[go: up one dir, main page]

JPWO2006046481A1 - Method for producing methacrylic resin extrusion plate for optics - Google Patents

Method for producing methacrylic resin extrusion plate for optics Download PDF

Info

Publication number
JPWO2006046481A1
JPWO2006046481A1 JP2006543090A JP2006543090A JPWO2006046481A1 JP WO2006046481 A1 JPWO2006046481 A1 JP WO2006046481A1 JP 2006543090 A JP2006543090 A JP 2006543090A JP 2006543090 A JP2006543090 A JP 2006543090A JP WO2006046481 A1 JPWO2006046481 A1 JP WO2006046481A1
Authority
JP
Japan
Prior art keywords
methacrylic resin
polymer
plate
polymerization
apparent density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006543090A
Other languages
Japanese (ja)
Other versions
JP4717008B2 (en
Inventor
俊児 神谷
俊児 神谷
鶴田 嚴一
嚴一 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2006543090A priority Critical patent/JP4717008B2/en
Publication of JPWO2006046481A1 publication Critical patent/JPWO2006046481A1/en
Application granted granted Critical
Publication of JP4717008B2 publication Critical patent/JP4717008B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Planar Illumination Modules (AREA)

Abstract

見掛け密度0.63g/ml〜0.78g/mlの範囲内の定形状メタクリル樹脂重合体と見掛け密度0.55g/ml〜0.63g/mlの範囲内の不定形状メタクリル樹脂重合体との混合物で、該混合物の見掛け密度が0.80g/ml以上であるメタクリル樹脂押出原料を用いることを特徴とする幅方向の板厚精度が平均板厚の±1.0%以内に制御された導光板用メタクリル樹脂押出板の製造し、パーソナルコンピュータやワードプロセッサなどのオフィスオートメーション機器、画像信号を表示する各種モニター、例えばパネルモニター、テレビモニター等に用いられる表示装置及び室内外空間の照明装置に使用される表示装置や看板等に適した導光板用メタクリル樹脂押出板を提供する。A mixture of a regular methacrylic resin polymer having an apparent density of 0.63 g / ml to 0.78 g / ml and an amorphous methacrylic resin polymer having an apparent density of 0.55 g / ml to 0.63 g / ml. And a methacrylic resin extrusion raw material having an apparent density of 0.80 g / ml or more of the mixture, wherein the plate thickness accuracy in the width direction is controlled within ± 1.0% of the average plate thickness Methacrylic resin extrusion plate, used in office automation equipment such as personal computers and word processors, various displays for displaying image signals, for example, display devices used for panel monitors, television monitors, etc. and lighting devices for indoor and outdoor spaces A methacrylic resin extrusion plate for a light guide plate suitable for a display device or a signboard is provided.

Description

本発明は、パーソナルコンピュータやワードプロセッサなどのオフィスオートメーション機器、画像信号を表示する各種モニター、例えばパネルモニター、テレビモニター等に用いられる表示装置及び室内外空間の面光源装置に使用される表示装置や看板等に適した導光板用メタクリル樹脂押出板の製造方法に関する。   The present invention relates to a display device or a signboard used for an office automation device such as a personal computer or a word processor, a display device for displaying various image signals, for example, a panel monitor, a television monitor, and a surface light source device for indoor and outdoor spaces. It is related with the manufacturing method of the methacrylic resin extrusion board for light-guide plates suitable for etc.

透明熱可塑性樹脂、その中でも特にメタクリル樹脂は、優れた光透過性、機械的特性からこれまでに多くの照明用途に用いられてきたが、特に近年は照明用ランプを備えた表示装置等のバックライト用導光板として使用されるようになってきた。このバックライトの方式としては、導光板を光源と液晶ユニットの間に挟んだ、いわゆる直下式と、光源を導光板のエッジに取り付けるエッジライト方式の2種が通常用いられ、現在はエッジライト方式が主流となっている。近年は表示装置の高輝度化、大型化、薄型化の要求が強く、より明るく、より大きく、より薄くの商品コンセプトのもと開発が続けられている。特にエッジライト方式での高輝度面発光装置の開発が強く望まれている。   Transparent thermoplastic resins, and in particular methacrylic resins, have been used for many lighting applications because of their excellent light transmission and mechanical properties. In recent years, however, they have been used as backs for display devices equipped with lighting lamps. It has come to be used as a light guide plate for light. Two types of backlights are commonly used: the so-called direct type, in which the light guide plate is sandwiched between the light source and the liquid crystal unit, and the edge light method in which the light source is attached to the edge of the light guide plate. Currently, the edge light method is used. Has become the mainstream. In recent years, there has been a strong demand for higher brightness, larger size, and thinner display devices, and development has continued under the concept of brighter, larger, and thinner products. In particular, there is a strong demand for the development of a high-luminance surface emitting device using an edge light system.

この為、光源装置で使用される導光板についても、側面に配設された光源ランプより入光した光の入射光を効率的に出射面に出射させる導光板の要求が非常に強くなっている。   For this reason, with respect to the light guide plate used in the light source device, there is a strong demand for a light guide plate that efficiently emits incident light of light incident from a light source lamp disposed on the side surface to the output surface. .

しかし、通常の押出板では、押出し方向の板厚変動は少ないが、幅方向の板厚変動が大きく、光源装置に配設された光源ランプより入光した光が不規則に出光され輝度均斉性に劣り、高輝度が得られない。
導光板による高輝度化の方法に関しては、これまでにも複数の技術開示がなされている。例えば、導光板の中に光拡散粒子を分散混入することにより均一な発光面を得る方法(例えば、特許文献1参照)、導光体に屈折率の異なる微粒子を包含する光散乱性プラスチック材料を用いることにより高輝度化する方法等が開示されている(例えば、特許文献2参照)が工程が煩雑である。
However, in the normal extrusion plate, the variation in the thickness in the extrusion direction is small, but the variation in the thickness in the width direction is large, so that the light incident from the light source lamp arranged in the light source device is irregularly emitted and the luminance uniformity Inferior to this, high brightness cannot be obtained.
A plurality of technical disclosures have been made so far regarding the method of increasing the brightness using the light guide plate. For example, a method for obtaining a uniform light emitting surface by dispersing and diffusing light diffusing particles in a light guide plate (see, for example, Patent Document 1), and a light scattering plastic material including fine particles having different refractive indexes in a light guide. A method for increasing the brightness by using it is disclosed (for example, see Patent Document 2), but the process is complicated.

特公昭39−1194号公報Japanese Patent Publication No.39-1194 特開平4−145485号公報JP-A-4-145485

しかしながら、これら煩雑な微粒子を含有するメタクリル樹脂を用いる技術以外、輝度及び輝度斑等、表示装置の大型化、薄型化に伴う要求に対し充分対応できるレベルには到達していないのが現状である。   However, other than the technology using the methacrylic resin containing these complicated fine particles, the present situation is that the level that can sufficiently meet the demands associated with the increase in size and thickness of the display device such as luminance and luminance unevenness has not been reached. .

本発明の目的は、画像信号を表示する各種モニター、例えばパネルモニター、テレビモニター等に用いられる表示装置及び室内外空間の照明装置に使用される表示装置や看板等に適した導光板用メタクリル樹脂押出板及びその製造方法を提供することにある。   An object of the present invention is to provide a methacrylic resin for a light guide plate suitable for display devices used for various monitors for displaying image signals, for example, display devices used for panel monitors, television monitors, etc., and illumination devices for indoor and outdoor spaces, signboards, etc. The object is to provide an extruded plate and a method for producing the same.

本発明者等は、前記課題を解決するため鋭意検討の結果、定形状を有するメタクリル樹脂押出原料に不定形状を有するメタクリル樹脂押出原料を特定の割合で混合し、押出成型されたメタクリル樹脂板を導光板として用いる事により高輝度化、輝度斑低減する事を見出し、本発明を完成させるに至った。
すなわち、本発明は
[1] 見掛け密度0.63g/ml〜0.78g/mlの定形状メタクリル樹脂重合体と見掛け密度0.55g/ml〜0.63g/mlの不定形状メタクリル樹脂重合体とを見掛け密度が0.80g/ml以上となるように混合し、得られた混合物を押出し成形して、板厚が2.0〜15.0mmであって、幅方向の板厚精度が平均板厚の±1.0%以内である導光板用メタクリル樹脂押出板を製造する方法、
[2] 該板厚が3.5〜8.5mmであり、且つ幅方向の板厚精度が平均板厚の±0.5%以内であることを特徴とする、請求項1記載の導光板用メタクリル樹脂押出板の製造方法、
[3] 上記1または2記載の方法で製造した導光板用メタクリル樹脂押出板、
である。
As a result of intensive studies to solve the above problems, the present inventors mixed a methacrylic resin extruded raw material having an indefinite shape with a methacrylic resin extruded raw material having a fixed shape at a specific ratio, and obtained an extruded methacrylic resin plate. It has been found that the use of the light guide plate can increase the luminance and reduce the luminance unevenness, thereby completing the present invention.
That is, the present invention
[1] A regular methacrylic resin polymer having an apparent density of 0.63 g / ml to 0.78 g / ml and an amorphous methacrylic resin polymer having an apparent density of 0.55 g / ml to 0.63 g / ml have an apparent density of 0. The resulting mixture was extruded to give a plate thickness of 2.0 to 15.0 mm, and the plate thickness accuracy in the width direction was ± 1. A method for producing a methacrylic resin extruded plate for a light guide plate that is within 0%,
2. The light guide plate according to claim 1, wherein the plate thickness is 3.5 to 8.5 mm, and the plate thickness accuracy in the width direction is within ± 0.5% of the average plate thickness. For producing a methacrylic resin extruded plate,
[3] A methacrylic resin extruded plate for a light guide plate produced by the method described in 1 or 2 above,
It is.

本発明について、以下具体的に説明する。   The present invention will be specifically described below.

本発明において用いられるメタクリル樹脂とはメタクリル酸メチルあるいはメタクリル酸エチルを70重量%以上と、これらと共重合性を有する単量体とを共重合することにより得る事ができる。これらと共重合性を有する単量体としてはメタクリル酸ブチル、メタクリル酸エチル、メタクリル酸メチル、メタクリル酸プロピル、メタクリル酸シクロヘキシル、メタクリル酸フェニル、メタクリル酸2−エチルヘキシルなどのメタクリル酸エステル類、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸シクロヘキシル、アクリル酸フェニル、アクリル酸2−エチルヘキシル等のアクリル酸エステル類、メタクリル酸、アクリル酸等の不飽和酸類等があげられるが、これらに限定されるものではない。
本発明で用いられる定形状メタクリル樹脂押出原料とは、重合反応により得られる球状もしくは円柱状または扁平状のメタクリル樹脂をいう。不定形状メタクリル樹脂押出原料とは、一度板状に成型されたメタクリル樹脂成型体を機械的に粉砕処理されて得られるメタクルリル樹脂をいう。
The methacrylic resin used in the present invention can be obtained by copolymerizing at least 70% by weight of methyl methacrylate or ethyl methacrylate with a monomer having copolymerizability with these. As monomers having copolymerizability with these, methacrylates such as butyl methacrylate, ethyl methacrylate, methyl methacrylate, propyl methacrylate, cyclohexyl methacrylate, phenyl methacrylate, 2-ethylhexyl methacrylate, and acrylic acid Examples include, but are not limited to, acrylic acid esters such as methyl, ethyl acrylate, butyl acrylate, cyclohexyl acrylate, phenyl acrylate, and 2-ethylhexyl acrylate, and unsaturated acids such as methacrylic acid and acrylic acid. It is not something.
The regular-shaped methacrylic resin extrusion raw material used in the present invention refers to a spherical, cylindrical or flat methacrylic resin obtained by a polymerization reaction. The amorphous methacrylic resin extrusion raw material refers to a methacrylic resin obtained by mechanically pulverizing a methacrylic resin molding once molded into a plate shape.

球状メタクリル樹脂は、懸濁重合法により得られる。懸濁重合法について説明する。まずメタクリル酸メチルあるいはメタクリル酸エチルと他の単量体とからなる単量体混合物に、重合開始剤および連鎖移動剤を均一に溶解させる。該均一溶解物を分散安定剤が存在する水媒体に懸濁した後、所定の重合温度で一定時間保持して重合を完結させ、その得られた混濁重合物を濾過し、水洗、乾燥する事により得られる。
懸濁重合の際に使用される重合開始剤としては、ビニル単量体の重合用として周知のラジカル重合開始剤でよい。例えば、アゾビスイソブチロニトリル、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、ジメチル−2,2’−アゾビスイソブチレート、t−ブチルパーオキシピバレート、t−ブチルパーオキシ2−エチルヘキサエート、クミルパーオキシ2−エチルヘキサノエート、ベンゾイルパーオキサイド、ラウロイルパーオキサイド等を挙げることが出来る。これらのラジカル重合開始剤の使用量は、単量体または単量体混合物100重量部に対して通常0.01〜2.0重量部の範囲が好ましい。
懸濁重合の際に使用される連鎖移動剤としては、メタクリル酸メチルの重合に用いられる周知のものでよい。例えば、t−ブチルメルカプタン、n−ブチルメルカプタン、n−オクチルメルカプタン、n−ドデシルメルカプタン等を挙げることが出来る。これらの連鎖移動剤の使用量は、単量体又は単量体混合物100重量部に対して通常0.01〜2.0重量部の範囲が好ましい。
懸濁重合の際に使用される分散安定剤としては、特に限定されないが、リン酸カルシウム、炭酸カルシウム、水酸化アルミニウム等の水難溶性無機化合物、ポリビニルアルコール、ポリエチレンオキサイド、セルロース誘導体のノニオン系高分子化合物、ポリアクリル酸及びその塩、ポリメタクリル酸及びその塩、メタクリル酸エステルとメタクリル酸及びその塩との共重合物等のアニオン系高分子化合物を挙げることが出来る。これらの分散安定剤の使用量は、水100重量部に対し0.01〜5.0重量部の範囲が好ましい。
懸濁重合の際に使用される水としては、純水、イオン交換水、脱イオン水等が挙げられる。水の使用量は、特に限定されないが、単量体又は単量体混合物100重量部に対して100〜250重量部の範囲が好ましい。
また、懸濁重合の重合温度としては、特に限定されないが、60〜120℃程度で、用いる重合開始剤に適した温度とする。重合装置としては、周知の攪拌翼例えばタービン翼、ファウドラー翼、プロペラ翼、ブルーマージン翼等の翼のついた攪拌機を備えた重合容器を用い、該容器には、バッフルをつけているのが一般的である。
さらに必要に応じて離型剤、着色剤、紫外線吸収剤、酸化防止剤、光拡散剤、可塑剤等を懸濁させ重合させても良い。
懸濁重合の終了後は、周知の方法により洗浄、脱水、乾燥することにより球状メタクリル樹脂重合体を得ることができる。
The spherical methacrylic resin is obtained by a suspension polymerization method. The suspension polymerization method will be described. First, a polymerization initiator and a chain transfer agent are uniformly dissolved in a monomer mixture composed of methyl methacrylate or ethyl methacrylate and another monomer. After suspending the homogeneously dissolved product in an aqueous medium containing a dispersion stabilizer, it is maintained at a predetermined polymerization temperature for a certain period of time to complete the polymerization, and the resulting turbid polymer is filtered, washed with water and dried. Is obtained.
As a polymerization initiator used in suspension polymerization, a known radical polymerization initiator for polymerization of a vinyl monomer may be used. For example, azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), dimethyl-2,2′-azobisisobutyrate, t-butylperoxypivalate, t-butylper Examples thereof include oxy 2-ethyl hexaate, cumyl peroxy 2-ethyl hexanoate, benzoyl peroxide, lauroyl peroxide and the like. The amount of these radical polymerization initiators used is usually preferably in the range of 0.01 to 2.0 parts by weight with respect to 100 parts by weight of the monomer or monomer mixture.
The chain transfer agent used in suspension polymerization may be a well-known one used for polymerization of methyl methacrylate. Examples thereof include t-butyl mercaptan, n-butyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan and the like. The amount of these chain transfer agents used is usually preferably in the range of 0.01 to 2.0 parts by weight with respect to 100 parts by weight of the monomer or monomer mixture.
The dispersion stabilizer used in suspension polymerization is not particularly limited, but is a poorly water-soluble inorganic compound such as calcium phosphate, calcium carbonate, aluminum hydroxide, polyvinyl alcohol, polyethylene oxide, nonionic polymer compound of cellulose derivative, Examples include anionic polymer compounds such as polyacrylic acid and salts thereof, polymethacrylic acid and salts thereof, and copolymers of methacrylic acid esters and methacrylic acid and salts thereof. The amount of these dispersion stabilizers used is preferably in the range of 0.01 to 5.0 parts by weight with respect to 100 parts by weight of water.
Examples of water used in suspension polymerization include pure water, ion exchange water, and deionized water. Although the usage-amount of water is not specifically limited, The range of 100-250 weight part is preferable with respect to 100 weight part of monomers or monomer mixtures.
The polymerization temperature for suspension polymerization is not particularly limited, but is about 60 to 120 ° C., which is a temperature suitable for the polymerization initiator to be used. As a polymerization apparatus, a polymerization vessel equipped with a well-known stirring blade, for example, a turbine blade, a fiddler blade, a propeller blade, a blue margin blade, or the like, and a baffle is generally attached to the vessel. Is.
Further, if necessary, a release agent, a colorant, an ultraviolet absorber, an antioxidant, a light diffusing agent, a plasticizer and the like may be suspended and polymerized.
After completion of the suspension polymerization, a spherical methacrylic resin polymer can be obtained by washing, dehydrating and drying by a known method.

本発明の重要構成要件である球状メタクリル樹脂重合体の平均粒子径は0.2〜0.5mmであり、好ましくは0.25〜0.39mmである。0.2mm以上で良好な板厚精度が得ることができ、また0.5mm以下で平均粒子径を有する重合体を安定して製造することができる。また、見掛け密度が0.70g/ml〜0.78g/mlの範囲内であると良好な板厚精度を得ることができる。
次ぎに本発明の重要な構成要件である円柱状または扁平状メタクリル樹脂重合体について説明する。円柱状メタクリル樹脂重合体は上記懸濁重合で得られた球状メタクリル樹脂重合体をベント付押出機に供給し、温度220〜260℃、ベント真空圧力1.3〜8kPaで押出しダイスよりストランド状に押出し、水冷し、ストランドカッターで切断し得られる。他には公知の溶液重合法、塊状重合法により得られる溶融状態のメタクリル樹脂重合体を押出しダイスよりストランド状に押出し、水冷し、ストランドカッターで切断し得られる。扁平状メタクリル樹脂重合体は上記円柱状メタクリル樹脂重合体製造と同様にしてベント付押出機より押出され、ついでアンダーウォーターカッターでカッティングされ得られる。
溶液重合法、塊状重合法の例としては以下の方法が挙げられる。溶液重合法における溶媒は、蒸留塔ボトム及び蒸留塔内部でメタクリル酸メチル単量体及びメタクリル酸メチル単量体及びメタクリル酸メチルと共重合可能な単量体より高い沸点を有しているのが好ましい。、具体的には、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン等の芳香族化合物、オクタン、デカン等の脂肪族化合物、デカリン等の脂環族化合物、酢酸ブチル、酢酸ペンチル等のエステル類、1,1,2,2−テトラクロロエタン等のハロゲン化合物が挙げられる。特にアルキルベンゼン、さらにその中でトルエン、キシレン、エチルベンゼンが適度な沸点を有し、脱気にも負荷が少なく、又重合に悪影響を及ぼすこともなく好ましい。溶媒量は溶媒の沸点によっても異なるが、重合時の全混合物の重量に基づき30重量%以下、好ましくは20重量%以下である。重合時に溶媒を使用しなければ、塊状重合となる。
溶液重合法、塊状重合法で使用される重合開始剤は、重合温度で活性に分解しラジカルを発生するもので、例えば、ジ−t−ブチルパーオキシド、ジクミルパーオキシド、メチルエチルケトンパーオキシド、ジ−t−ブチルパーフタレート、ジ−t−ブチルパーベンゾエート、t−ブチルパーアセテート、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン、ジ−t−アミルパーオキシド、ベンゾイルパーオキシド、クメンハイドロパーオキシド、ラウリルパーオキシド、アゾビスイソブタノールジアセテート、1,1’−アゾビスシクロヘキサンカルボニトリル、2−フェニルアゾ2,4−ジメチル−4−メトキシバレロニトリル、2−シアノ−2,2−プロピルアゾホルムアシド、2,2’−アゾビスイソブチロニトリル等を挙げることが出来る。これら重合開始剤の使用量は、全反応混合物の重量に基づき0.001〜0.03重量%が好ましい。
更に、この際に使用する分子量調節剤は、主としてメルカプタン類が使用される。メルカプタン類としては、例えば、n−ブチルメルカプタン、イソブチルメルカプタン、n−オクチルメルカプタン、n−ドデシルメルカプタン、sec−ドデシルメルカプタン、t−ブチルメルカプタン、フェニルメルカプタン、チオクレゾール、チオグリコール酸とそのエステル及びエチレンチオグリコール等が挙げることが出来る。これら分子量調整剤の使用量は、全反応混合物の重量に基づき0.01〜0.5重量%が好ましい。
重合反応機はダブルヘリカルリボン、ピッチドバドル型などの攪拌翼で均一に攪拌されている装置を使用する。重合は単量体又は単量体溶液を重合反応機に連続して供給し、単量体の重合転化率が40〜70%の範囲内で実質的に一定になる様に120〜160℃の温度で重合反応を実施する。重合転化率が40%以上で、揮発成分による脱揮工程の負荷が小さくなり、例えば予備加熱器の伝熱面積の制約から脱揮不十分になることもなくなり好ましい。一方、70%以下では、例えば、重合反応機から予備加熱器間での配管圧力損失が少なくなって、重合液の輸送が容易となり好ましい。重合温度が120℃以上では重合速度が実用的で、また160℃以下では重合速度が適当で、重合転化率の調整が容易である。また、耐熱分解性が低下することもなく好ましい。
この様な重合反応により得られた重合液は、脱揮して重合物を取出す。脱揮装置としては、多段ベント付き押出機、脱揮タンクなどを使用する。好ましくは、重合液を予備加熱器などで200〜290℃の温度に過熱し、上部に十分な空間を有し、且つ200〜250℃、2.7〜13kPaの温度、真空下の脱揮タンクにフィードして重合物を取り出す。
この重合物は押出機に連続的に溶融状態で移送され、押出機を通してダイスよりストランド状に押出され、水冷し、ストランドカッターで切断され、円柱状重合体が得られる。扁平状メタクリル樹脂重合体は上記円柱状メタクリル樹脂重合体製造と同様にして押出機より押出され、ついでアンダーウォーターカッターでカッティングされ得られる。
The average particle diameter of the spherical methacrylic resin polymer, which is an important constituent of the present invention, is 0.2 to 0.5 mm, preferably 0.25 to 0.39 mm. Good plate thickness accuracy can be obtained at 0.2 mm or more, and a polymer having an average particle diameter of 0.5 mm or less can be stably produced. Moreover, when the apparent density is in the range of 0.70 g / ml to 0.78 g / ml, good plate thickness accuracy can be obtained.
Next, a columnar or flat methacrylic resin polymer, which is an important component of the present invention, will be described. Cylindrical methacrylic resin polymer is a spherical methacrylic resin polymer obtained by the above suspension polymerization, supplied to an extruder with a vent, extruded at a temperature of 220 to 260 ° C. and a vent vacuum pressure of 1.3 to 8 kPa in a strand form from a die. It can be extruded, water cooled and cut with a strand cutter. Alternatively, a melted methacrylic resin polymer obtained by a known solution polymerization method or bulk polymerization method is extruded into a strand shape from an extrusion die, cooled with water, and cut with a strand cutter. The flat methacrylic resin polymer can be extruded from an extruder with a vent in the same manner as in the production of the cylindrical methacrylic resin polymer, and then cut with an underwater cutter.
Examples of the solution polymerization method and the bulk polymerization method include the following methods. The solvent in the solution polymerization method has a higher boiling point than the methyl methacrylate monomer, the methyl methacrylate monomer, and the monomer copolymerizable with methyl methacrylate at the bottom of the distillation column and inside the distillation column. preferable. Specifically, aromatic compounds such as toluene, xylene, ethylbenzene and diethylbenzene, aliphatic compounds such as octane and decane, alicyclic compounds such as decalin, esters such as butyl acetate and pentyl acetate, 1,1, And halogen compounds such as 2,2-tetrachloroethane. In particular, alkylbenzene, and among them, toluene, xylene, and ethylbenzene, have an appropriate boiling point, and are preferable because they have less burden on deaeration and do not adversely affect polymerization. The amount of the solvent varies depending on the boiling point of the solvent, but is 30% by weight or less, preferably 20% by weight or less based on the weight of the entire mixture at the time of polymerization. If no solvent is used during polymerization, bulk polymerization occurs.
The polymerization initiator used in the solution polymerization method and bulk polymerization method is one that decomposes actively at the polymerization temperature to generate radicals. For example, di-t-butyl peroxide, dicumyl peroxide, methyl ethyl ketone peroxide, -T-butyl perphthalate, di-t-butyl perbenzoate, t-butyl peracetate, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, 1,1-bis (t-butyl Peroxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy) cyclohexane, di-t-amyl peroxide, benzoyl peroxide, cumene hydroperoxide, lauryl peroxide, azobis Isobutanol diacetate, 1,1′-azobiscyclohexanecarbonitrile, 2-phenylazo 2 , 4-dimethyl-4-methoxyvaleronitrile, 2-cyano-2,2-propylazoformaside, 2,2′-azobisisobutyronitrile and the like. The amount of these polymerization initiators used is preferably 0.001 to 0.03% by weight based on the weight of the total reaction mixture.
Further, mercaptans are mainly used as the molecular weight regulator used in this case. Examples of mercaptans include n-butyl mercaptan, isobutyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, sec-dodecyl mercaptan, t-butyl mercaptan, phenyl mercaptan, thiocresol, thioglycolic acid and its ester, and ethylenethio. A glycol etc. can be mentioned. The amount of these molecular weight regulators used is preferably 0.01 to 0.5% by weight based on the weight of the total reaction mixture.
The polymerization reactor uses a device that is uniformly stirred by a stirring blade such as a double helical ribbon or pitched paddle type. In the polymerization, the monomer or monomer solution is continuously supplied to the polymerization reactor, and the polymerization conversion rate of the monomer is 120 to 160 ° C. so that it is substantially constant within the range of 40 to 70%. The polymerization reaction is carried out at temperature. The polymerization conversion rate is preferably 40% or more, and the load of the devolatilization process due to the volatile components is reduced. On the other hand, if it is 70% or less, for example, the piping pressure loss between the polymerization reactor and the preheater is reduced, and the transport of the polymerization solution is facilitated. When the polymerization temperature is 120 ° C. or higher, the polymerization rate is practical. When the polymerization temperature is 160 ° C. or lower, the polymerization rate is appropriate, and the polymerization conversion rate can be easily adjusted. Moreover, it is preferable because the thermal decomposition resistance does not decrease.
The polymerization solution obtained by such a polymerization reaction is devolatilized and the polymer is taken out. As the devolatilizer, an extruder with a multistage vent, a devolatilization tank, or the like is used. Preferably, the polymerization liquid is superheated to a temperature of 200 to 290 ° C. with a preheater or the like, has a sufficient space at the top, and has a temperature of 200 to 250 ° C., 2.7 to 13 kPa, and a devolatilization tank under vacuum. And the polymerized product is taken out.
This polymer is continuously transferred to an extruder in a molten state, extruded through a die from a die into a strand, cooled with water, and cut with a strand cutter to obtain a cylindrical polymer. The flat methacrylic resin polymer can be extruded from an extruder in the same manner as in the production of the cylindrical methacrylic resin polymer, and then cut with an underwater cutter.

さらに必要に応じて、カッティング前に、押出機のサイド部よりフィードポンプを用いて、離型剤、着色剤、紫外線吸収剤、酸化防止剤、光拡散剤、可塑剤等を添加してもよい。   Furthermore, if necessary, a mold release agent, a colorant, an ultraviolet absorber, an antioxidant, a light diffusing agent, a plasticizer, etc. may be added before cutting using a feed pump from the side of the extruder. .

本発明の重要構成要件である円柱状ポリマーの形状は、断面の長径(a1)、短径(b1)及び長さ(L)で規定される。長径(a1)、短径(b1)は共に2.000〜4.000mmであり、(b1)/(a1)=0.66〜1.00であり、長さ(L)は2.000〜5.000mmである。該範囲内にすることにより良好な板厚精度を得ることができ好ましい。   The shape of the columnar polymer, which is an important component of the present invention, is defined by the major axis (a1), minor axis (b1), and length (L) of the cross section. The major axis (a1) and the minor axis (b1) are both 2.00 to 4.000 mm, (b1) / (a1) = 0.66 to 1.00, and the length (L) is 2.00 to 400. 5.000 mm. It is preferable that the thickness is within this range because good thickness accuracy can be obtained.

本発明の重要構成要件である扁平状ポリマーの形状は長径(a2)、短径(b2)及び厚さ(T)で規定される。長径(a2)、短径(b2)は共に2.000〜4.000mmであり、(b2)/(a2)=0.66〜1.00であり、厚さ(T)は1.000〜3.000mmである。該範囲内にすることにより良好な板厚精度を得ることができ好ましい。   The shape of the flat polymer, which is an important component of the present invention, is defined by the major axis (a2), minor axis (b2), and thickness (T). The major axis (a2) and minor axis (b2) are both 2.00 to 4.000 mm, (b2) / (a2) = 0.66 to 1.00, and the thickness (T) is 1.000. 3.000 mm. It is preferable that the thickness is within this range because good thickness accuracy can be obtained.

また、円柱状または扁平状メタクリル樹脂重合体の見掛け密度が0.63g/ml〜0.70g/mlの範囲内であると良好な板厚精度を得ることができる。   Further, good plate thickness accuracy can be obtained when the apparent density of the columnar or flat methacrylic resin polymer is in the range of 0.63 g / ml to 0.70 g / ml.

本発明の重要構成要件である不定形状メタクリル樹脂重合体は、前記懸濁重合、溶液重合、塊状重合から得られたメタクリル樹脂重合体を溶融押出法等により、板状に成型した材料を機械的に粉砕して得られる。粉砕機としては衝撃式粉砕機、例えばインパクトクラッシャ、ハンマクラッシャやせん断式粉砕機、例えばカッターミル等が利用できる。特にカッターミルはスクリーンの孔の大きさによって粉砕品の整粒ができ好ましい。スクリーン径は通常8〜12mmφ前後のものが用いられ、このスクリーンを通過した不定形状メタクリル樹脂重合体が本発明に供される。   The amorphous methacrylic resin polymer, which is an important component of the present invention, is obtained by mechanically molding a material obtained by molding the methacrylic resin polymer obtained from the suspension polymerization, solution polymerization, and bulk polymerization into a plate shape by a melt extrusion method or the like. It is obtained by crushing. As the pulverizer, an impact pulverizer such as an impact crusher, a hammer crusher or a shear pulverizer such as a cutter mill can be used. In particular, the cutter mill is preferable because the size of the pulverized product can be adjusted depending on the size of the holes in the screen. A screen having a diameter of about 8 to 12 mmφ is usually used, and an irregular-shaped methacrylic resin polymer that has passed through this screen is used in the present invention.

該不定形状メタクリル樹脂重合体の見掛け密度が0.55g/ml〜0.63g/mlの範囲内であると良好な板厚精度を得ることができる。   When the apparent density of the amorphous methacrylic resin polymer is in the range of 0.55 g / ml to 0.63 g / ml, good plate thickness accuracy can be obtained.

本発明では、該定形状メタクリル樹脂重合体と該不定形状メタクリル樹脂重合体を混合してメタクリル樹脂押出用原料として用いる。該定形状メタクリル樹脂重合体と該不定形状メタクリル樹脂重合体混合割合は混合物の見掛け密度が0.80g/ml以上となるように混合されることが重要である。混合物の見掛け密度が0.80g/ml以上であると押出し安定性に優れ、良好な板厚精度の押出板を得ることができる。   In the present invention, the regular-shaped methacrylic resin polymer and the irregular-shaped methacrylic resin polymer are mixed and used as a raw material for methacrylic resin extrusion. It is important that the mixing ratio of the regular-shaped methacrylic resin polymer and the irregular-shaped methacrylic resin polymer is mixed so that the apparent density of the mixture is 0.80 g / ml or more. When the apparent density of the mixture is 0.80 g / ml or more, the extrusion stability is excellent, and an extruded plate with good thickness accuracy can be obtained.

各重合体の好ましい混合割合は重合体の大きさによっても違ってくるが、本願実施例の重合体粒子径の場合、定形状メタクリル樹脂重合体100重量部に対して、不定形メタクリル樹脂重合体は5〜380重量部であり、好ましくは10〜330重量部であり、更に好ましくは10〜230重量部である。また、定形状メタクリル樹脂重合体中の球状、円柱状及び/または扁平状のメタクリル樹脂重合体の割合は球状メタクリル樹脂重合体100重量部に対して円柱状及び/または扁平状メタクリル樹脂重合体0〜400重量部であり、0〜250重量部が好ましく、0〜150重量部が更に好ましい。   The preferred mixing ratio of each polymer varies depending on the size of the polymer, but in the case of the polymer particle size of the examples of the present application, the amorphous methacrylic resin polymer with respect to 100 parts by weight of the regular methacrylic resin polymer. Is 5 to 380 parts by weight, preferably 10 to 330 parts by weight, and more preferably 10 to 230 parts by weight. Further, the ratio of the spherical, cylindrical and / or flat methacrylic resin polymer in the regular-shaped methacrylic resin polymer is such that the cylindrical and / or flat methacrylic resin polymer 0 with respect to 100 parts by weight of the spherical methacrylic resin polymer. -400 parts by weight, preferably 0-250 parts by weight, more preferably 0-150 parts by weight.

本発明の押出板は通常の溶融押出法により作ることが出来る。例えば、本発明の定形状メタクリル樹脂重合体と不定形状メタクリル樹脂重合体混合物を220〜300℃で溶融後、Tダイを通して板状に押出し、ポリシングロールで表面を仕上げ冷却後、切断することにより板状体を得ることが出来る。   The extruded plate of the present invention can be produced by a usual melt extrusion method. For example, the fixed shape methacrylic resin polymer and the amorphous methacrylic resin polymer mixture of the present invention are melted at 220 to 300 ° C., extruded into a plate shape through a T-die, the surface is finished with a polishing roll, cooled, and then cut. A state body can be obtained.

板厚精度は、幅1000mmの板において50mm間隔で測定した板厚の平均値と測定点の最大値および最小値との差である。板厚が2.0〜15.0mmの場合は板厚精度が平均板厚の±1.0%以内、好ましくは±0.5%以内である。   The plate thickness accuracy is the difference between the average value of the plate thickness measured at intervals of 50 mm in a plate having a width of 1000 mm and the maximum and minimum values of the measurement points. When the plate thickness is 2.0 to 15.0 mm, the plate thickness accuracy is within ± 1.0% of the average plate thickness, preferably within ± 0.5%.

さらに板厚が3.5〜8.5mmの場合は板厚精度が平均板厚の±0.5%以内である。   Further, when the plate thickness is 3.5 to 8.5 mm, the plate thickness accuracy is within ± 0.5% of the average plate thickness.

本発明のメタクリル樹脂押出板は、光源ランプから入光した光の発光効率を最大限に向上させると共に、輝度斑を低減する効果を有する。   The methacrylic resin extruded plate of the present invention has the effect of maximizing the luminous efficiency of light incident from the light source lamp and reducing luminance spots.

本発明を実施例に基づいて説明する。
(球状メタクリル樹脂重合体平均粒径の測定方法)
電磁振とう式篩分測定器(三田村理研工業株式会社製 電磁振動式AS200 DISIT)を用いた。試料100gを呼び寸法500−425−355−300−250−150−150アンダーの7段からなる篩の最上段篩上に乗せ、シーブシェーカーにて10分間振とう後、各篩上の球状メタクリル樹脂重合体を量り、累積残留分布曲線を書き、メジアン径を求め、平均粒径とした。平均粒径の小さな重合体用には呼び寸法300−250−180−125−100−63−63アンダーの7段からなる篩を用いて測定した。
(円柱状メタクリル樹脂重合体の長径、短径、長さの測定方法)
外側マイクロメータ(株式会社ミツトヨ製 MDC−25M))を用い、試料200粒の長径、短径、長さを0.001mmまで測定し、その平均値を求めた。
(扁平状メタクリル樹脂重合体の長径、短径、長さの測定方法)
外側マイクロメータ(株式会社ミツトヨ製 MDC−25M))を用い、試料200粒の長径、短径、厚さを0.001mmまで測定し、その平均値を求めた。
(見掛け密度)
JIS K 7365に準じて測定した。
(メタクリル樹脂押出板の厚み測定)
図1に示した幅1000mmの板において50mm間隔で19点外側マイクロメータ(株式会社ミツトヨ製 MDC−25M))を用い0.001mmまで測定した。各測定点の平均値を求め、該平均値と各測定点の最大値、最小値とから板厚精度を算出した。最大厚みの板厚精度を「板厚精度−A」、最小厚みの板厚精度を「板厚精度−B」とした。
板厚精度−A(%)=(最大値−平均値)/平均値×100・・・(1)
板厚精度−B(%)=(最小値−平均値)/平均値×100・・・(2)
The present invention will be described based on examples.
(Method for measuring the average particle diameter of spherical methacrylic resin polymer)
An electromagnetic shaking sieving meter (electromagnetic vibration AS200 DISIT manufactured by Mitamura Riken Kogyo Co., Ltd.) was used. Place 100 g of sample on top of sieve of 7 stages with nominal size 500-425-355-300-250-150-150, shake for 10 minutes with sieve shaker, and then spherical methacrylic resin on each sieve The polymer was weighed, a cumulative residual distribution curve was written, the median diameter was determined, and the average particle diameter was obtained. For a polymer having a small average particle size, the measurement was performed using a seven-stage sieve having a nominal size of 300-250-180-125-100-63-63.
(Measurement method of major axis, minor axis and length of cylindrical methacrylic resin polymer)
Using an outer micrometer (MDC-25M manufactured by Mitutoyo Corporation), the major axis, minor axis, and length of 200 samples were measured to 0.001 mm, and the average value was obtained.
(Measurement method of major axis, minor axis, length of flat methacrylic resin polymer)
Using an outer micrometer (MDC-25M manufactured by Mitutoyo Corporation), the major axis, minor axis, and thickness of 200 samples were measured to 0.001 mm, and the average value was obtained.
(Apparent density)
It measured according to JISK7365.
(Measurement of thickness of methacrylic resin extrusion plate)
Measurement was performed up to 0.001 mm using a 19-point outside micrometer (MDC-25M manufactured by Mitutoyo Corporation) at intervals of 50 mm on the plate having a width of 1000 mm shown in FIG. The average value of each measurement point was obtained, and the plate thickness accuracy was calculated from the average value and the maximum value and minimum value of each measurement point. The plate thickness accuracy of the maximum thickness was “plate thickness accuracy-A”, and the plate thickness accuracy of the minimum thickness was “plate thickness accuracy-B”.
Sheet thickness accuracy-A (%) = (maximum value-average value) / average value × 100 (1)
Sheet thickness accuracy-B (%) = (minimum value-average value) / average value x 100 (2)

(導光板の輝度、輝度斑の測定方法)
図2に示した光源装置に準じ、光源として3mmφの冷陰極管(ハリソン電気製)を導光板の長さ319mm側の両端面に設置し、光反射シートとしてレイホワイト75(きもと製)を用い、導光板の上部に光拡散シートD121(ツジデン製)を2枚載せた。冷陰極管には直流電圧安定装置より12Vの電圧をかけ20分間点灯後に発光面から1m離れた位置に設置した輝度計(CA−1000:ミノルタ製)により、発光面全体を縦19×横19=361分割した測定点の各々の輝度を測定した。次いで得られた361点の測定値から平均輝度を算出した。また、得られた361点の測定値から下記式(3)により輝度斑の評価指標として均斉度を算出した。
輝度均斉度(%)=最小輝度値/最大輝度値×100・・・(3)
(Measurement method of brightness of light guide plate and brightness spots)
In accordance with the light source device shown in FIG. 2, a cold cathode tube of 3 mmφ (manufactured by Harrison Electric Co., Ltd.) is installed as a light source on both end faces on the side of the light guide plate with a length of 319 mm, and Ray White 75 (manufactured by Kimoto) is used as the light reflecting sheet. Two light diffusion sheets D121 (manufactured by Tsujiden) were placed on the top of the light guide plate. The cold cathode tube was charged with a voltage of 12 V from a DC voltage stabilizer and turned on for 20 minutes, and then a luminance meter (CA-1000: manufactured by Minolta) installed at a position 1 m away from the light emitting surface, the entire light emitting surface was 19 × 19 = The luminance of each of the measurement points divided by 361 was measured. Next, the average luminance was calculated from the obtained 361 measured values. Further, the uniformity was calculated as an evaluation index of luminance spots from the obtained 361 measured values by the following formula (3).
Luminance uniformity (%) = minimum luminance value / maximum luminance value × 100 (3)

(球状メタクリル樹脂重合体(重合体−A)の製造)
メタクリル酸メチル95.0重量部、アクリル酸メチル5.0重量部、ラウロイルパーオキサイド0.15重量部、n−オクチルメルカプタン0.25重量部、脱イオン水130重量部、水酸化アルミニウム0.65重量部を200リットルの重合機に投入し、攪拌混合した。反応温度80℃で150分懸濁重合し、続いて100℃で60分熟成し重合反応を実質終了した。次ぎに重合反応液を50℃まで冷却し、希硫酸を投入し、洗浄脱水乾燥処理し、メルトフローレイト(ISO−1139−Cond13)1.0g/10分の球状メタクリル樹脂重合体(重合体−A)を得た。重合体−Aの平均粒径は0.39mm、見掛け密度は0.76g/mlであった。
(円柱状メタクリル樹脂重合体(重合体−B)の製造)
メタクリル酸メチル79.9重量%、アクリル酸メチル5.1重量%、及びエチルベンゼン15重量%からなる単量体混合物に1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン150ppm及びn−オクチルメルカプタン300ppm
添加し、完全混合型重合反応機で重合温度155℃、滞留時間2.0時間、重合転化率53%まで連続的に重合する。重合液を連続的に重合反応機から取出し、次いで加熱板で260℃に加熱し、加熱版の間隔を通して流延落下させた。脱揮タンク、2.7kPa、230℃に維持し、重合体と未反応単量体及び溶剤とを分離した。重合体は押出機に連続的に溶融状態で移送し、押出機を通してダイスよりストランド状に押出され、水冷(水温度60℃のバス)し、ストランドカッターで切断され、メルトフローレイト(ISO 1139 Cond13)1.0g/10分の円柱状メタクリル樹脂重合体(重合体−B)を得た。重合体−Bの長径(a1)、短径(b1)、長さ(L)は、それぞれ(a1)2.773mm、(b1)2.689mm、(L)3.105mm、(b1)/(a1)0.97、見掛け密度は0.67g/mlであった。
(扁平状メタクリル樹脂重合体(重合体−C)の製造)
重合体―Bの製造工程でダイスよりストランド状に押出し、水冷後カッターで切断する代わりに、ダイスより水中に押出し切断するアンダーウオーターカット方式で切断し、メルトフローレイト(ISO−1139−Cond13)1.0g/10分の扁平状メタクリル樹脂重合体(重合体−C)を得た。重合体−Dの長径(a2)、短径(b2)、厚さ(T)は、それぞれ(a2)3.178mm、(b2)3.089mm、(T)1.505mm、(b2)/(a2)0.97、見掛け密度は0.68g/mlであった。
(不定形状メタクリル樹脂重合体(重合体−D)の製造)
重合体−Aを用いシート用Tダイ(ダイ温度:250℃)を有する150mmφ単軸押出機(シリンダ温度:フィード側より200℃−210℃−210℃−260℃−260℃−240℃))と温調された3本ポリシングロール(ロール温度:80℃)と引取り装置からなる押出シート成形機を用い、押出量600Kg/hrで押出し、幅1000mm、厚み6mmのメタクリル樹脂押出板を得た。次ぎにこの押出板を株式会社ホーライ製粉砕機(U10−30120XLFX型)(スクリーン:10mmφ)を用いて粉砕し、不定形状メタクリル樹脂重合体(重合体−D)を得た。重合体−Dの見掛け密度は0.60g/mlであった。
(Production of spherical methacrylic resin polymer (polymer-A))
95.0 parts by weight of methyl methacrylate, 5.0 parts by weight of methyl acrylate, 0.15 parts by weight of lauroyl peroxide, 0.25 parts by weight of n-octyl mercaptan, 130 parts by weight of deionized water, 0.65 of aluminum hydroxide The parts by weight were put into a 200 liter polymerization machine and mixed with stirring. Suspension polymerization was carried out at a reaction temperature of 80 ° C. for 150 minutes, followed by aging at 100 ° C. for 60 minutes to substantially complete the polymerization reaction. Next, the polymerization reaction liquid is cooled to 50 ° C., diluted sulfuric acid is added, washed and dehydrated and dried, and a spherical methacrylic resin polymer (polymer-) of 1.0 g / 10 min of melt flow rate (ISO-1139-Cond 13) is obtained. A) was obtained. The average particle diameter of the polymer-A was 0.39 mm, and the apparent density was 0.76 g / ml.
(Production of cylindrical methacrylic resin polymer (polymer-B))
1,1-bis (t-butylperoxy) -3,3,5-trimethyl was added to a monomer mixture consisting of 79.9% by weight methyl methacrylate, 5.1% by weight methyl acrylate, and 15% by weight ethylbenzene. 150 ppm of cyclohexane and 300 ppm of n-octyl mercaptan
In addition, polymerization is continuously carried out in a completely mixed polymerization reactor until the polymerization temperature is 155 ° C., the residence time is 2.0 hours, and the polymerization conversion is 53%. The polymerization liquid was continuously taken out from the polymerization reactor, and then heated to 260 ° C. with a heating plate, and cast and dropped through the space between the heating plates. The devolatilization tank was maintained at 2.7 kPa and 230 ° C., and the polymer, unreacted monomer and solvent were separated. The polymer is continuously transferred to the extruder in a molten state, extruded through the extruder into a strand from a die, water cooled (water temperature 60 ° C. bath), cut with a strand cutter, and melt flow rate (ISO 1139 Cond 13). ) A cylindrical methacrylic resin polymer (polymer-B) of 1.0 g / 10 min was obtained. The major axis (a1), minor axis (b1), and length (L) of Polymer-B are (a1) 2.773 mm, (b1) 2.689 mm, (L) 3.105 mm, (b1) / ( a1) 0.97 and the apparent density was 0.67 g / ml.
(Manufacture of flat methacrylic resin polymer (Polymer-C))
Instead of extruding into a strand from a die in the production process of polymer-B, and then cooling with water and then cutting with a cutter, it is cut by an under water cut method in which it is extruded and cut into water from a die, and melt flow rate (ISO-1139-Cond13) 1 A flat methacrylic resin polymer (Polymer-C) of 0.0 g / 10 min was obtained. The major axis (a2), minor axis (b2), and thickness (T) of Polymer-D are (a2) 3.178 mm, (b2) 3.089 mm, (T) 1.505 mm, (b2) / ( a2) 0.97, the apparent density was 0.68 g / ml.
(Production of amorphous methacrylic resin polymer (Polymer-D))
150 mmφ single screw extruder having a T-die for sheet (die temperature: 250 ° C.) using polymer-A (cylinder temperature: 200 ° C.-210 ° C.-210 ° C.-260 ° C.-260 ° C.-240 ° C. from the feed side)) And an extruded sheet molding machine comprising a temperature-controlled three polishing roll (roll temperature: 80 ° C.) and a take-up device, extruded at an extrusion rate of 600 kg / hr to obtain a methacrylic resin extruded plate having a width of 1000 mm and a thickness of 6 mm. . Next, this extruded plate was pulverized using a pulverizer (U10-30120XLFX type) (screen: 10 mmφ) manufactured by Horai Co., Ltd. to obtain an amorphous methacrylic resin polymer (Polymer-D). The apparent density of the polymer-D was 0.60 g / ml.

重合体−A100重量部と重合体−D50重量部との混合物(見掛け密度0.83g/ml)をシート用Tダイ(ダイ温度:250℃)を有する150mmφ単軸押出機(シリンダ温度:フィード側より200℃−210℃−210℃−260℃−260℃−240℃))と温調された3本ポリシングロール(ロール温度:80℃)と引取り装置からなる押出シート成形機を用い、押出量600Kg/hrで押出し、幅1000mm、厚み6mmのメタクリル樹脂押出板(押出板−A)を得た。図1で示した厚み測定点について測定し、板厚精度を算出した結果を表1に示す。
次いで得られた押出板から幅241mm、長さ319mmのサイズに丸鋸を用いて切り出し、切り出した板のカット面を精密研磨機(PLA−BEAUTY:メガロテクニカ(株)製)を用いて研磨し、更にバフ研磨を施し鏡面状に仕上げる。次いで、15インチサイズのドットグラデーションを施した印刷スクリーンを用い、インクにマットメジウムSR931(ミノグループ製)を使用して、導光板の片面にスクリーン印刷行い導光板を得た。輝度、輝度斑の測定結果を表1に示す。
A 150 mmφ single screw extruder (cylinder temperature: feed side) having a T-die for a sheet (die temperature: 250 ° C.) of a mixture of polymer-A 100 parts by weight and polymer-D 50 parts by weight (apparent density 0.83 g / ml) 200 ° C.−210 ° C.−210 ° C.−260 ° C.−260 ° C.−240 ° C.)) and a temperature-controlled three polishing roll (roll temperature: 80 ° C.) and an extrusion sheet molding machine comprising a take-up device. Extrusion was performed at an amount of 600 kg / hr to obtain a methacrylic resin extruded plate (extruded plate-A) having a width of 1000 mm and a thickness of 6 mm. Table 1 shows the result of measuring the thickness measurement points shown in FIG.
Next, the obtained extruded plate was cut into a size of 241 mm in width and 319 mm in length using a circular saw, and the cut surface of the cut out plate was polished using a precision polishing machine (PLA-BEAUTY: manufactured by Megaro Technica Co., Ltd.). Further, buffing is performed to finish the mirror surface. Next, using a printing screen with a 15 inch size dot gradation and using Matte Medium SR931 (manufactured by Mino Group) as ink, screen printing was performed on one side of the light guide plate to obtain a light guide plate. Table 1 shows the measurement results of luminance and luminance spots.

実施例1で用いた重合体−Dの配合量を100重量部とした混合物(見掛け密度0.88g/ml)にする以外、実施例1と同様にして押出板−Bを得た。実施例1と同様に厚み測定、輝度、輝度斑の測定を行い、結果を表−1に示す。
<比較例1>
実施例1で用いた重合体−Dの配合量を400重量部とした混合物(見掛け密度0.75g/ml)にする以外、実施例1と同様にして押出板−Cを得た。実施例1と同様に厚み測定、輝度、輝度斑の測定を行い、結果を表−1に示す。
<比較例2,3>
実施例1で用いた重合体−A(見掛け密度0.76g/ml)及び重合体−D(見掛け密度0.60g/ml)を実施例1と同様にしてそれぞれ単独で押出し、押出板−D及び押出板−Eを得た。実施例1と同様に厚み測定、輝度、輝度斑の測定を行い、結果を表−1に示す。
Extruded plate-B was obtained in the same manner as in Example 1 except that the blend amount of Polymer-D used in Example 1 was 100 parts by weight (apparent density 0.88 g / ml). The thickness measurement, brightness, and brightness spots were measured in the same manner as in Example 1, and the results are shown in Table-1.
<Comparative Example 1>
Extruded plate-C was obtained in the same manner as in Example 1 except that the blend amount of Polymer-D used in Example 1 was 400 parts by weight (apparent density 0.75 g / ml). The thickness measurement, brightness, and brightness spots were measured in the same manner as in Example 1, and the results are shown in Table-1.
<Comparative Examples 2 and 3>
Polymer-A (apparent density 0.76 g / ml) and polymer-D (apparent density 0.60 g / ml) used in Example 1 were each extruded in the same manner as in Example 1, and extruded plate-D. And extruded plate-E was obtained. The thickness measurement, brightness, and brightness spots were measured in the same manner as in Example 1, and the results are shown in Table-1.

実施例1で用いた重合体−A100重量部の代わりに重合体−A50重量部、重合体−B50重量部を用いた混合物(見掛け密度0.88g/ml)にする以外、実施例1と同様にして押出板−Fを得た。実施例1と同様に厚み測定、輝度、輝度斑の測定を行い、結果を表−1に示す。   The same as Example 1 except that the polymer (A 50 parts by weight) and the polymer (B 50 parts by weight) were used instead of the polymer (A 100 parts by weight) used in Example 1 (apparent density 0.88 g / ml). Extruded plate-F was thus obtained. The thickness measurement, brightness, and brightness spots were measured in the same manner as in Example 1, and the results are shown in Table-1.

実施例3で用いた重合体−Bの代わりに重合体−Cを用いた混合物(見掛け密度0.87g/ml)にする以外、実施例1と同様にして押出板−Gを得た。実施例1と同様に厚み測定、輝度、輝度斑の測定を行い、結果を表−1に示す。   Extruded plate-G was obtained in the same manner as in Example 1 except that the mixture (polymer apparently 0.87 g / ml) was used instead of polymer-B used in Example 3. The thickness measurement, brightness, and brightness spots were measured in the same manner as in Example 1, and the results are shown in Table-1.

実施例1の押出原料を用いて板厚8mmのメタクリル樹脂押出板(押出板−H)を成型し、実施例1と同様に厚み測定、輝度、輝度斑の測定を行い、結果を表−1に示す。
(結果の概要)
実施例1〜5の輝度、輝度斑共に比較例1〜3に比べ優れた性能を発現した。
A methacrylic resin extruded plate (extruded plate-H) having a thickness of 8 mm was molded using the extruded raw material of Example 1, and the thickness measurement, luminance, and luminance unevenness were measured in the same manner as in Example 1. Table 1 shows the results. Shown in
(Summary of results)
Both the brightness | luminance of Example 1-5 and the brightness spot expressed the performance outstanding compared with Comparative Examples 1-3.

Figure 2006046481
Figure 2006046481

本発明の導光板は、パーソナルコンピュータやワードプロセッサなどのオフィスオートメーション機器、画像信号を表示する各種モニター、例えばパネルモニター、テレビモニター等に用いられる表示装置及び室内外空間の照明装置に使用される表示装置や看板等に好適に利用できる。   The light guide plate of the present invention is a display device used for office automation equipment such as personal computers and word processors, various monitors for displaying image signals, for example, panel monitors, television monitors and the like, and lighting devices for indoor and outdoor spaces. It can be suitably used for signs and signs.

本発明における厚み測定点を示したものである。The thickness measurement point in this invention is shown. 本発明の導光板を用いたエッジライト方式液晶光源装置での輝度評価方法の一例を示したものである。An example of the luminance evaluation method in the edge light type liquid crystal light source device using the light guide plate of the present invention is shown.

符号の説明Explanation of symbols

A:光源(冷陰極管)
B:ランプハウス
C:導光板
D:光反射シート
E:光拡散シート
A: Light source (cold cathode tube)
B: Lamp house C: Light guide plate D: Light reflection sheet E: Light diffusion sheet

Claims (3)

見掛け密度0.63g/ml〜0.78g/mlの定形状メタクリル樹脂重合体と見掛け密度0.55g/ml〜0.63g/mlの不定形状メタクリル樹脂重合体とを見掛け密度が0.80g/ml以上となるように混合し、得られた混合物を押出し成形して、板厚が2.0〜15.0mmであって、幅方向の板厚精度が平均板厚の±1.0%以内である導光板用メタクリル樹脂押出板を製造する方法。   A regular methacrylic resin polymer having an apparent density of 0.63 g / ml to 0.78 g / ml and an amorphous methacrylic resin polymer having an apparent density of 0.55 g / ml to 0.63 g / ml have an apparent density of 0.80 g / ml. Mix so as to be more than ml, and extrude the resulting mixture, the plate thickness is 2.0-15.0 mm, the plate thickness accuracy in the width direction is within ± 1.0% of the average plate thickness A method for producing a methacrylic resin extruded plate for a light guide plate. 該板厚が3.5〜8.5mmであり、且つ幅方向の板厚精度が平均板厚の±0.5%以内であることを特徴とする、請求項1記載の導光板用メタクリル樹脂押出板の製造方法。   The methacrylic resin for a light guide plate according to claim 1, wherein the plate thickness is 3.5 to 8.5 mm, and the plate thickness accuracy in the width direction is within ± 0.5% of the average plate thickness. Extruded plate manufacturing method. 請求項1または請求項2記載の方法で製造した導光板用メタクリル樹脂押出板。
A methacrylic resin extruded plate for a light guide plate produced by the method according to claim 1 or 2.
JP2006543090A 2004-10-28 2005-10-21 Method for producing methacrylic resin extrusion plate for optics Active JP4717008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006543090A JP4717008B2 (en) 2004-10-28 2005-10-21 Method for producing methacrylic resin extrusion plate for optics

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004314281 2004-10-28
JP2004314281 2004-10-28
JP2006543090A JP4717008B2 (en) 2004-10-28 2005-10-21 Method for producing methacrylic resin extrusion plate for optics
PCT/JP2005/019390 WO2006046481A1 (en) 2004-10-28 2005-10-21 Optical methacrylic resin extrusion plate manufacturing method

Publications (2)

Publication Number Publication Date
JPWO2006046481A1 true JPWO2006046481A1 (en) 2008-05-22
JP4717008B2 JP4717008B2 (en) 2011-07-06

Family

ID=36227721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006543090A Active JP4717008B2 (en) 2004-10-28 2005-10-21 Method for producing methacrylic resin extrusion plate for optics

Country Status (5)

Country Link
JP (1) JP4717008B2 (en)
KR (1) KR100857501B1 (en)
CN (1) CN101035665B (en)
TW (1) TWI275477B (en)
WO (1) WO2006046481A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106567351A (en) * 2016-10-28 2017-04-19 河南省路嘉路桥股份有限公司 Light reflecting stand column cap
KR102215705B1 (en) * 2017-12-15 2021-02-18 주식회사 엘지화학 Wearable device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002120273A (en) * 2000-10-13 2002-04-23 Sumitomo Chem Co Ltd Method of manufacturing resin plate with excellent thickness accuracy
JP2003234005A (en) * 2001-11-20 2003-08-22 Asahi Kasei Corp Light guide plate
JP2003270447A (en) * 2002-03-15 2003-09-25 Asahi Kasei Corp Light guide body
JP2003287626A (en) * 2002-03-27 2003-10-10 Mitsubishi Rayon Co Ltd Acrylic resin plate for light guide plate and method for producing the same, light guide plate, surface light emitting device including the same, and display device
JP2004237645A (en) * 2003-02-07 2004-08-26 Mitsubishi Rayon Co Ltd Belt-type continuous plate making apparatus and method for producing plate-shaped polymer
JP2004237585A (en) * 2003-02-06 2004-08-26 Mitsubishi Rayon Co Ltd Method for producing plate-like polymer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002120273A (en) * 2000-10-13 2002-04-23 Sumitomo Chem Co Ltd Method of manufacturing resin plate with excellent thickness accuracy
JP2003234005A (en) * 2001-11-20 2003-08-22 Asahi Kasei Corp Light guide plate
JP2003270447A (en) * 2002-03-15 2003-09-25 Asahi Kasei Corp Light guide body
JP2003287626A (en) * 2002-03-27 2003-10-10 Mitsubishi Rayon Co Ltd Acrylic resin plate for light guide plate and method for producing the same, light guide plate, surface light emitting device including the same, and display device
JP2004237585A (en) * 2003-02-06 2004-08-26 Mitsubishi Rayon Co Ltd Method for producing plate-like polymer
JP2004237645A (en) * 2003-02-07 2004-08-26 Mitsubishi Rayon Co Ltd Belt-type continuous plate making apparatus and method for producing plate-shaped polymer

Also Published As

Publication number Publication date
KR20070043815A (en) 2007-04-25
JP4717008B2 (en) 2011-07-06
TWI275477B (en) 2007-03-11
KR100857501B1 (en) 2008-09-08
CN101035665A (en) 2007-09-12
TW200628287A (en) 2006-08-16
WO2006046481A1 (en) 2006-05-04
CN101035665B (en) 2010-06-16

Similar Documents

Publication Publication Date Title
US6941056B2 (en) Light guide and method for producing transparent thermoplastic resin composition for light guide
KR100275990B1 (en) Light-guide plate made from resin
CN101313175B (en) Light guide plate
KR100864334B1 (en) Resin extruded plate for high luminance light guide plate and method for producing the same
JP4717008B2 (en) Method for producing methacrylic resin extrusion plate for optics
JP4711967B2 (en) New extruded plate of methacrylic resin and method for producing the same
KR100889409B1 (en) Resin extruded plate and method for producing the same
JP2006268060A (en) Light guide plate and method for producing transparent thermoplastic resin composition for light guide plate
JP2006106185A (en) Light diffusing multilayer board
JP4278257B2 (en) Light guide plate for acrylic resin color monitor
CN100590459C (en) Methacrylate resin composition for light guide plate
JP2003064106A (en) Method for producing acrylic resin plate material
JP2003287626A (en) Acrylic resin plate for light guide plate and method for producing the same, light guide plate, surface light emitting device including the same, and display device
JPWO2006054510A1 (en) Optical resin extrusion plate and manufacturing method thereof
JP2006160980A (en) Light-diffusive resin composition
JP3316345B2 (en) Methacrylic resin composition for molding
JP2006032254A (en) Light guide plate with holes
JP2005181632A (en) Light guide plate
JP2003082114A (en) Light diffusing molded article and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110307

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350