the heating of the raw material is promoted, and the amount of the solid organic raw material is one in the second circular cavity 12. Since the wall surface temperature becomes higher than the sludge melting temperature in the gasification promotion region 13 below the gasification promotion region 13, the sludge is removed from the furnace by widening the bottom of the gasification promotion region 13. Adhering to the inner wall It is prevented.

また,過熱水蒸気の噴流,及び酸化剤の導入により発生する火炎流の噴流方向と原料の移動方向とが相互に直交方向の循環流を形成することにより,原料柱を取り囲むようにその外周側からの加熱が行われることで,原料柱内に熱を閉じ込めた断熱状態で効率的に濾過燃焼を行うことができる。   In addition, by forming a circulating flow in which the jet direction of the superheated steam and the flame flow generated by the introduction of the oxidant and the direction of movement of the raw material are orthogonal to each other, As a result of this heating, filtration combustion can be performed efficiently in an adiabatic state where heat is confined in the raw material column.

反応炉の最大熱出力領域,すなわち第2円形空洞12の底部出口の直径は,固形有機原料の質量減少速度に適合させたもので,入口の直径に対し0.7未満の場合,原料の進み(落下)が遅くなりすぎて熱焼損発生の可能性がある。一方,上端部の直径に対し0.9を越える場合,原料の進みが早くなり,未反応の原料分が増加した状態でガス化促進領域13内に流れてしまうことになる。   The maximum heat output region of the reactor, that is, the diameter of the bottom outlet of the second circular cavity 12 is adapted to the mass reduction rate of the solid organic raw material. (Falling) may become too late and heat burnout may occur. On the other hand, when the diameter exceeds 0.9 with respect to the diameter of the upper end portion, the progress of the raw material is accelerated, and the unreacted raw material portion increases and flows into the gasification promotion region 13.

〔蒸気プラズマと他の方法によるガス化の比較〕
固形有機原料である鶏糞を本発明の方法によりガス化した。処理前の鶏糞の成分を表1に,ガス化により得られた燃料ガスの成分を表2にそれぞれ示す。
[Comparison of gasification by vapor plasma and other methods]
Chicken manure, which is a solid organic raw material, was gasified by the method of the present invention. Table 1 shows the components of chicken manure before treatment, and Table 2 shows the components of fuel gas obtained by gasification.

Figure 2014184923
Figure 2014184923

Figure 2014184923
Figure 2014184923

本発明の方法により得られた燃焼ガスの低位発熱量(LHV)は12.09
MJ/kgであり,断熱燃焼温度は1937℃であった。
The lower heating value (LHV) of the combustion gas obtained by the method of the present invention is 12.09.
The adiabatic combustion temperature was 1937 ° C.

鶏糞を原料とした場合,鶏糞1kg当たりを熱分解する際に使用される酸化剤消費量g(g/kg)は,それぞれ下記の通りとなる。   When chicken dung is used as a raw material, the oxidant consumption g (g / kg) used when pyrolyzing 1 kg of chicken dung is as follows.

Figure 2014184923
Figure 2014184923

上記表3の結果から,蒸気プラズマ式のガス化では,空気プラズマ式のガス化に比較して酸化剤(酸素)の消費量が大幅に少なくなっており,このことから,過熱蒸気が酸化剤としての機能を有していることが判る。   From the results in Table 3 above, the steam plasma type gasification consumes significantly less oxidant (oxygen) than the air plasma type gasification. It can be seen that it has a function as

すなわち,反応炉の第1円形空洞11において原料層に蒸気プラズマを与えることで,原料が加熱され,次第に水分や揮発分が固相からガス状に変換,つまり蒸発する。それと同時に,下記の主反応により,ガス状の揮発性分のホモジニアス変換が行われる。

Figure 2014184923
That is, by applying vapor plasma to the raw material layer in the first circular cavity 11 of the reaction furnace, the raw material is heated, and moisture and volatile components are gradually converted from the solid phase to the gaseous state, that is, evaporated. At the same time, homogeneous conversion of gaseous volatile components is performed by the following main reaction.
Figure 2014184923

反応炉内における原料柱の減少量は,原料中の水分及び揮発性成分の蒸発による消費比率である0.25に略対応する。原料柱が消費されるに従って,原料柱全体が下方に移動して,第1円形空洞11内にあった固形有機原料が第2円形空洞12に近づき,第1円形空洞11の上方にある乾燥領域にあった固形有機原料が第1円形空洞11に導入される。   The reduction amount of the raw material column in the reaction furnace substantially corresponds to 0.25 which is a consumption ratio due to evaporation of moisture and volatile components in the raw material. As the raw material pillar is consumed, the whole raw material pillar moves downward, the solid organic raw material in the first circular cavity 11 approaches the second circular cavity 12, and the drying region above the first circular cavity 11. The solid organic raw material suitable for the above is introduced into the first circular cavity 11.

次に,残留炭素と水蒸気のヘテロジニアス反応が,下記の主反応により,行われる。

Figure 2014184923
Next, the heterogeneous reaction between residual carbon and water vapor is performed by the following main reaction.
Figure 2014184923

拡散動力学的モードにおいて,ヘテロジニアス反応が行われるため,蒸気の乱流・渦流により,反応剤(蒸気)は残留炭素に送られ,ガス化生成物が排出される。   Since the heterogeneous reaction takes place in the diffusion kinetic mode, the reactant (steam) is sent to residual carbon and the gasification product is discharged by the turbulent / vortex flow of the steam.

第1円形空洞11内の原料柱の外層部分における水素(H)及び酸化炭素(CO)の濃度プロファイルを調査することにより,それらの濃度と固相における炭素の質量濃度変化との間に相互関係があるという重要な事実が判明した。すなわち,本発明の方法において,水素及び酸化炭素の質量濃度変化の主な要因が,固形有機原料に含まれる炭素が蒸気化したものであることが判る。By examining the concentration profile of hydrogen (H 2 ) and carbon oxide (CO) in the outer layer portion of the raw material column in the first circular cavity 11, there is a mutual relationship between their concentration and the change in mass concentration of carbon in the solid phase. An important fact was found that there was a relationship. That is, in the method of the present invention, it can be seen that the main cause of the change in the mass concentration of hydrogen and carbon oxide is that the carbon contained in the solid organic raw material is vaporized.

従って,炭素原子のモル流束に対する水蒸気のモル流束比率を調整することにより,ガス化生成物の成分を決定することができ,第1円形空洞11において,化学量論的な理想値に近いガス化を行うことができる。   Therefore, the component of the gasification product can be determined by adjusting the molar flux ratio of water vapor to the molar flux of carbon atoms, and is close to the stoichiometric ideal value in the first circular cavity 11. Gasification can be performed.

図5(A)〜(D)は,プラズマにより鶏糞のガス化を行った際の温度と,合成された燃料ガスの成分変化を示したグラフであり,図5(A)は空気プラズマ245gを使用した例(比較例1),図5(B)は空気プラズマを1200g使用した例(比較例2),(C)は蒸気プラズマを64g使用した例(実施例1),(D)は蒸気プラズマ314gを使用した例(実施例2)をそれぞれ示す。   FIGS. 5A to 5D are graphs showing the temperature at the time of gasification of chicken manure by plasma and the component change of the synthesized fuel gas, and FIG. 5A shows 245 g of air plasma. Example used (Comparative Example 1), FIG. 5B is an example using 1200 g of air plasma (Comparative Example 2), FIG. 5C is an example using 64 g of vapor plasma (Example 1), and FIG. An example (Example 2) using 314 g of plasma is shown respectively.

図6は,実施例1,2及び比較例1,2において単位質量(1kg)あたりの原料の処理に必要な電力消費量(MJ/kg)を,更に,図7は実施例1,2及び比較例1,2において単位質量(1kg)の原料から得られる燃料ガスの出力エネルギー(MJ/kg)を示す。   6 shows the power consumption (MJ / kg) required for processing the raw material per unit mass (1 kg) in Examples 1 and 2 and Comparative Examples 1 and 2, and FIG. The output energy (MJ / kg) of the fuel gas obtained from the raw material of unit mass (1 kg) in Comparative Examples 1 and 2 is shown.

図5(A)〜(D)の結果から,蒸気プラズマを使用した本発明のガス化方法では,空気プラズマを使用した場合に比較して,より少量のプラズマによって同等成分の燃料ガスが得られることが確認できた。   From the results shown in FIGS. 5A to 5D, in the gasification method of the present invention using vapor plasma, a fuel gas of the same component can be obtained with a smaller amount of plasma than when air plasma is used. I was able to confirm.

なお,ガス化において原料1kgあたりの処理に必要な蒸気プラズマの消費量は,原料である固形有機原料の材質によっても異なるが,前掲の鶏糞を処理対象とした場合で64g/kg(実施例1),乾燥木材を処理対象とした場合で326g/kg,廃タイヤを処理対象とした場合で1.2kg/kgであった。   The consumption of vapor plasma required for processing per kg of raw material in gasification varies depending on the material of the solid organic raw material that is the raw material, but 64 g / kg when the above-described chicken manure is used as a processing target (Example 1). ), 326 g / kg when dry wood was treated, and 1.2 kg / kg when waste tire was treated.

また,図6及び図7より,蒸気プラズマを使用した本発明のガス化では,空気プラズマを使用した場合に比較してより少ない電力消費量によって,より出力エネルギーの高い燃料ガスが得られることが確認されており,蒸気プラズマを使用してガス化を行う場合には,空気プラズマを使用してガス化を行う場合に比較して,最大で約3倍の効率の向上が得られることが確認された(図6の実施例2と比較例2の比較)。   Also, from FIGS. 6 and 7, the gasification of the present invention using vapor plasma shows that a fuel gas with higher output energy can be obtained with less power consumption than when air plasma is used. It has been confirmed that when gasification is performed using vapor plasma, the efficiency can be improved up to about 3 times compared to gasification using air plasma. (Comparison between Example 2 and Comparative Example 2 in FIG. 6).

なお,破砕した木材を原料とした蒸気プラズマによるガス化において,処理温度の変化によって生成されるガスの成分にどのような相違が生じるかを測定した結果を,図8に示す。   In addition, the result of having measured what kind of difference in the component of the gas produced | generated by the change of process temperature in the gasification by the steam plasma which used the crushed wood as a raw material is shown in FIG.

図8に示す結果より,約1300K(1026.84℃)を越えたあたりでH,COの発生量がピークを迎え,その後,H,COの発生量は温度の上昇によって殆ど変化せずに一定値を維持することから,固形有機原料の加熱温度が1100℃以上となるような条件で加熱を行うことが有利であり,このような温度は第1円形空洞11内の接線方向に2000〜3500℃に過熱された水蒸気を吹き込むことにより実現することができる。From the results shown in FIG. 8, the generation amount of H 2 and CO reaches a peak when the temperature exceeds about 1300 K (1026.84 ° C.), and then the generation amount of H 2 and CO hardly changes as the temperature rises. Therefore, it is advantageous to heat the solid organic raw material under the condition that the heating temperature of the solid organic raw material is 1100 ° C. or higher. Such a temperature is 2,000 in the tangential direction in the first circular cavity 11. It can be realized by blowing water vapor heated to ˜3500 ° C.

〔粒径の影響〕
反応ガスの温度変化に対する粒径別の木材粒子の表面温度の変化を図9に,反応ガスの温度変化に対する粒径別のガス化率の変化を図10にそれぞれ示す。
[Effect of particle size]
FIG. 9 shows the change in the surface temperature of the wood particles for each particle diameter with respect to the temperature change of the reaction gas, and FIG.

図9及び図10より明らかなように,反応ガス(過熱蒸気)の温度が同じであっても,処理対象とした木材の粒径が小さくなる程,木材の表面温度が上昇すると共に,ガス化率が上昇することが判り,粒径の減少に伴う原料の表面積の拡大に伴い,過熱蒸気によるガス化の促進を図ることができることが判る。   As is clear from FIGS. 9 and 10, even when the temperature of the reaction gas (superheated steam) is the same, as the particle size of the wood to be treated decreases, the surface temperature of the wood increases and gasification occurs. It can be seen that the rate increases, and that gasification by superheated steam can be promoted as the surface area of the raw material increases as the particle size decreases.

原料である固体有機原料の粒子面において,発生するガス成分中における酸化炭素(CO)及び水素(H)の発生率を向上させるためには,反応炉壁から粒子面に向けた熱流を増やす必要があり,放射による熱流は表面積に比例するので,壁の温度上昇のみならず,固形有機原料の粒子径の減少に伴う表面積の増大によってもこれを達成することができ(図9,10参照),破砕した状態の固形有機原料を処理対象とすることの有利性が裏付けられる。In order to improve the generation rate of carbon oxide (CO) and hydrogen (H 2 ) in the generated gas component on the particle surface of the solid organic raw material which is the raw material, the heat flow from the reactor wall toward the particle surface is increased. Since the heat flow by radiation is proportional to the surface area, this can be achieved not only by increasing the wall temperature, but also by increasing the surface area as the particle size of the solid organic material decreases (see FIGS. 9 and 10). ), The advantage of using a crushed solid organic raw material as a processing target is confirmed.

〔燃焼時における酸化剤との混合比(燃料当量比)〕
燃料ガスの燃焼時における燃焼速度,発熱速度(図11参照),及び火炎伝播速度〔図12(A)〜(C)参照〕は十分早いので,第2円形空洞12において,燃料ガスの燃焼による熱出力が,原料を遅滞なく加熱する。
[Mixing ratio with oxidant during combustion (fuel equivalent ratio)]
Since the combustion speed, heat generation speed (see FIG. 11), and flame propagation speed (see FIGS. 12A to 12C) during the combustion of the fuel gas are sufficiently fast, the second circular cavity 12 is caused by the combustion of the fuel gas. Heat output heats the raw material without delay.

図12(A)〜(C)は,反応炉内に近い条件において,酸化炭素(CO)と水素(H)の配合が異なる3つの試料に対し燃料当量比(燃料ガスの質量/酸化剤の質量)の変化に伴う火炎速度の変化を測定した結果である。12 (A) to 12 (C) show fuel equivalent ratios (mass of fuel gas / oxidizer) for three samples having different blends of carbon oxide (CO) and hydrogen (H 2 ) under conditions close to that in the reactor. It is the result of having measured the change of the flame speed accompanying the change of the mass).

火炎伝播速度は酸化炭素(CO)の含有率が増加するに従い低下し,初期温度が上昇すれば,伝播速度も増加するが,いずれの例においても,燃料当量比αfが約2程度の高濃度のガスにおいて伝播速度はピークに達しており,この数値の前後を含めた,燃料当量比αfが0.7〜3.0,好ましくは1.5〜3.0の濃混合気の範囲であれば,いずれも高い熱伝播率を得られることが判る〔図12(A)〜(C)〕。   The flame propagation speed decreases as the carbon oxide (CO) content increases, and as the initial temperature rises, the propagation speed increases. In either case, the fuel equivalent ratio αf is a high concentration of about 2 The velocity of propagation reaches a peak in this gas, and the fuel equivalent ratio αf including the range before and after this value should be in the range of a rich mixture with a value of 0.7 to 3.0, preferably 1.5 to 3.0. In any case, it can be seen that a high heat transfer rate can be obtained [FIGS. 12A to 12C].

なお,燃料当量比は,第1円形空洞11においてガス化せずに残った固形有機原料の化学量論に基づき第1円形空洞11における燃料ガスの発生量を求めることにより算出した。   The fuel equivalent ratio was calculated by obtaining the amount of fuel gas generated in the first circular cavity 11 based on the stoichiometry of the solid organic raw material remaining without being gasified in the first circular cavity 11.

〔効果確認試験〕
試験例1
実験装置を使用して,下記の表4に示す条件にて本発明の方法による固形有機原料のガス化を行った。このガス化によって生成された燃料ガスの成分を表5にそれぞれ示す。
[Effect confirmation test]
Test example 1
Using the experimental apparatus, the solid organic raw material was gasified by the method of the present invention under the conditions shown in Table 4 below. Table 5 shows the components of the fuel gas generated by this gasification.

Figure 2014184923
Figure 2014184923
Figure 2014184923
Figure 2014184923

上記試験例では,燃料当量比を1としたときに燃焼生成物の燃焼温度が最高値を達成し,バイオマスを処理した場合の燃焼生成物の最高燃焼温度は1900℃,廃棄物の混合モデルを処理した場合の燃焼生成物の最高燃焼温度は1700℃となった。尚,燃焼生成物中の酸化炭素(CO)は0.5%以下となった。   In the above test example, when the fuel equivalent ratio is set to 1, the combustion temperature of the combustion product achieves the maximum value, and when the biomass is processed, the maximum combustion temperature of the combustion product is 1900 ° C, and the mixture model of waste is used. The maximum combustion temperature of the combustion product when treated was 1700 ° C. Incidentally, the carbon oxide (CO) in the combustion products was 0.5% or less.

バイオマスをガス化した試験例では,発熱量11.03MJ/m3の燃料ガスが,12.5リットル/分で出力された。この燃料ガスの空気中における燃焼時の熱出力は2.3kWであった。In the test example in which biomass was gasified, fuel gas with a calorific value of 11.03 MJ / m 3 was output at 12.5 liters / minute. The heat output during combustion of the fuel gas in the air was 2.3 kW.

すなわち,前述したバイオマスのガス化では,消費電力0.55kWに対し,生成ガスの燃焼により発生する化学的エネルギーは2.3kWとなる。従って,反応炉に入力した総合熱容量は,「0.55+2.3=2.85kW」であり,入力熱量(0.55kW)に対する増加は,「2.85/0.55≒
5.2倍」となり,高効率でのガス化を行うことができた。
That is, in the gasification of biomass described above, the chemical energy generated by the combustion of the generated gas is 2.3 kW for a power consumption of 0.55 kW. Therefore, the total heat capacity input to the reactor is “0.55 + 2.3 = 2.85 kW”, and the increase with respect to the input heat quantity (0.55 kW) is “2.85 / 0.55≈
5.2 times ", and gasification with high efficiency was achieved.

混合モデルをガス化した試験例では,発熱量8.17MJ/m3の燃料ガスが,10.0リットル/分で出力された。この燃料ガスの空気中における燃焼時の熱出力は1.36kWであった。In the test example in which the mixed model was gasified, fuel gas with a calorific value of 8.17 MJ / m 3 was output at 10.0 liters / minute. The heat output during combustion of the fuel gas in air was 1.36 kW.

すなわち,前述した混合モデルのガス化では,消費電力0.55kWに対し,生成ガス燃焼により発生する化学的エネルギーは1.36kWとなる。従って,反応炉に入力した総合熱容量は「0.55+1.36=1.91kW」であり,入力(0.55kW)に対する増加分は,「1.91/0.55≒3.47倍」となり,いずれの原料を使用した場合においても,高効率でガス化を行うことができた。   That is, in the gasification of the mixed model described above, the chemical energy generated by the product gas combustion is 1.36 kW for the power consumption of 0.55 kW. Therefore, the total heat capacity input to the reactor is “0.55 + 1.36 = 1.91kW”, and the increase with respect to the input (0.55kW) is “1.91 / 0.55≈3.47 times”. , No matter which raw material was used, gasification could be performed with high efficiency.

試験例2
プラズマジェット入力-100kW。ごみ(医療廃棄物)の処理能力-53kg/h,水流量-27kg/h。プラズマ噴流温度-2800℃。反応炉内温度 -1100℃。生成ガス成分,% 重量:Н2- 65, СО- 35。発熱量 - 11,42 MJ/mn3。生成ガス出力 (1,5 mn3/kg) - 80,0 mn3。ガス燃焼時の熱量- 253 kW。炉内総合熱量353 kW。原料の化学的エネルギーにより,総合熱量は入力電力の3,53倍となる。なお,上記において「mn3」は,気温20℃における気体の立方メートルである。
Test example 2
Plasma jet input-100kW. Garbage (medical waste) treatment capacity -53kg / h, water flow -27kg / h. Plasma jet temperature -2800 ° C. Reactor temperature -1100 ° C. Product gas components,% by weight: Н 2 - 65, СО- 35 . Calorific value-11,42 MJ / mn3. Product gas output (1,5 mn3 / kg)-80,0 mn3. Calorific value during gas combustion-253 kW. The total heat inside the furnace is 353 kW. The total calorific value is 3,53 times the input power due to the chemical energy of the raw material. In the above, “mn3” is a cubic meter of gas at a temperature of 20 ° C.

1 ガス化装置
3 断熱材
9 円形交換器
10 反応炉
11 第1円形空洞(ゾーン1)
12 第2円形空洞(ゾーン2)
13 ガス化促進領域(ゾーン3)
21 排出ガス通路
21a 内側通路
21b 外側通路
21c 継手
22 蒸気プラズマ導入路
23 酸化剤導入路
30 電気アークプラズマジェット
40 供給装置
41 電動機
42 攪拌羽根
50 残灰排出装置
51 電動機

DESCRIPTION OF SYMBOLS 1 Gasifier 3 Heat insulating material 9 Circular exchanger 10 Reactor 11 1st circular cavity (zone 1)
12 Second circular cavity (zone 2)
13 Gasification Promotion Area (Zone 3)
21 Exhaust gas passage 21a Inner passage 21b Outer passage 21c Joint 22 Steam plasma introduction passage 23 Oxidant introduction passage 30 Electric arc plasma jet 40 Supply device 41 Electric motor 42 Stirring blade 50 Residual ash discharge device 51 Electric motor

Claims (13)

円筒形の反応炉内の一端側より乾燥した粒状の固形有機原料を導入し,前記反応炉内に前記一端側から他端側に向かって前記反応炉の軸線方向に移動する原料柱を形成し,
前記反応炉の中間領域において電気アークプラズマジェットで発生した高温度の水蒸気噴流を噴射して前記固体有機原料中の有機成分を一部ガス化させて燃料ガスを発生させ,
前記燃料ガスを発生させた領域に対し前記他端寄りの領域において反応炉内に酸化剤を吹き込んで,前記燃料ガスを燃焼させ,前記酸化剤の供給を行った領域において原料柱を加熱して,この酸化剤の導入を行った領域と該領域に対し前記他端寄りにある領域において前記固形有機原料中に残留する有機分を完全にガス化し,
前記他端側において前記反応炉10内を吸引し,固形有機原料より生成した燃料ガスを850℃以上の温度で取り出すことを特徴とする,固形有機原料のガス化方法。
A dry granular solid organic raw material is introduced from one end side of a cylindrical reactor, and a raw material column that moves in the axial direction of the reactor from the one end side to the other end side is formed in the reaction furnace. ,
Injecting a high-temperature steam jet generated by an electric arc plasma jet in an intermediate region of the reactor to partially gasify an organic component in the solid organic raw material to generate a fuel gas;
An oxidant is blown into the reaction furnace in a region near the other end with respect to the region where the fuel gas is generated, the fuel gas is burned, and the raw material column is heated in the region where the oxidant is supplied. , And completely gasifying the organic component remaining in the solid organic raw material in the region where the oxidant has been introduced and the region closer to the other end relative to the region,
A gasification method for a solid organic material, wherein the inside of the reaction furnace 10 is sucked on the other end side, and a fuel gas generated from the solid organic material is taken out at a temperature of 850 ° C. or more.
前記酸化剤の吹き込みを,燃料当量比が0.7〜3.0の混合気となるように行うことを特徴とする請求項1記載の固形有機原料のガス化方法。   2. The method of gasifying a solid organic raw material according to claim 1, wherein the oxidizing agent is blown so as to be a mixture having a fuel equivalent ratio of 0.7 to 3.0. 前記水蒸気噴流が,2000〜3500℃の過熱水蒸気の噴流であり,1機またそれ以上の前記電気アークプラズマジェットを通じて前記反応炉の内壁の周方向における接線方向に前記水蒸気噴流を吹き込むことにより反応炉内を周方向に循環する前記水蒸気噴流の循環流を形成し,
前記循環流が形成された部分における反応炉内壁を1000〜1600℃まで加熱することを特徴とする請求項1又は2記載の固形有機原料のガス化方法。
The steam jet is a superheated steam jet of 2000 to 3500 ° C., and the reactor is formed by blowing the steam jet in the tangential direction in the circumferential direction of the inner wall of the reactor through one or more electric arc plasma jets. Forming a circulation flow of the water vapor jet circulating in the circumferential direction,
The method for gasifying a solid organic raw material according to claim 1 or 2, wherein the inner wall of the reaction furnace in the portion where the circulating flow is formed is heated to 1000 to 1600 ° C.
前記酸化剤を,200〜600℃に加熱した状態で前記反応炉内に吹き込むことを特徴とする請求項1〜3いずれか1項記載の固形有機原料のガス化方法。   The method for gasifying a solid organic raw material according to any one of claims 1 to 3, wherein the oxidizing agent is blown into the reaction furnace while being heated to 200 to 600 ° C. 前記酸化剤の供給を行った領域を通過した固形有機原料の温度を900〜1100℃の範囲に維持すると共に,ガス化における酸化剤消費率を0.90〜0.95の範囲に維持することを特徴とする請求項1〜4いずれか1項記載の固形有機原料のガス化方法。   Maintaining the temperature of the solid organic raw material that has passed through the region where the oxidant has been supplied in the range of 900 to 1100 ° C., and maintaining the oxidant consumption rate in the gasification within the range of 0.90 to 0.95. The gasification method of the solid organic raw material of any one of Claims 1-4 characterized by these. 前記酸化剤の供給を行った領域において前記酸化剤に過熱水蒸気を混合して導入し,該領域を通過した固形有機原料の温度を900〜1100℃の範囲に維持し,ガス化における酸化剤消費率を1.05〜1.20の範囲とすることを特徴とする請求項1〜4いずれか1項記載の固形有機原料のガス化方法。   In the region where the oxidant is supplied, superheated steam is mixed and introduced into the oxidant, and the temperature of the solid organic raw material passing through the region is maintained in the range of 900 to 1100 ° C. The gasification method according to any one of claims 1 to 4, wherein the rate is in the range of 1.05 to 1.20. 前記酸化剤の供給を行う領域において,該領域を通過する前記原料柱の移動速度を減速させることを特徴とする請求項1〜6いずれか1項記載の固形有機原料のガス化方法。   The method for gasifying a solid organic raw material according to any one of claims 1 to 6, wherein in the region where the oxidant is supplied, the moving speed of the raw material column passing through the region is reduced. 一端より投入された原料を他端側に移動させつつ処理する円筒形の反応炉内の中間領域に,該反応炉の内径を拡張して形成した第1円形空洞と,
前記第1円形空洞に対し前記反応炉の内径の0.1〜0.5倍の距離を隔てた前記他端寄りの位置で前記反応炉の内径を拡張して形成した第2円形空洞を設け,
前記反応炉外に配置された電気アークプラズマジェットが噴射した高温の水蒸気噴流を導入する蒸気プラズマ導入路を前記第1円形空洞において前記反応炉内の空間に連通し,
加熱された酸化剤を導入する酸化剤導入路を前記第2円形空洞において前記反応炉内の空間に連通すると共に,
前記反応炉内を吸引する排出ガス通路を,前記他端側において前記反応炉内に連通したことを特徴とする固形有機原料のガス化装置。
A first circular cavity formed by expanding the inner diameter of the reaction furnace in an intermediate region in a cylindrical reaction furnace that is processed while moving the raw material charged from one end to the other end;
A second circular cavity formed by extending the inner diameter of the reaction furnace at a position near the other end that is 0.1 to 0.5 times the inner diameter of the reaction furnace with respect to the first circular cavity is provided. ,
A steam plasma introduction path for introducing a high-temperature steam jet jetted by an electric arc plasma jet arranged outside the reactor is communicated with the space in the reactor in the first circular cavity;
An oxidant introduction path for introducing a heated oxidant communicates with the space in the reactor in the second circular cavity,
An apparatus for gasifying a solid organic material, wherein an exhaust gas passage for sucking the inside of the reaction furnace is communicated with the inside of the reaction furnace on the other end side.
前記蒸気プラズマ導入路を前記第1円形空洞の内壁の周方向における接線方向に,内壁面に沿った水蒸気噴流の循環流を生じるように配置したことを特徴とする請求項8記載の固形有機原料のガス化装置。   9. The solid organic raw material according to claim 8, wherein the vapor plasma introduction path is arranged in a tangential direction in the circumferential direction of the inner wall of the first circular cavity so as to generate a circulation flow of a water vapor jet along the inner wall surface. Gasifier. 前記酸化剤導入路を,前記第2円形空洞の内壁の周方向における接線方向であって,前記第1円形空洞で生じた水蒸気噴流の循環流と同一回転方向の循環流が生じるように配置することを特徴とする請求項9記載の固形有機原料のガス化装置。   The oxidant introduction path is arranged so that a circulation flow is generated in the tangential direction in the circumferential direction of the inner wall of the second circular cavity and in the same rotational direction as the circulation flow of the water vapor jet generated in the first circular cavity. A gasifier for a solid organic raw material according to claim 9. 前記排出ガス通路を二重管構造とし,該排出ガス通路の一方の通路を介して前記反応炉内を吸引すると共に,他方の通路を介して前記酸化剤導入路を酸化剤供給源に連通することを特徴とする請求項8〜10いずれか1項記載の固形有機原料のガス化装置。   The exhaust gas passage has a double pipe structure, and the inside of the reaction furnace is sucked through one passage of the exhaust gas passage, and the oxidant introduction passage is communicated with the oxidant supply source through the other passage. The gasification apparatus of the solid organic raw material of any one of Claims 8-10 characterized by the above-mentioned. 前記第2円形空洞の出口側の直径を,入口側の直径の0.7〜0.9倍の直径に狭めた形状としたことを特徴とする請求項8〜11いずれか1項記載の固形有機原料のガス化方法。   12. The solid according to claim 8, wherein a diameter of the second circular cavity on the outlet side is narrowed to a diameter of 0.7 to 0.9 times the diameter on the inlet side. Gasification method for organic raw materials. 前記第2円形空洞の出口から,前記反応炉の前記他端に至る領域を,前記第2円形空洞の出口から前記反応炉の前記他端に向かって徐々に内径を拡大する形状に形成したことを特徴とする請求項8〜12いずれか1項記載の固形有機原料のガス化装置。
A region from the outlet of the second circular cavity to the other end of the reactor is formed in a shape that gradually increases the inner diameter from the outlet of the second circular cavity toward the other end of the reactor. The gasification apparatus of the solid organic raw material of any one of Claims 8-12 characterized by these.
JP2015516833A 2013-05-16 2013-05-16 Gasification method and gasification apparatus for solid organic raw material Active JP6041451B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/063658 WO2014184923A1 (en) 2013-05-16 2013-05-16 Method for gasifying solid organic raw material and gasification device

Publications (2)

Publication Number Publication Date
JP6041451B2 JP6041451B2 (en) 2016-12-07
JPWO2014184923A1 true JPWO2014184923A1 (en) 2017-02-23

Family

ID=51897929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015516833A Active JP6041451B2 (en) 2013-05-16 2013-05-16 Gasification method and gasification apparatus for solid organic raw material

Country Status (2)

Country Link
JP (1) JP6041451B2 (en)
WO (1) WO2014184923A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105112103B (en) * 2015-08-18 2017-06-16 王晓峰 Small-particle-size brown coal gasification device based on vacuum thermal decomposition and gasification method thereof
CN116425115B (en) * 2023-03-15 2024-10-01 安徽华东光电技术研究所有限公司 Device for producing hydrogen by arc plasma pyrolysis

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE453750B (en) * 1984-06-14 1988-02-29 Skf Steel Eng Ab KIT FOR GASING OF FINE DISTRIBUTED COAL CONTENTS
FR2892127B1 (en) * 2005-10-14 2012-10-19 Commissariat Energie Atomique DEVICE FOR GASIFYING BIOMASS AND ORGANIC WASTE AT HIGH TEMPERATURE AND WITH EXTERNAL ENERGY DELIVERY FOR THE GENERATION OF A HIGH-QUALITY SYNTHESIS GAS
US7854775B2 (en) * 2006-05-12 2010-12-21 InEn Tec, LLC Combined gasification and vitrification system

Also Published As

Publication number Publication date
WO2014184923A1 (en) 2014-11-20
JP6041451B2 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
JP6824745B2 (en) Carbonization furnace and pyrolysis furnace, as well as water gas generation system, hydrogen gas generation system, and power generation system
JP5631313B2 (en) Thermal reactor
JP5890440B2 (en) Waste treatment method and apparatus
CN102322630B (en) Method and devices for burning macromolecular matters efficiently and cleanly
AU2010268415B2 (en) Waste management system
CN104479743B (en) A kind of rubbish plasma gasification stove with vapor as gasifying medium
MX2014007866A (en) Externally heated microwave plasma gasifier and synthesis gas production method.
US20140223908A1 (en) Waste Management System
JP2009300006A (en) Thermal recycling method and system by converting waste tire into fuel
CN105485895B (en) Built-in biomass gasification combustion water heater
CN102746902B (en) Gasification method of organic wastes and special gasification furnace
JP4483553B2 (en) Gasification processing method and apparatus
JP6041451B2 (en) Gasification method and gasification apparatus for solid organic raw material
JP2007321520A (en) Heat using method generated in biomass power generation facility
JP2011220541A (en) Boiler facility
JP2007127330A (en) Cogeneration method and system using carbonization furnace
JP2001241624A (en) Waste-incinerating plant
CN106642136B (en) Heat accumulating type spiral pyrolysis installation and its application
CN106701118B (en) A Double Cyclone Biomass Melting Pyrolysis Gasifier
JP2008215661A (en) Combustion furnace, waste gasification system and combustible gas treatment method
JP4993460B2 (en) Method for thermal decomposition of carbonaceous raw materials
RU2301374C1 (en) Method and device for preparing fuel for combustion
JP2007231062A (en) Gasifier
JP2005120210A (en) Waste gasification method and system
JP3559163B2 (en) Gasification method using biomass and fossil fuel

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161107

R150 Certificate of patent or registration of utility model

Ref document number: 6041451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250