[go: up one dir, main page]

JPWO2004060821A1 - Glass plate and method for producing the same - Google Patents

Glass plate and method for producing the same Download PDF

Info

Publication number
JPWO2004060821A1
JPWO2004060821A1 JP2004564551A JP2004564551A JPWO2004060821A1 JP WO2004060821 A1 JPWO2004060821 A1 JP WO2004060821A1 JP 2004564551 A JP2004564551 A JP 2004564551A JP 2004564551 A JP2004564551 A JP 2004564551A JP WO2004060821 A1 JPWO2004060821 A1 JP WO2004060821A1
Authority
JP
Japan
Prior art keywords
glass
molten
plate
molten tin
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004564551A
Other languages
Japanese (ja)
Inventor
史朗 谷井
史朗 谷井
昌道 横谷
昌道 横谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of JPWO2004060821A1 publication Critical patent/JPWO2004060821A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/14Changing the surface of the glass ribbon, e.g. roughening
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/20Composition of the atmosphere above the float bath; Treating or purifying the atmosphere above the float bath

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

従来よりも微細で、大きさも揃った凹部を有するガラス板を効率よく製造する。溶融スズ上に溶融ガラスを浮遊させて得られるガラス板であって、溶融スズと接した側の表面に、直径0.05〜90μmの凹部が4個/mm2以上形成されているガラス板。A glass plate having a concave portion that is finer than conventional and has a uniform size is efficiently produced. A glass plate obtained by suspending molten glass on molten tin, wherein four or more concave portions having a diameter of 0.05 to 90 μm are formed on the surface in contact with the molten tin.

Description

本発明は、溶融ガラスを溶融スズ上に流延し、ガラスリボンに成形するフロート法により得られ、溶融スズと接した側の表面に凹部が形成されたガラス板、並びにその製造方法に関する。  The present invention relates to a glass plate obtained by a float method in which molten glass is cast on molten tin and formed into a glass ribbon, and a recess is formed on the surface in contact with the molten tin, and a method for producing the same.

表面に凹凸を有するガラス板は、反射防止効果、防眩効果、不透視効果などを利用して、太陽電池パネルや窓ガラスなどの各種用途に利用されている。
従来、表面に凹部を有するガラス板の製造方法として、ガラス板の平滑な表面を、物理的あるいは化学的な手法を用いて加工することにより製造する方法が一般に行われている。ガラス板の表面を加工するための物理的な手法としてはサンドブラスト法などが、化学的な手法としてはフッ酸を用いたエッチングなどが知られている(例えば、特開2000−223724号公報参照)。しかし、これらの加工は、フロート法などのガラス板製造ラインとは別に設けられた製造ラインで行われる(オフライン加工)ため、設備コスト、製造コスト、さらには製造効率に問題がある。
また、上下一対のロールにより溶融ガラスを圧延して成形する方法も、建築用の型板ガラスや網入り板ガラスの製造方法として普及している。この方法では、型板ガラスの型模様(表面の凹部)は、一方のロールに彫刻されたパターンが連続的に転写されるため、ガラス板の成形と表面への凹部の形成とを同時に行うことができる(例えば、特公昭57−17851号公報参照)。しかし、製造できるガラス板の厚さに制約があり、また、表面がロールにより圧延されて成形されるため、平滑性に優れた表面を保ちながら他方の表面に凹部を形成することが困難であるという問題がある。
このような背景から、フロート法でガラス板を製造する際に、溶融スズ中に気泡を発生させ、溶融スズ上に流延させたガラスリボンの溶融スズと接する面にこの気泡を当てることにより凹部を形成する方法も提案されている(例えば、特開2000−335925号公報参照)。しかし、この方法では、溶融スズが高い表面張力を有するため、これに抗して生成される気泡はかなりの大球である必要があり、形成される凹部もそれに応じて大きなものとなる。しかも、気泡の大きさの制御も難しく、凹部の大きさにもバラツキが多い。
本発明はこのような状況に鑑みてなされたものであり、従来よりも微細で、大きさも揃った凹部を有するガラス板を提供することを第1の目的とする。また、本発明は、前記のガラス板を効率良く製造でき、汎用の板ガラス製造方法であるフロート法に適用可能な方法を提供することを第2の目的とする。
Glass plates having irregularities on the surface are used for various applications such as solar cell panels and window glass by utilizing an antireflection effect, an antiglare effect, an opaqueness effect, and the like.
2. Description of the Related Art Conventionally, as a method for producing a glass plate having a concave portion on the surface, a method for producing a smooth surface of a glass plate by processing using a physical or chemical technique is generally performed. As a physical method for processing the surface of the glass plate, a sand blast method or the like is known, and as a chemical method, etching using hydrofluoric acid or the like is known (see, for example, JP 2000-223724 A). . However, since these processes are performed on a production line provided separately from the glass plate production line such as the float method (offline processing), there are problems in equipment cost, production cost, and production efficiency.
In addition, a method of rolling and forming molten glass with a pair of upper and lower rolls is also widely used as a manufacturing method for architectural template glass and meshed plate glass. In this method, since the pattern engraved on one roll is continuously transferred to the mold pattern (surface recess) of the template glass, it is possible to simultaneously form the glass plate and form the recess on the surface. (For example, refer to Japanese Patent Publication No. 57-17851). However, there is a limitation on the thickness of the glass plate that can be manufactured, and the surface is rolled and formed by a roll, so it is difficult to form a recess on the other surface while maintaining a surface with excellent smoothness. There is a problem.
From such a background, when manufacturing a glass plate by the float process, a bubble is generated in the molten tin, and a concave portion is formed by applying the bubble to the surface of the glass ribbon that is cast on the molten tin and contacting the molten tin. There has also been proposed a method of forming (see, for example, Japanese Patent Application Laid-Open No. 2000-335925). However, in this method, since the molten tin has a high surface tension, the bubbles generated against this need to be quite large spheres, and the formed recesses are correspondingly large. Moreover, it is difficult to control the size of the bubbles, and there are many variations in the size of the recesses.
This invention is made | formed in view of such a condition, and makes it the 1st objective to provide the glass plate which has a recessed part which was finer than before and the size was equal. The second object of the present invention is to provide a method capable of efficiently producing the glass plate and applicable to a float method, which is a general-purpose plate glass production method.

上記第1の目的を達成するために、本発明は、溶融スズ上に溶融ガラスを浮遊させて得られるガラス板であって、溶融スズと接した側の表面(以下、「ボトム面」ともいう)に、直径0.05〜90μmの凹部が4個/mm以上形成されていることを特徴とするガラス板を提供する。なお、本発明において、凹部の直径とは、ガラス板のボトム面を撮影した電子顕微鏡写真から求めた値であり、凹部の深さとはボトム面にレーザ光を照射してその反射光から求めた値である。
また、本発明は、上記第2の目的を達成するために、溶融スズ上に板状溶融ガラスを浮かべ、溶融スズと溶融ガラスとの界面にガスを直接生成させ、板状溶融ガラスの溶融スズと接した側の表面に、直径0.05〜90μmの凹部を4個/mm以上形成することを特徴とするガラス板の製造方法を提供する。具体的には、下記に示す第1〜第4の製造方法を提供する。
(1)溶融スズ上に板状溶融ガラスを浮かべ、板状溶融ガラスの溶融スズと接した側の表面に凹部を形成するガラス板の製造方法であって、露点が−30℃以下で水素と窒素との混合気体からなる雰囲気中で、板状溶融ガラスの粘度が10〜10ポイズとなる液面温度に維持され、液面層に酸素を200ppm以上溶存させた溶融スズ上に、板状溶融ガラスを浮かべることを特徴とする第1の製造方法。
(2)溶融ガラスを溶融スズ上に流延してガラスリボンに成形するとともに、ガラスリボンの溶融スズと接した側の表面に凹部を形成するガラス板の製造方法であって、露点が−30℃以下で水素と窒素との混合気体からなる雰囲気中で、溶融ガラスの粘度が10〜10ポイズとなる液面温度に維持され、液面層に酸素を200ppm以上溶存させた溶融スズ上に、溶融ガラスを流延させることを特徴とする第2の製造方法。
(3)溶融スズ上に板状溶融ガラスを浮かべ、板状溶融ガラスの溶融スズと接した側の表面に凹部を形成するガラス板の製造方法であって、露点が−30℃以下で水素と窒素との混合気体からなる雰囲気中で、板状溶融ガラスの粘度が10〜10ポイズとなる液面温度に維持された溶融スズ上に板状溶融ガラスを浮かべた状態で、溶融スズを陽極とし、板状溶融ガラスを陰極として通電することを特徴とする第3の製造方法。
(4)溶融ガラスを溶融スズ上に流延してガラスリボンに成形するとともに、ガラスリボンの溶融スズと接した側の表面に凹部を形成するガラス板の製造方法であって、露点が−30℃以下で水素と窒素との混合気体からなる雰囲気中で、溶融ガラスの粘度が10〜10ポイズとなる液面温度に維持された溶融スズ上に、溶融スズを陽極とし、溶融ガラスを陰極として通電しながら溶融ガラスを流延させることを特微とする第4の製造方法。
上記第1及び第2の製造方法において、溶融スズの液面層に酸素を200ppm以上溶存させるために、溶融スズの液面から酸素ガスまたは酸素含有ガスを導入するか、溶融スズ中に酸化スズの粉末を投入することが好ましい。
上記第1及び第2の製造方法において、ガラス板のボトム面に凹部が形成される機構は、次のように推定される。すなわち、溶融スズの液面から酸素ガスまたは酸素含有ガスを導入する、あるいは酸化スズ粉末を溶融スズ中に導入する等によって、溶融スズの液面からある深さ、典型的には10mmの領域(液面層)には酸素が溶存し、特に液面の極く近傍では酸素溶存量が極端に高く、過飽和状態になっている。そして、このような領域と溶融状態にあるガラスのボトム面とが接触すると、両者の界面で飽和状態まで酸素濃度が低下し、その際、過剰な酸素がSnO(ガス)となって溶融スズの表面から放出され、このガスがボトム面と溶融スズとの間に溜まり、徐々にボトム面を変形させて空孔を形成し、この空孔が最終的に凹部となって残存する、と推定される。
また、上記第3及び第4の方法において、ガラスのボトム面に凹部が形成される機構は、次のように推定される。すなわち、溶融スズ側を陽極とし、溶融状態にあるガラス側を陰極として通電することにより、ガラス中をアルカリ金属イオンが移動して電荷が移動し、それに伴いボトム面ではガラス中の酸素イオンが電荷を放出して酸素ガスとなってボトム面から放出され、この放出部分が凹部となって残存する、と推定される。
In order to achieve the first object, the present invention is a glass plate obtained by suspending molten glass on molten tin, and is a surface in contact with molten tin (hereinafter also referred to as “bottom surface”). ) to provide a glass plate, characterized in that it is formed concave having a diameter 0.05~90μm four / mm 2 or more. In the present invention, the diameter of the concave portion is a value obtained from an electron micrograph of the bottom surface of the glass plate, and the depth of the concave portion is obtained from the reflected light by irradiating the bottom surface with laser light. Value.
Further, in order to achieve the second object, the present invention floats a plate-like molten glass on the molten tin and directly generates a gas at the interface between the molten tin and the molten glass. on the side of the surface in contact with, to provide a method of manufacturing a glass plate and forming a recess having a diameter 0.05~90Myuemu 4 pieces / mm 2 or more. Specifically, the following first to fourth manufacturing methods are provided.
(1) A method for producing a glass plate in which a plate-like molten glass is floated on molten tin, and a recess is formed on the surface of the plate-like molten glass on the side in contact with the molten tin, wherein the dew point is −30 ° C. or less and hydrogen. In an atmosphere composed of a mixed gas with nitrogen, the viscosity of the plate-like molten glass is maintained at a liquid surface temperature of 10 3 to 10 6 poise, and on the molten tin in which 200 ppm or more of oxygen is dissolved in the liquid surface layer, A first manufacturing method characterized by floating a molten glass.
(2) A method for producing a glass plate in which molten glass is cast on molten tin to form a glass ribbon, and a recess is formed on the surface of the glass ribbon in contact with the molten tin, the dew point being −30 On the molten tin in which the viscosity of the molten glass is maintained at a liquid surface temperature of 10 3 to 10 6 poises in an atmosphere composed of a mixed gas of hydrogen and nitrogen at a temperature of ≦ ° C. and oxygen is dissolved in the liquid surface layer by 200 ppm or more. Second, the second manufacturing method is characterized by casting molten glass.
(3) A method for producing a glass plate in which a plate-like molten glass is floated on molten tin, and a recess is formed on the surface of the plate-like molten glass on the side in contact with the molten tin, with a dew point of −30 ° C. or less and hydrogen. In an atmosphere composed of a mixed gas with nitrogen, the molten tin was floated on the molten tin maintained at a liquid surface temperature at which the viscosity of the molten molten glass was 10 3 to 10 6 poise. A third production method is characterized in that the anode is energized with a plate-shaped molten glass as a cathode.
(4) A method for producing a glass plate in which molten glass is cast on molten tin to form a glass ribbon, and a recess is formed on the surface of the glass ribbon in contact with the molten tin, the dew point being −30 On the molten tin maintained at a liquid surface temperature at which the viscosity of the molten glass is 10 3 to 10 6 poise in an atmosphere composed of a mixed gas of hydrogen and nitrogen at a temperature of ℃ or lower, the molten tin is used as an anode, A fourth production method characterized by casting molten glass while energizing as a cathode.
In the first and second production methods, in order to dissolve 200 ppm or more of oxygen in the molten tin liquid surface layer, oxygen gas or oxygen-containing gas is introduced from the molten tin liquid surface, or tin oxide is added to the molten tin. It is preferable to throw in the powder.
In the said 1st and 2nd manufacturing method, the mechanism in which a recessed part is formed in the bottom face of a glass plate is estimated as follows. That is, by introducing oxygen gas or oxygen-containing gas from the molten tin liquid surface, or introducing tin oxide powder into the molten tin, a depth of typically 10 mm from the molten tin liquid surface (typically 10 mm In the liquid surface layer, oxygen is dissolved, and particularly in the very vicinity of the liquid surface, the amount of dissolved oxygen is extremely high and is supersaturated. And when such a region and the bottom surface of the glass in the molten state come into contact with each other, the oxygen concentration is reduced to a saturated state at the interface between them, and at that time, excess oxygen becomes SnO (gas) and the molten tin It is estimated that this gas is released from the surface, this gas accumulates between the bottom surface and the molten tin, gradually deforms the bottom surface to form vacancies, and these vacancies eventually remain as recesses. The
In the third and fourth methods, the mechanism for forming the recesses on the bottom surface of the glass is estimated as follows. That is, by supplying electricity with the molten tin side as the anode and the molten glass side as the cathode, the alkali metal ions move in the glass and the charges move, and accordingly, the oxygen ions in the glass are charged on the bottom surface. It is presumed that oxygen is released as oxygen gas from the bottom surface, and this released portion remains as a recess.

図1は、本発明の第1の製造方法を実施するための装置の主要部を示す模式図である。
図2は、本発明の第3の製造方法を実施するための装置の主要部を示す模式図である。
FIG. 1 is a schematic view showing the main part of an apparatus for carrying out the first manufacturing method of the present invention.
FIG. 2 is a schematic view showing a main part of an apparatus for carrying out the third manufacturing method of the present invention.

符号の説明Explanation of symbols

1:炉
2:溶融スズ浴
3:板状溶融ガラス
4:溶融スズ液面
5:密閉容器
6:気体導入路
7:気体排気路
8:観測孔
9:陽極(炭素電極)
10:陰極(白金電極)
20:溶融スズ
30:空孔
1: Furnace 2: Molten tin bath 3: Plate-shaped molten glass 4: Molten tin liquid surface 5: Airtight container 6: Gas introduction path 7: Gas exhaust path 8: Observation hole 9: Anode (carbon electrode)
10: Cathode (platinum electrode)
20: Molten tin 30: Hole

以下、本発明に関して詳細に説明する。
本発明のガラス板は、そのボトム面に、直径0.05〜90μmの凹部が1mm当たり4個以上形成されている。太陽電池パネルとして使用する場合や不透視効果を利用する場合には、直径1〜90μmの凹部とするのが好ましい。また、凹部の深さは、反射防止効率などを高めるために、0.2〜25μmであることが更に好ましい。更に、より広範な用途に用いるには、凹部は1mm当たり10個以上形成されていることが好ましい。このようなガラス板は、例えば下記に示す第1〜第4の製造方法により得られる。
(第1の製造方法)
図1は本発明の第1の製造方法を実施するための装置の一例を模式的に示す図であり、−30°以下の低露点で90%N/10%H雰囲気とされた炉1内に、耐熱煉瓦製の溶融スズ浴2が配置されており、板状溶融ガラス3が浮かんでいる。また、溶融スズ浴2には、溶融スズ20に対する耐食性を有する材料、例えばSiO、ZrO、Alなどからなり、気体導入管6及び気体排気管7が接続され、溶融スズ側が開放した密閉容器5が浮かべられており、溶融スズ20の液面4との間で密閉空間を形成している。上記した凹部形成機構において、酸素の作用により板状溶融ガラス3のボトム面に凹部が効率良く形成されるには、板状溶融ガラス3がある程度軟化している方が好ましく、そのため溶融スズ20は、板状溶融ガラス3が10〜10ポイズ、好ましくは10〜10ポイズの粘度で流動する温度に維持されている。更には、同様の理由から、密閉容器5は板状溶融ガラス3にできるだけ近接していることが好ましい。
密閉容器5には、気体導入路6を通じて酸素ガスまたは酸素含有ガスが供給される。それにより、酸素の一部が溶融スズ20の液面4から溶け込んで液面層に200ppm以上、好ましくは200〜2000ppmの高濃度で溶存し、残部は気体排気路7から排気される。なお、酸素含有ガスとしては、酸素と不活性ガス、好ましくは窒素との混合ガスを使用できる。
なお、図中の符号8は炉1の内部を観察するために設置された観測孔である。
このように構成される装置を用いて本発明のガラス板を製造するには、板状溶融ガラス3を溶融スズ20の上に浮かべ、気体導入管6を通じて密閉容器5に酸素ガスまたは酸素含有ガスを供給し、溶融スズ20の液面層に酸素を溶け込ませて液面層における酸素の溶存量を上記の値に維持する。酸素が溶存された溶融スズ20と板状溶融ガラス3とが接触すると、両者の界面に気泡が生成して徐々に大きく成長し、ボトム面全面に多数の微細な空孔30が形成される。そして、溶融スズ20の温度を下げると板状溶融ガラス3が硬化し、その間に空孔30が凹部となって残存し、最終的にボトム面に微細な凹部が形成される。
この凹部の寸法(直径と深さ)や形状、密度は、溶融スズ20の液面層に溶存している酸素の濃度(溶存酸素濃度)や板状溶融ガラス3を溶融スズ20上に保持する時間を適宜調整して制御する。この溶存酸素濃度は、密閉容器5への酸素ガスまたは酸素含有ガスの供給量で容易に制御することができる。
(第2の製造方法)
本発明の第2の製造方法は、上記第1の製造方法をフロート法に適用したものであり、先ずフロート法について概略を説明する。フロート法によるガラス板の製造は、ガラス溶融窯にガラス原料を投入して溶融し、ガラス溶融窯から溢出する溶融ガラスを溶融スズ浴の溶融スズの上に流延させてガラスリボンへと成形し、溶融スズ浴を進行する間にガラスリボンの厚さを調整しながら徐々に冷却し、さらに溶融スズ浴から引き上げたガラスリボンを徐冷炉にて冷却して固化した後、固化したガラスリボンを切断装置にて所定長に切断してガラス板とし、採板装置にてガラス板を採板する一連の工程を経て製造される。
本発明の第2の製造方法を実施するには、従来と同様のフロート炉(溶融スズ浴)に上記した密封容器5を付設すればよい。その際、ガラスリボンは流動しているため、密封容器5は、溶融スズの液面においてガラスリボンが10〜10ポイズ、好ましくは10〜10ポイズの粘度で流動する領域に配設される。さらに、密閉容器5は前記領域内でガラスリボンにできるだけ近接していることが好ましい。このような観点から、密封容器5は、溶融スズ浴の中でも、ガラス溶融窯から流下した溶融ガラスがガラスリボンとなって流延し始める地点にて、ガラスリボンの両側に配設することが好ましい。また、溶融スズの液面層の溶存酸素濃度は第1の製造方法と同様である。
酸素が溶存された溶融スズとガラスリボンとが接触すると、両者の界面に気泡が生成し始め、ガラスリボンの移動とともに気泡が大きく成長し、ボトム面全面に多数の微細な空孔が形成される。そして、ガラスリボンが更に移動して冷却され、硬化する間に空孔が凹部となって残存し、最終的にボトム面に微細な凹部が形成される。この凹部の寸法(直径と深さ)や形状、密度は、溶融スズの液面層に溶存している酸素の濃度(溶存酸素濃度)やガラスリボンを溶融スズ上に保持する時間に依存するが、通常はガラスリボンの移動速度は設計で決められていることから、第2の製造方法では、溶融スズの液面層の溶存酸素濃度を適宜調整する。以降は、通常のフロート法と同様にして、冷却後に切断、採板を行う。
上記の第1及び第2の製造方法において、溶融スズの液面層に酸素を溶存させるために、上記した酸素ガスまたは酸素含有ガスを導入する方法に代えて、酸化スズ(SnO)粉末を密閉容器が配設された箇所の適所に、連続的に、あるいは定期的に投入してもよい。酸化スズ粉末は、溶融スズに容易に溶解し、酸素イオンが上記と同様に板状溶融ガラスまたはガラスリボンのボトム面に作用する。そのため、酸化スズ粉末は、上記と同様に酸素溶存量が200ppm以上に維持されるように投入量や投入間隔を調整する。
また、第1及び第2の製造方法において、ガラスの素材(組成)はフロート成形できるものであれば制限がなく、従来のフロート成形可能なガラス板材料一般に対して適用できる。
(第3の製造方法)
図2は本発明の第3の製造方法を実施するための装置の一例を模式的に示す図であり、−30°以下の低露点で90%N/10%H雰囲気とされた炉1内に、耐熱煉瓦製の溶融スズ浴2が配置されており、板状溶融ガラス3が浮かんでいる。また、板状溶融ガラス3側を陰極10とし、溶融スズ20側を陽極9として通電可能に構成されている。陰極材料は板状溶融ガラスに侵蝕されない材料であれば制限されるものではないが、白金電極が好適である。同様に、陽極材料も溶融スズ20に侵蝕されない材料であれば制限されるものではないが、炭素電極が好適である。陽極9及び陰極10の電極形状には制限がなく、棒状電極や板状電極とすることができる。例えば、図示されるように陽極9を棒状電極とし、陰極10を板状電極とすることができる。また、通電効率を高めるために、陽極9及び陰極10を複数対とすることもできる。電源は交流でもよいが、その場合両電極9,10は陽極、陰極の区別がなくなる。
上記した凹部形成機構において、酸素ガスの放出により板状溶融ガラス3のボトム面に凹部が効率良く形成されるには、板状溶融ガラス3がある程度軟化している方が好ましく、第1の製造方法と同様に、溶融スズ20は、板状溶融ガラス3が10〜10ポイズ、好ましくは10〜10ポイズの粘度で流動する温度に維持されている。
このように構成される装置を用いて本発明のガラス板を製造するには、板状溶融ガラス3を溶融スズ浴2に浮かべた状態で、陽極9と陰極10とを通電状態とする。上記した凹部形成機構のように、この通電により板状溶融ガラス3中のアルカリ金属イオンの移動と電荷の移動とが起こり、ガラス中の酸素イオンが酸素ガスとなって放出され、ボトム面に凹部となって残存する。アルカリ金属イオンの移動及び電荷の移動は通電量に比例するため、通電量を制御することにより酸素ガスの発生量を制御でき、結果として凹部の寸法や形状、密度を制御することが可能になる。
なお、通電状態は、ガラス組成、特にアルカリ金属酸化物含有率の影響が大きく、第3の製造方法は、アルカリ金属酸化物を合計で0.1モル%以上含有するケイ酸塩ガラスに対して特に有効な方法である。この場合、通電量を好ましくは1.75A/m以上、より好ましくは3A/m以上とすることにより、アルカリ金属イオンの移動や電荷の移動を効率良く行わせることができる。
(第4の製造方法)
本発明の第4の製造方法は、上記第3の製造方法をフロート法に適用したものであり、ガラスリボンと溶融スズとの間を通電状態として通常のフロート法を行う。その際、陰極10をガラス溶融窯内の溶融ガラスに設け、陽極9をガラスリボンが10〜10ポイズ、好ましくは10〜10ポイズの粘度で流動する領域に設ける。通電量については、第3の製造方法と同様で構わない。
Hereinafter, the present invention will be described in detail.
The glass plate of the present invention has four or more concave portions having a diameter of 0.05 to 90 μm per 1 mm 2 on the bottom surface. When using as a solar cell panel or when utilizing the non-permeability effect, it is preferable to use a recess having a diameter of 1 to 90 μm. In addition, the depth of the recess is more preferably 0.2 to 25 μm in order to improve the antireflection efficiency and the like. Furthermore, for use in a wider range of applications, it is preferable that 10 or more recesses are formed per 1 mm 2 . Such a glass plate is obtained by the 1st-4th manufacturing method shown below, for example.
(First manufacturing method)
FIG. 1 is a diagram schematically showing an example of an apparatus for carrying out the first manufacturing method of the present invention, and a furnace having a low dew point of −30 ° or less and a 90% N 2 /10% H 2 atmosphere. 1 is provided with a molten tin bath 2 made of heat-resistant brick, and a plate-shaped molten glass 3 is floating. The molten tin bath 2 is made of a material having corrosion resistance to the molten tin 20, for example, SiO 2 , ZrO 2 , Al 2 O 3, etc., and a gas introduction pipe 6 and a gas exhaust pipe 7 are connected, and the molten tin side is opened. The sealed container 5 is floated and forms a sealed space with the liquid surface 4 of the molten tin 20. In the recess formation mechanism described above, in order for the recess to be efficiently formed on the bottom surface of the plate-like molten glass 3 by the action of oxygen, it is preferable that the plate-like molten glass 3 is softened to some extent. , plate-shaped molten glass 3 is 10 3 to 10 6 poise, which is preferably maintained at a temperature flowing at a viscosity of 10 3 to 10 4 poise. Furthermore, for the same reason, the sealed container 5 is preferably as close as possible to the plate-like molten glass 3.
Oxygen gas or oxygen-containing gas is supplied to the sealed container 5 through the gas introduction path 6. Thereby, part of oxygen dissolves from the liquid surface 4 of the molten tin 20 and dissolves in the liquid surface layer at a high concentration of 200 ppm or more, preferably 200 to 2000 ppm, and the remainder is exhausted from the gas exhaust path 7. As the oxygen-containing gas, a mixed gas of oxygen and an inert gas, preferably nitrogen can be used.
In addition, the code | symbol 8 in a figure is an observation hole installed in order to observe the inside of the furnace 1. FIG.
In order to manufacture the glass plate of the present invention using the apparatus configured as described above, the plate-like molten glass 3 is floated on the molten tin 20, and oxygen gas or oxygen-containing gas is supplied to the sealed container 5 through the gas introduction pipe 6. Then, oxygen is dissolved in the liquid surface layer of molten tin 20 to maintain the dissolved amount of oxygen in the liquid surface layer at the above value. When the molten tin 20 in which oxygen is dissolved and the plate-like molten glass 3 come into contact with each other, bubbles are generated at the interface between them and grow gradually and large numbers of fine holes 30 are formed on the entire bottom surface. Then, when the temperature of the molten tin 20 is lowered, the plate-like molten glass 3 is cured, while the pores 30 remain as recesses, and finally a fine recess is formed on the bottom surface.
The dimensions (diameter and depth), shape, and density of the recesses are such that the oxygen concentration (dissolved oxygen concentration) dissolved in the liquid surface layer of the molten tin 20 and the plate-like molten glass 3 are retained on the molten tin 20. The time is adjusted appropriately and controlled. This dissolved oxygen concentration can be easily controlled by the amount of oxygen gas or oxygen-containing gas supplied to the sealed container 5.
(Second manufacturing method)
The second manufacturing method of the present invention is an application of the first manufacturing method to the float method. First, an outline of the float method will be described. The glass plate is manufactured by the float process. The glass raw material is charged into a glass melting furnace and melted. The molten glass overflowing from the glass melting furnace is cast on the molten tin in the molten tin bath and formed into a glass ribbon. The glass ribbon is gradually cooled while adjusting the thickness of the molten tin bath, and the glass ribbon pulled up from the molten tin bath is solidified by cooling in a slow cooling furnace, and then the solidified glass ribbon is cut. Is cut into a predetermined length to produce a glass plate, and is manufactured through a series of steps of taking a glass plate with a plate-taking device.
In order to carry out the second production method of the present invention, the above-described sealed container 5 may be attached to a float furnace (molten tin bath) similar to the conventional one. Provided that time, the glass ribbon is flowing, sealed container 5, a glass ribbon 10 3 to 10 6 poise at the liquid surface of the molten tin, preferably in the region flowing at a viscosity of 10 3 to 10 4 poise Is done. Furthermore, it is preferable that the sealed container 5 is as close as possible to the glass ribbon in the region. From such a viewpoint, the sealed container 5 is preferably disposed on both sides of the glass ribbon at a point where the molten glass flowing down from the glass melting furnace starts to be cast as a glass ribbon in the molten tin bath. . Moreover, the dissolved oxygen concentration of the liquid surface layer of molten tin is the same as that of the first manufacturing method.
When molten tin in which oxygen is dissolved and the glass ribbon come into contact with each other, bubbles start to form at the interface between the two, and as the glass ribbon moves, the bubbles grow larger and many fine voids are formed on the entire bottom surface. . Then, the glass ribbon further moves, cools, and cures, leaving voids as concave portions, and finally forming fine concave portions on the bottom surface. The size (diameter and depth), shape, and density of the recess depend on the concentration of oxygen dissolved in the liquid tin layer (dissolved oxygen concentration) and the time for holding the glass ribbon on the molten tin. In general, since the moving speed of the glass ribbon is determined by design, in the second manufacturing method, the dissolved oxygen concentration in the liquid surface layer of molten tin is appropriately adjusted. Thereafter, in the same manner as the ordinary float method, cutting and plate-making are performed after cooling.
In the first and second manufacturing methods, tin oxide (SnO 2 ) powder is used instead of the above-described method of introducing oxygen gas or oxygen-containing gas in order to dissolve oxygen in the liquid surface layer of molten tin. It may be continuously or periodically put into an appropriate place where the sealed container is disposed. The tin oxide powder is easily dissolved in molten tin, and oxygen ions act on the bottom surface of the plate-like molten glass or glass ribbon in the same manner as described above. For this reason, the tin oxide powder is adjusted in the input amount and the input interval so that the dissolved oxygen amount is maintained at 200 ppm or more in the same manner as described above.
In the first and second production methods, the glass material (composition) is not limited as long as it can be float molded, and can be applied to conventional glass sheet materials that can be float molded.
(Third production method)
FIG. 2 is a view schematically showing an example of an apparatus for carrying out the third manufacturing method of the present invention, and a furnace having a low dew point of −30 ° or less and a 90% N 2 /10% H 2 atmosphere. 1 is provided with a molten tin bath 2 made of heat-resistant brick, and a plate-shaped molten glass 3 is floating. The plate-shaped molten glass 3 side is set as the cathode 10 and the molten tin 20 side is set as the anode 9 so as to be energized. The cathode material is not limited as long as it is a material that is not corroded by the plate-like molten glass, but a platinum electrode is preferable. Similarly, the anode material is not limited as long as it is a material that is not attacked by the molten tin 20, but a carbon electrode is suitable. There is no restriction | limiting in the electrode shape of the anode 9 and the cathode 10, It can be set as a rod-shaped electrode or a plate-shaped electrode. For example, as shown, the anode 9 can be a rod-shaped electrode and the cathode 10 can be a plate-shaped electrode. Further, in order to increase the energization efficiency, a plurality of pairs of anodes 9 and cathodes 10 can be used. The power source may be an alternating current, but in this case, the electrodes 9 and 10 are not distinguished from each other as an anode and a cathode.
In the recess formation mechanism described above, in order for the recess to be efficiently formed on the bottom surface of the plate-shaped molten glass 3 by the release of oxygen gas, it is preferable that the plate-shaped molten glass 3 is softened to some extent. similar to the method, molten tin 20 is plate-shaped molten glass 3 is 10 3 to 10 6 poise, which is preferably maintained at a temperature flowing at a viscosity of 10 3 to 10 4 poise.
In order to manufacture the glass plate of the present invention using the apparatus configured as described above, the anode 9 and the cathode 10 are energized while the plate-like molten glass 3 is floated on the molten tin bath 2. Like the recess formation mechanism described above, this energization causes the movement of alkali metal ions and the movement of charges in the plate-shaped molten glass 3, and the oxygen ions in the glass are released as oxygen gas, and the recesses are formed on the bottom surface. And remains. Since the movement of alkali metal ions and the movement of charges are proportional to the amount of energization, the amount of oxygen gas generated can be controlled by controlling the amount of energization, and as a result, the size, shape, and density of the recess can be controlled. .
The energized state is greatly influenced by the glass composition, particularly the alkali metal oxide content, and the third production method is based on silicate glass containing a total of 0.1 mol% or more of alkali metal oxides. This is a particularly effective method. In this case, when the energization amount is preferably 1.75 A / m 2 or more, more preferably 3 A / m 2 or more, the movement of alkali metal ions and the movement of charges can be efficiently performed.
(Fourth manufacturing method)
The fourth manufacturing method of the present invention is a method in which the third manufacturing method is applied to the float process, and a normal float process is performed with an energized state between the glass ribbon and the molten tin. At that time, the cathode 10 is provided in the molten glass in the glass melting furnace, the glass ribbon anode 9 10 3 to 10 6 poise, preferably provided in a region flowing at a viscosity of 10 3 to 10 4 poise. The energization amount may be the same as in the third manufacturing method.

以下、本発明の効果を検証するために以下の実験を行った。なお、実験例1〜4は第1の製造方法に係り、実験例5〜7は第2の製造方法に係り、実験例8〜11は第3の製造方法に係る。
(実験例1)
図1に示す装置に従い、90%N/10%Hの雰囲気とした炉1内に、耐熱煉瓦製の溶融スズ浴2を配置し、浴温度を約1050℃に保持した。また、直径40mmのソーダライムガラス板(板状溶融ガラス3)を溶融スズ20に浮かべ、ソーダライムガラス板に近接してZrO製の密閉容器5を浮かべた。そして、密閉容器5に気体導入路6を通じてソーダライムガラス板1m当たり0.015Nm/minの流量にて酸素ガスを供給した。
観測孔8から溶融スズ20の液面及びソーダライムガラス板の状態を観察したところ、酸素ガスの供給とほぼ同時にソーダライムガラス板と溶融スズ20との界面に気泡が生成し始め、10数秒で全界面に気泡が広がった。冷却後にソーダライムガラス板を取り出し、そのボトム面を電子顕微鏡で撮影し、凹部の直径を測定した。また、レーザ光で走査して凹部の深さを測定した。その結果、ボトム面には、深さ約10μm、直径約40μmで大きさの揃った半球状の凹部が約300μmの間隔で均一に分布していた。
(実験例2)
密閉容器5に、酸素−窒素混合気体(酸素濃度21%)を導入する以外は、実験例1と同様にしてガラス板を得る。得られるガラス板のボトム面には、深さ約3μm、直径約10μmで大きさの揃った半球状の凹部が約100μmの間隔で均一に分布している。
(実験例3)
実験例1において、密閉容器5に酸素ガスを導入する代わりに、密閉容器5の配設箇所にてソーダライムガラス板1m当たり5gのSnO粉末を投入した。観測孔8から溶融スズ20の液面及びソーダライムガラス板の状態を観察したところ、SnO粉末の投入とほぼ同時にソーダライムガラス板と溶融スズ20との界面に気泡が生成し始め、10数秒で全界面に気泡が広がった。得られたガラス板のボトム面には、深さ約10μm、直径約40μmで大きさの揃った半球状の凹部が約300μmの間隔で均一に分布していた。
(実験例4)
実験例1において、密閉容器5に酸素ガスを供給する代わりに、溶融スズ20の液面4に直接酸素ガスを吹きかけたところ、溶融スズ20の全液面が酸化スズ(ドロス)で覆われた。そのままの状態でソーダライムガラス板を浮かべ、ガラス板とした。得られたガラス板のボトム面には、深さが5〜20μm、外径が30〜100μmの範囲の大小様々な凹部が、100〜400μmの間隔で散在していた。また、ガラス板の表面も酸化スズが付着して汚染されていた。
(実験例5)
ボトム面に、深さ約10μm、直径約40μmで大きさの揃った半球状の凹部が約300μmの間隔で均一に分布しているガラス板は、フロート法によって、例えば以下のようにして製造できる。
90%N/10%Hの雰囲気とした耐熱煉瓦製の溶融スズ浴(フロートバス)を配置し、浴温度を約1050℃に保持する。また、溶融スズ浴の溶融ガラスが流れ込む位置(ガラスリボンの粘度が約10ポイズとなる位置)に、ZrO製の密閉容器をガラスリボンの流延領域の両側に配設する。そして、ガラス溶融窯から溶融ソーダライムガラスを溶融スズ浴に供給し、幅3000mm、厚さ6mmのガラスリボンとして約7m/分の速度で流延させ、それと同時に密閉容器に、通過するガラスリボン1m当たり0.015Nm/minの酸素ガスを供給する。その後、ガラスリボンを冷却炉にて冷却し、切断してガラス板とする。
(実験例6)
密閉容器に酸素−窒素混合気体(酸素濃度21%)を導入する以外は、実験例5と同様にしてガラス板を得る。得られるガラス板のボトム面には、深さ約3μm、直径約10μmで大きさの揃った半球状の凹部が約100μmの間隔で均一に分布している。
(実験例7)
実験例5において、密閉容器に酸素ガスを導入する代わりに、密閉容器の配設箇所にて通過するガラスリボン1m当たり5gのSnO粉末を投入する。得られるガラス板のボトム面には、深さ約10μm、直径約40μmで大きさの揃った半球状の凹部が約300μmの間隔で均一に分布している。
(実験例8)
図2に示す装置に従い、90%N/10%Hの雰囲気とした炉1内に、耐熱煉瓦製で内径100mmの溶融スズ浴2を配置し、浴温度を約1050℃に保持しながら直径40mmのソーダライムガラス板(アルカリ金属酸化物の含有量13モル%:板状溶融ガラス3)を浮かべた。また、溶融スズに炭素電極(陽極9)を差し込むとともに、ソーダライムガラス板上に白金電極(陰極10)を載置し、両電極を直流電源に接続した。
そして、炭素電極がソーダライムガラス板に接触しないようにしながら5Vの電圧を1分間印加した。このときの電流値は3.5mAであった。その後、ソーダライムガラス板を急冷し、得られたガラス板のボトム面を実験例1と同様にして観測した。その結果、深さ約10μm、直径約40μmで大きさの揃った半球状の凹部が約500μmの間隔で均一に分布していた。
(実験例9)
印加電圧を20Vとした以外は、実験例8と同様にしてガラス板を得た。なお、電流値は7mAであった。得られたガラス板のボトム面には、深さ約20μm、直径約100μmで大きさの揃った半球状の凹部が約500μm間隔で均一に分布していた。
(実験例10)
印加電圧を100Vとした以外は、実験例8と同様にしてガラス板を得た。このとき、電流値は電圧印加当初35mAであったが、途中で1mAまで減少した。得られたガラス板のボトム面には、直径500μm以上で、開口がほぼ閉塞した球状に近い凹部が散在していた。
(実験例11)
電圧印加時間を10分とする以外は、実験例8と同様にしてガラス板を得る。このとき、電流値は、電圧を印加してから3分間は約3.5mAで、その後減少して1mAとなる。得られるガラス板のボトム面には、直径500μm以上で、開口がほぼ閉塞した球状に近い凹部が散在している。
上記した実験例1〜7から、第1及び第2の製造方法においては溶融スズ中の酸素溶存量によりガラス板ボトム面の凹部の寸法や形状、密度を制御できることが確認され、さらに実験例4から酸素溶存手段としてSnO粉末の投入も有効であることが確認された。また、実験例8〜11から、第3の製造方法において通電量によりガラス板ボトム面の凹部の寸法や形状、密度を制御できることが確認される。なお、実験例8〜11から、第4の製造方法においても、第3の製造方法と同様に、通電量によりガラス板ボトム面の凹部の寸法や形状、密度を制御できることが十分に類推できる。
The following experiment was conducted to verify the effect of the present invention. Experimental Examples 1 to 4 relate to the first manufacturing method, Experimental Examples 5 to 7 relate to the second manufacturing method, and Experimental Examples 8 to 11 relate to the third manufacturing method.
(Experimental example 1)
In accordance with the apparatus shown in FIG. 1, a molten tin bath 2 made of heat-resistant brick was placed in a furnace 1 having an atmosphere of 90% N 2 /10% H 2 , and the bath temperature was maintained at about 1050 ° C. A soda lime glass plate (plate-shaped molten glass 3) having a diameter of 40 mm was floated on the molten tin 20, and a ZrO 2 sealed container 5 was floated in the vicinity of the soda lime glass plate. Then, oxygen gas was supplied to the sealed container 5 through the gas introduction path 6 at a flow rate of 0.015 Nm 3 / min per 1 m 2 of soda lime glass plate.
When the liquid surface of the molten tin 20 and the state of the soda lime glass plate were observed from the observation hole 8, bubbles started to be generated at the interface between the soda lime glass plate and the molten tin 20 almost at the same time as the supply of oxygen gas. Bubbles spread across the entire interface. After cooling, the soda lime glass plate was taken out, the bottom surface was photographed with an electron microscope, and the diameter of the recess was measured. Further, the depth of the recess was measured by scanning with laser light. As a result, hemispherical concave portions having a depth of about 10 μm and a diameter of about 40 μm and a uniform size were uniformly distributed at intervals of about 300 μm on the bottom surface.
(Experimental example 2)
A glass plate is obtained in the same manner as in Experimental Example 1 except that an oxygen-nitrogen mixed gas (oxygen concentration 21%) is introduced into the sealed container 5. On the bottom surface of the obtained glass plate, hemispherical concave portions having a depth of about 3 μm and a diameter of about 10 μm and uniform sizes are uniformly distributed at intervals of about 100 μm.
(Experimental example 3)
In Experimental Example 1, instead of introducing oxygen gas into the sealed container 5, 5 g of SnO 2 powder was charged per 1 m 2 of soda lime glass plate at the location where the sealed container 5 was disposed. When the liquid surface of the molten tin 20 and the state of the soda lime glass plate were observed from the observation hole 8, bubbles started to form at the interface between the soda lime glass plate and the molten tin 20 almost simultaneously with the addition of the SnO 2 powder. The bubbles spread to the whole interface. On the bottom surface of the obtained glass plate, hemispherical concave portions having a depth of about 10 μm and a diameter of about 40 μm and a uniform size were uniformly distributed at intervals of about 300 μm.
(Experimental example 4)
In Experimental Example 1, instead of supplying oxygen gas to the sealed container 5, oxygen gas was sprayed directly onto the liquid surface 4 of the molten tin 20, so that the entire liquid surface of the molten tin 20 was covered with tin oxide (dross). . A soda lime glass plate was floated as it was to obtain a glass plate. On the bottom surface of the obtained glass plate, various concave portions having a depth of 5 to 20 μm and an outer diameter of 30 to 100 μm were scattered at intervals of 100 to 400 μm. The surface of the glass plate was also contaminated with tin oxide.
(Experimental example 5)
A glass plate in which hemispherical concave portions having a depth of about 10 μm and a diameter of about 40 μm and a uniform size are uniformly distributed at intervals of about 300 μm on the bottom surface can be manufactured by the float method, for example, as follows. .
A molten tin bath (float bath) made of heat-resistant brick with an atmosphere of 90% N 2 /10% H 2 is arranged, and the bath temperature is maintained at about 1050 ° C. In addition, ZrO 2 sealed containers are disposed on both sides of the casting region of the glass ribbon at the position where the molten glass of the molten tin bath flows (position where the viscosity of the glass ribbon becomes approximately 10 3 poise). Then, molten soda lime glass is supplied from a glass melting furnace to a molten tin bath and cast as a glass ribbon having a width of 3000 mm and a thickness of 6 mm at a speed of about 7 m / min. Oxygen gas of 0.015 Nm 3 / min per 2 is supplied. Thereafter, the glass ribbon is cooled in a cooling furnace and cut into a glass plate.
(Experimental example 6)
A glass plate is obtained in the same manner as in Experimental Example 5 except that an oxygen-nitrogen mixed gas (oxygen concentration: 21%) is introduced into the sealed container. On the bottom surface of the obtained glass plate, hemispherical concave portions having a depth of about 3 μm and a diameter of about 10 μm and uniform sizes are uniformly distributed at intervals of about 100 μm.
(Experimental example 7)
In Experimental Example 5, instead of introducing oxygen gas into the sealed container, 5 g of SnO 2 powder is charged per 1 m 2 of the glass ribbon that passes through the location where the sealed container is disposed. On the bottom surface of the obtained glass plate, hemispherical concave portions having a depth of about 10 μm and a diameter of about 40 μm and a uniform size are uniformly distributed at intervals of about 300 μm.
(Experimental example 8)
In accordance with the apparatus shown in FIG. 2, a molten tin bath 2 made of heat-resistant brick and having an inner diameter of 100 mm is placed in a furnace 1 having a 90% N 2 /10% H 2 atmosphere, and the bath temperature is maintained at about 1050 ° C. A soda-lime glass plate having a diameter of 40 mm (alkali metal oxide content 13 mol%: plate-like molten glass 3) was floated. Moreover, while inserting the carbon electrode (anode 9) in molten tin, the platinum electrode (cathode 10) was mounted on the soda-lime glass plate, and both electrodes were connected to DC power supply.
And the voltage of 5V was applied for 1 minute, preventing a carbon electrode from contacting a soda-lime glass plate. The current value at this time was 3.5 mA. Thereafter, the soda lime glass plate was rapidly cooled, and the bottom surface of the obtained glass plate was observed in the same manner as in Experimental Example 1. As a result, hemispherical concave portions having a depth of about 10 μm and a diameter of about 40 μm and a uniform size were uniformly distributed at intervals of about 500 μm.
(Experimental example 9)
A glass plate was obtained in the same manner as in Experimental Example 8 except that the applied voltage was 20V. The current value was 7 mA. On the bottom surface of the obtained glass plate, hemispherical concave portions having a depth of about 20 μm and a diameter of about 100 μm and a uniform size were uniformly distributed at intervals of about 500 μm.
(Experimental example 10)
A glass plate was obtained in the same manner as in Experimental Example 8, except that the applied voltage was 100V. At this time, the current value was 35 mA at the beginning of voltage application, but decreased to 1 mA in the middle. On the bottom surface of the obtained glass plate, there were scattered spherical concave portions having a diameter of 500 μm or more and substantially closed openings.
(Experimental example 11)
A glass plate is obtained in the same manner as in Experimental Example 8, except that the voltage application time is 10 minutes. At this time, the current value is about 3.5 mA for 3 minutes after the voltage is applied, and then decreases to 1 mA. On the bottom surface of the obtained glass plate, there are scattered spherical recesses having a diameter of 500 μm or more and substantially closed openings.
From the above experimental examples 1 to 7, it was confirmed that in the first and second production methods, the size, shape, and density of the recesses on the bottom surface of the glass plate can be controlled by the amount of dissolved oxygen in the molten tin. Therefore, it was confirmed that the addition of SnO 2 powder was also effective as an oxygen dissolving means. Moreover, it is confirmed from Experimental Examples 8 to 11 that the size, shape, and density of the recesses on the bottom surface of the glass plate can be controlled by the energization amount in the third manufacturing method. In addition, from Experimental Examples 8 to 11, in the fourth manufacturing method, it can be sufficiently analogized that the size, shape, and density of the concave portion of the glass plate bottom surface can be controlled by the energization amount, as in the third manufacturing method.

以上説明したように、本発明のガラス板は、従来のものよりも微細な凹部をボトム面に均一に有するため、反射防止効果や防眩効果が従来に比べて高い。また、本発明の製造方法は、フロート法によるガラス製造ラインも利用でき、ボトム面に凹部を有するガラス板を効率的に製造することができる。  As described above, since the glass plate of the present invention has a concave portion that is finer than that of the conventional one on the bottom surface, the antireflection effect and the antiglare effect are higher than the conventional one. Moreover, the glass manufacturing line by the float process can also be utilized for the manufacturing method of this invention, and the glass plate which has a recessed part in a bottom surface can be manufactured efficiently.

Claims (10)

溶融スズ上に溶融ガラスを浮遊させて得られるガラス板であって、溶融スズと接した側の表面に、直径0.05〜90μmの凹部が4個/mm以上形成されていることを特徴とするガラス板。Wherein a glass sheet obtained by floating molten glass on molten tin, the surface on the side in contact with molten tin, that is formed recess diameter 0.05~90μm four / mm 2 or more A glass plate. 凹部の直径が1〜90μmである請求項1記載のガラス板。The glass plate according to claim 1, wherein the recess has a diameter of 1 to 90 μm. 凹部の深さが0.2〜25μmである請求項1または2記載のガラス板。The glass plate according to claim 1 or 2, wherein the recess has a depth of 0.2 to 25 µm. 溶融スズ上に板状溶融ガラスを浮かべ、溶融スズと板状溶融ガラスとの界面にガスを直接生成させ、板状溶融ガラスの溶融スズと接した側の表面に、直径0.05〜90μmの凹部を4個/mm以上形成することを特徴とするガラス板の製造方法。Plate-shaped molten glass is floated on the molten tin, gas is directly generated at the interface between the molten tin and the plate-shaped molten glass, and the surface of the plate-shaped molten glass on the side in contact with the molten tin has a diameter of 0.05 to 90 μm. 4. A method for producing a glass plate, comprising forming at least 4 recesses / mm 2 . 溶融スズ上に板状溶融ガラスを浮かべ、板状溶融ガラスの溶融スズと接した側の表面に凹部を形成するガラス板の製造方法であって、露点が−30℃以下で水素と窒素との混合気体からなる雰囲気中で、板状溶融ガラスの粘度が10〜10ポイズとなる液面温度に維持され、液面層に酸素を200ppm以上溶存させた溶融スズ上に、板状溶融ガラスを浮かべることを特徴とするガラス板の製造方法。A method of manufacturing a glass plate in which a plate-like molten glass is floated on molten tin and a recess is formed on the surface of the plate-like molten glass on the side in contact with the molten tin, wherein the dew point is −30 ° C. or less and hydrogen and nitrogen In an atmosphere consisting of a mixed gas, the viscosity of the plate-like molten glass is maintained at a liquid surface temperature of 10 3 to 10 6 poise, and on the molten tin in which 200 ppm or more of oxygen is dissolved in the liquid surface layer, the plate-like molten glass The manufacturing method of the glass plate characterized by the above-mentioned. 溶融ガラスを溶融スズ上に流延してガラスリボンに成形するとともに、ガラスリボンの溶融スズと接した側の表面に凹部を形成するガラス板の製造方法であって、露点が−30℃以下で水素と窒素との混合気体からなる雰囲気中で、溶融ガラスの粘度が10〜10ポイズとなる液面温度に維持され、液面層に酸素を200ppm以上溶存させた溶融スズ上に、溶融ガラスを流延させることを特徴とするガラス板の製造方法。A method for producing a glass plate in which molten glass is cast on molten tin and formed into a glass ribbon, and a recess is formed on the surface of the glass ribbon in contact with the molten tin, the dew point being −30 ° C. or less. In an atmosphere consisting of a mixed gas of hydrogen and nitrogen, the molten glass is maintained at a liquid surface temperature at which the viscosity is 10 3 to 10 6 poise, and melted on molten tin in which 200 ppm or more of oxygen is dissolved in the liquid surface layer. A method for producing a glass plate, characterized by casting glass. 溶融スズの液面から酸素ガスまたは酸素含有ガスを導入するか、溶融スズ中に酸化スズの粉末を投入することにより、溶融スズの液面層に酸素を200ppm以上溶存させる請求項5または6記載のガラス板の製造方法。The oxygen is dissolved in the liquid surface layer of molten tin by introducing oxygen gas or oxygen-containing gas from the liquid surface of molten tin or by introducing tin oxide powder into the molten tin. Manufacturing method of glass plate. 溶融スズ上に板状溶融ガラスを浮かべ、板状溶融ガラスの溶融スズと接した側の表面に凹部を形成するガラス板の製造方法であって、露点が−30℃以下で水素と窒素との混合気体からなる雰囲気中で、板状溶融ガラスの粘度が10〜10ポイズとなる液面温度に維持された溶融スズ上に板状溶融ガラスを浮かべた状態で、溶融スズを陽極とし、板状溶融ガラスを陰極として通電することを特徴とするガラス板の製造方法。A method of manufacturing a glass plate in which a plate-like molten glass is floated on molten tin and a recess is formed on the surface of the plate-like molten glass on the side in contact with the molten tin, wherein the dew point is −30 ° C. or less and hydrogen and nitrogen In an atmosphere consisting of a mixed gas, the molten tin is used as an anode in a state where the molten glass is floated on the molten tin maintained at a liquid surface temperature at which the viscosity of the molten glass is 10 3 to 10 6 poise. A method for producing a glass plate, comprising energizing a plate-shaped molten glass as a cathode. 溶融ガラスを溶融スズ上に流延してガラスリボンに成形するとともに、ガラスリボンの溶融スズと接した側の表面に凹部を形成するガラス板の製造方法であって、露点が−30℃以下で水素と窒素との混合気体からなる雰囲気中で、溶融ガラスの溶融粘度が10〜10ポイズとなる液面温度に維持された溶融スズ上に、溶融スズを陽極とし、溶融ガラスを陰極として通電しながら溶融ガラスを流延させることを特徴とするガラス板の製造方法。A method for producing a glass plate in which molten glass is cast on molten tin and formed into a glass ribbon, and a recess is formed on the surface of the glass ribbon in contact with the molten tin, the dew point being −30 ° C. or less. Using molten tin as an anode and molten glass as a cathode on molten tin maintained at a liquid surface temperature at which the melt viscosity of the molten glass is 10 3 to 10 6 poise in an atmosphere composed of a mixed gas of hydrogen and nitrogen A method for producing a glass sheet, comprising casting molten glass while energizing. 溶融ガラスが、アルカリ金属酸化物を合計で0.1モル%以上含有するケイ酸塩ガラスである請求項8または9記載のガラス板の製造方法。The method for producing a glass plate according to claim 8 or 9, wherein the molten glass is a silicate glass containing a total of 0.1 mol% or more of alkali metal oxides.
JP2004564551A 2003-01-06 2003-12-26 Glass plate and method for producing the same Pending JPWO2004060821A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003000382 2003-01-06
JP2003000382 2003-01-06
PCT/JP2003/016973 WO2004060821A1 (en) 2003-01-06 2003-12-26 Glass plate and method for producing same

Publications (1)

Publication Number Publication Date
JPWO2004060821A1 true JPWO2004060821A1 (en) 2006-05-11

Family

ID=32708771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004564551A Pending JPWO2004060821A1 (en) 2003-01-06 2003-12-26 Glass plate and method for producing the same

Country Status (3)

Country Link
JP (1) JPWO2004060821A1 (en)
AU (1) AU2003292691A1 (en)
WO (1) WO2004060821A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6094942A (en) * 1997-06-13 2000-08-01 Ppg Industries Ohio, Inc. Method and apparatus for reducing tin defects in float glass
JP4078688B2 (en) * 1997-06-30 2008-04-23 旭硝子株式会社 Manufacturing method of plate glass by float method and manufacturing apparatus used for the method
JP4132198B2 (en) * 1998-03-31 2008-08-13 旭硝子株式会社 Float glass manufacturing equipment
JP4168476B2 (en) * 1998-04-17 2008-10-22 旭硝子株式会社 Float glass manufacturing equipment
JP4281141B2 (en) * 1999-02-23 2009-06-17 旭硝子株式会社 Float glass manufacturing method and apparatus
JP4306877B2 (en) * 1999-05-31 2009-08-05 日本板硝子株式会社 Manufacturing method of glass plate having irregularities on surface
DE10209742A1 (en) * 2002-03-06 2003-09-18 Schott Glas Production of float glass comprises molding a molten glass on a metal melt between a hot end and a cold end in a metal bath to form a flat glass, and influencing the oxygen concentration of the metal melt

Also Published As

Publication number Publication date
WO2004060821A1 (en) 2004-07-22
AU2003292691A1 (en) 2004-07-29

Similar Documents

Publication Publication Date Title
JP6595914B2 (en) Thermoelectric method for glass surface texturing
TWI412499B (en) Glass and glass plate manufacturing methods
JP6377053B2 (en) Glass plate and method for producing glass plate
EP3201149B1 (en) Method for manufacturing patterned ion-exchanged substrates
JP2000335925A (en) Production of glass plate having surface unevenness
CN108349787A (en) The manufacturing method of glass substrate for display and glass substrate for display
TW201819341A (en) Purified ceramic materials and methods for making the same
JP4949858B2 (en) Flat lead glass manufactured by floating on metal bath
JPWO2004060821A1 (en) Glass plate and method for producing the same
EP2371776A1 (en) Method for producing flat glass
WO2014123089A1 (en) Glass manufacturing method
KR20100000451A (en) Machine parts coated with ceramic for semiconductor manufacturing and manufacturing method thereof
JPH09295833A (en) Method for smoothing float glass substrate
Mills et al. Surface texturing of Si, porous Si and TiO2 by laser ablation
CN209685571U (en) A kind of special equipment producing devitrified glass
CN101155761A (en) Flat glass and method for manufacturing flat glass
CN103221570B (en) Ceramic member and method for producing same, device and method for producing molten glass, and device and method for producing glass article
US3868241A (en) Manufacture of fused cast refractory with streams of oxygen
WO2022075016A1 (en) Glass melting device, glass production method, and molten glass base material exchange method
JP2018135226A (en) GLASS SUBSTRATE FOR DISPLAY AND METHOD FOR PRODUCING GLASS SUBSTRATE FOR DISPLAY
JPH11302024A (en) Float glass manufacturing equipment
JP7544070B2 (en) Lithium silicate glass plate with sulfate, lithium silicate glass plate, and manufacturing method thereof
CN1962500A (en) Process for producing flat glass, particularly flat glass convertible to float glass
KR20200142749A (en) POLISHING COMPOSITIONS FOR Fe-Ni ALLOY FOIL AND POLISHING METHOD USING THE SAME
KR101431770B1 (en) Fire brick for float bath and method for manufacturing the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425