JPS64994Y2 - - Google Patents
Info
- Publication number
- JPS64994Y2 JPS64994Y2 JP11968284U JP11968284U JPS64994Y2 JP S64994 Y2 JPS64994 Y2 JP S64994Y2 JP 11968284 U JP11968284 U JP 11968284U JP 11968284 U JP11968284 U JP 11968284U JP S64994 Y2 JPS64994 Y2 JP S64994Y2
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- signal
- function generator
- amount
- combustion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000002485 combustion reaction Methods 0.000 claims description 37
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 29
- 238000002347 injection Methods 0.000 claims description 13
- 239000007924 injection Substances 0.000 claims description 13
- 238000010344 co-firing Methods 0.000 claims description 12
- 229910021529 ammonia Inorganic materials 0.000 claims description 8
- 239000003245 coal Substances 0.000 description 19
- 239000000446 fuel Substances 0.000 description 18
- 239000003921 oil Substances 0.000 description 13
- 239000000295 fuel oil Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 6
- 230000033228 biological regulation Effects 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 238000010531 catalytic reduction reaction Methods 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Treating Waste Gases (AREA)
- Regulation And Control Of Combustion (AREA)
Description
【考案の詳細な説明】
〔考案の利用分野〕
本考案はアンモニアの注入量制御装置に係り、
特に石炭焚き脱硝装置へのアンモニア注入量制御
装置に関するものである。[Detailed description of the invention] [Field of application of the invention] The invention relates to an ammonia injection amount control device,
In particular, it relates to an ammonia injection amount control device to a coal-fired denitrification device.
近年、我が国においては重油供給量のひつ迫か
ら、石油依存度の是正を計るために、従来の重油
専焼から石炭専焼へと燃料を変換しつつあり、特
に事業用ボイラにおいては石炭専焼の大容量火力
発電所が建設されている。
In recent years, in Japan, due to the tight supply of heavy oil, in order to correct our dependence on oil, we have been converting the fuel from conventional heavy oil-fired combustion to coal-fired combustion, and in particular, the large capacity of coal-fired boilers is increasing in commercial boilers. A thermal power plant is being built.
ところが、石炭燃料は石油燃料に比べて燃料性
が悪いので排ガス中に含まれるNOx及び未燃分
が発生しやすく、特にNOxの低減対策のために
火炎の分割、排ガスの再循環、二段燃焼及び炉内
脱硝などを採用して緩慢な燃焼を行なわせて
NOxを低減することも行なわれている。 However, since coal fuel has poor fuel properties compared to petroleum fuel, NOx and unburned substances contained in exhaust gas are likely to be generated.In particular, measures to reduce NOx include flame splitting, exhaust gas recirculation, and two-stage combustion. And by using in-furnace denitrification, etc., to achieve slow combustion.
Efforts are also being made to reduce NOx.
そしてこの石炭専焼火力においては、ボイラ負
荷が常に全負荷で運転されるものは少なく、負荷
を80%負荷、50%負荷、25%負荷へと負荷を上げ
下げして運転したり、運転を停止するなど、いわ
ゆる高頻度起動停止(Daily Start Stop以下単
にDSSという)運転を行なつて中間負荷を担う火
力発電プラントへ移行しつつある。 In these coal-fired thermal power plants, there are few cases in which the boiler load is always operated at full load, but the load is increased or decreased to 80% load, 50% load, 25% load, or operation is stopped. A shift is being made to thermal power plants that handle intermediate loads by performing so-called daily start-stop (DSS) operations.
また、この石炭焚きの中間負荷用ボイラにおい
てはNOx排出濃度の規制強化に伴ない、従来の
燃焼改善に加えて、NH3を還元剤として触媒の
存在下で脱硝を行なう乾式接触還元脱硝装置を設
置するプラントが増加している。 Additionally, in line with stricter regulations on NOx emission concentration, this coal-fired medium-load boiler is equipped with a dry catalytic reduction denitrification system that performs denitrification in the presence of a catalyst using NH3 as a reducing agent, in addition to conventional combustion improvements. The number of plants being installed is increasing.
一方、DSS運転を行なう石炭焚きボイラにおい
ては、起動時から全負荷に至るまで微粉炭のみで
全負荷帯を運転するのではなく、石炭焚きボイラ
といえども起動時、低負荷時には軽油、重油、ガ
スを燃料として用いる。 On the other hand, coal-fired boilers that perform DSS operation do not operate with only pulverized coal from start-up to full load; even though they are coal-fired boilers, light oil, heavy oil, Uses gas as fuel.
それは起動時においてはボイラからミルウオー
ミング用の排ガス、加熱空気が得られず、このた
めにミルを運転することができないからである。 This is because at startup, exhaust gas and heated air for mill warming cannot be obtained from the boiler, and therefore the mill cannot be operated.
また、低負荷時にはミルのターンダウン比がと
れないこと、微粉炭自体の着火性が悪いことなど
の理由によつて軽油、重油、ガスなどを用いる。 In addition, light oil, heavy oil, gas, etc. are used because the turndown ratio of the mill cannot be maintained at low loads, and the ignitability of pulverized coal itself is poor.
例えば起動時に軽油、重油を用いる場合は、起
動時から15%負荷までは軽油を燃料としてボイラ
を焚き上げ、15%負荷から40%負荷までは軽油か
ら重油へ燃料を変更して焚き上げ、40%負荷以上
になると重油と微粉炭を混焼して順次重油燃料を
少なくするとともに微粉炭燃料を多くして微粉炭
の混焼比率を上げて実質的な石炭焚きへと移行す
る。 For example, when using light oil or heavy oil at startup, the boiler is fired using light oil as fuel from the time of startup until 15% load, and from 15% load to 40% load, the fuel is changed from light oil to heavy oil and fired. When the load exceeds % load, heavy oil and pulverized coal are co-fired, the amount of heavy oil fuel is gradually reduced, and pulverized coal fuel is increased to increase the pulverized coal co-firing ratio, resulting in a transition to actual coal-fired combustion.
また、DSS運転で100%負荷からボイラ負荷を
下げる場合には、ボイラ自体が起動時とは異なり
排ガス温度も上昇しているので100%負荷から30
%負荷までは微粉炭を燃焼させて石炭焚きボイラ
となり、30%負荷以下では重油、軽油に燃料を変
更して運転される。 In addition, when lowering the boiler load from 100% load in DSS operation, the exhaust gas temperature has also risen, which is different from when the boiler itself was started, so
Up to 30% load, the boiler burns pulverized coal and becomes a coal-fired boiler, and below 30% load, the fuel is switched to heavy oil or light oil.
ところが、石炭焚きの中間負荷用ボイラにおい
ては、NOx排出濃度の規制強化に伴ない、従来
の燃焼改善に加えて、NH3を還元剤としての触
媒の存在下で脱硝を行なう第3図の様な乾式接触
還元脱硝装置を設置するプラントが増加してい
る。 However, in coal-fired medium-load boilers, in addition to the conventional combustion improvement, due to stricter regulations on NOx emission concentration, denitrification is performed in the presence of a catalyst that uses NH 3 as a reducing agent, as shown in Figure 3. An increasing number of plants are installing dry catalytic reduction denitrification equipment.
第3図は脱硝装置が設置された石炭焚きボイラ
の代表的な煙風道系統を示す。 Figure 3 shows a typical flue system for a coal-fired boiler equipped with a denitrification device.
空気ダクト1内の燃焼用空気は押込通風機2に
て昇圧され、空気予熱器3にて排ガスダクト4の
排ガスによつて加熱された後ウインドボツクス5
よりボイラ6へ供給される。 The combustion air in the air duct 1 is pressurized by the forced draft fan 2, heated by the exhaust gas from the exhaust gas duct 4 in the air preheater 3, and then transferred to the wind box 5.
The water is then supplied to the boiler 6.
一方ボイラ6内で燃焼した排ガスは、排ガスダ
クト4でNH3注入管7からのNH3によつて脱硝
されると共に、下流に配置した脱硝装置8内の触
媒9において脱硝を促進し、排ガス中のNOxは
除去されて空気予熱器3、排ガスダクト4を経て
誘引通風機10で昇圧されて大気へ放出される。 On the other hand, the exhaust gas combusted in the boiler 6 is denitrified in the exhaust gas duct 4 by NH 3 from the NH 3 injection pipe 7, and the denitrification is promoted in the catalyst 9 in the denitrification device 8 disposed downstream. NOx is removed, passes through an air preheater 3 and an exhaust gas duct 4, is pressurized by an induced draft fan 10, and is released into the atmosphere.
一方、アンモニアガス配管11からのアンモニ
アガスと、分岐ダクト12からの稀釈用空気は稀
釈混合器13で混合して爆発限界以下に稀釈され
てNH3注入管より注入する。 On the other hand, ammonia gas from the ammonia gas pipe 11 and dilution air from the branch duct 12 are mixed in a dilution mixer 13, diluted to below the explosion limit, and injected from the NH 3 injection pipe.
なお、14は油バーナ、15は微粉炭バーナ、
16は石炭ホツパ、17は給炭機、18はミルで
ある。 In addition, 14 is an oil burner, 15 is a pulverized coal burner,
16 is a coal hopper, 17 is a coal feeder, and 18 is a mill.
以下、従来のNH3注入量制御装置の概要につ
いて第4図を用いて説明する。 The outline of the conventional NH 3 injection amount control device will be explained below using FIG. 4.
第3図のボイラ6の空気流量発信器19からの
空気流量信号20を関数発生器21で排ガス量信
号22に変換し、この排ガス量信号22と、脱硝
装置入口NOx量発信器23からのNOx信号24
を乗算器25により乗算しNOx量信号26とす
る。 The air flow signal 20 from the air flow transmitter 19 of the boiler 6 shown in FIG. signal 24
is multiplied by the multiplier 25 to obtain the NOx amount signal 26.
このNOx量信号26とモル比設定及びモル比
修正回路27からのモル比信号28を乗算器29
により乗算しアンモニアガス要求信号30とす
る。 A multiplier 29 multiplies this NOx amount signal 26 and a molar ratio signal 28 from a molar ratio setting and molar ratio correction circuit 27.
The ammonia gas request signal 30 is obtained by multiplying by .
このアンモニアガス要求信号30とアンモニア
ガス流量発信器31、開平演算器32からのアン
モニアガス流量信号33とをアンモニアガス流量
調節計34で演算し、偏差がなくなるように信号
35を出し、電空変換器36を経てアンモニアガ
ス流量調節弁37を開,閉してアンモニアガス流
量を制御していた。 This ammonia gas demand signal 30 and the ammonia gas flow rate signal 33 from the ammonia gas flow rate transmitter 31 and the square root calculator 32 are calculated by the ammonia gas flow rate controller 34, and a signal 35 is outputted so that there is no deviation, and electro-pneumatic conversion is performed. The ammonia gas flow rate was controlled by opening and closing an ammonia gas flow rate control valve 37 via a vessel 36.
また、DSS運転時の負荷変化へ追従するため
に、蒸気流量発信器38からの蒸気流量信号39
によつてオーバーアンダー注入回路40を通して
負荷増加時にはアンモニアガスを過大に、負荷減
少時にはアンモニアガスを過少に先行注入するよ
うにしていた。 In addition, in order to follow load changes during DSS operation, a steam flow rate signal 39 is sent from a steam flow rate transmitter 38.
Therefore, when the load increases, too much ammonia gas is injected through the over-under injection circuit 40, and when the load decreases, too little ammonia gas is injected in advance.
ところが、重油専焼、ガス専焼の様に燃料自体
が均一化され、燃料投入後即時に燃焼するボイラ
であれば前述のモル比設定及びモル比修正回路2
7、オーバーアンダー注入回路40で対処できる
が、石炭焚の様に石炭ホツパ16、給炭機17へ
石炭を投入後ミル18で微粉炭に粉砕して微粉炭
バーナ15から燃焼させてDSS運転を行なうもの
においては従来技術では対処できず、最近の環境
規制には満足できない欠点がある。 However, if the fuel itself is homogenized, such as heavy oil-only combustion or gas-only combustion, and the boiler burns immediately after fuel is input, the above-mentioned molar ratio setting and molar ratio correction circuit 2 is required.
7. This can be handled with the over-under injection circuit 40, but like coal firing, coal is fed into the coal hopper 16 and coal feeder 17, then crushed into pulverized coal in the mill 18 and combusted in the pulverized coal burner 15 to perform DSS operation. There are drawbacks that cannot be addressed by conventional technology and that do not satisfy recent environmental regulations.
本考案はかかる従来の欠点を解消しようとする
もので、その目的とするところは、重油、ガス燃
料を用いて起動する石炭焚きボイラのDSS運転時
であつても負荷変化に追従してNH3を注入する
ことができるアンモニア注入量制御装置を得よう
とするものである。
The present invention attempts to eliminate such conventional drawbacks, and its purpose is to follow load changes and reduce NH 3 even during DSS operation of coal-fired boilers started using heavy oil or gas fuel. The purpose of the present invention is to obtain an ammonia injection amount control device that can inject ammonia.
本考案は前述の目的を達成するために、関数発
生器を専焼用関数発生器と混焼用関数発生器に分
けるとともに、混焼用関数発生器の後に混焼比率
を混焼用関数発生器からの信号に乗算する乗算器
と、両関数発生器からの信号を加算する加算器と
からなる混焼比による排ガス量設定回路を設け、
混焼時の排ガス量を可変設定するようにしたもの
である。
In order to achieve the above-mentioned purpose, the present invention divides the function generator into a function generator for dedicated combustion and a function generator for co-firing, and outputs the co-firing ratio as a signal from the function generator for co-firing after the function generator for co-firing. An exhaust gas amount setting circuit based on the mixed combustion ratio is provided, consisting of a multiplier that multiplies and an adder that adds the signals from both function generators.
The amount of exhaust gas during co-firing can be variably set.
以下、本考案の実施例を図面を用いて説明す
る。第1図は本考案の実施例に係るNH3の注入
量制御装置の系統図、第2図は縦軸に排ガス量、
横軸に空気流量を示した特性曲線図である。
Embodiments of the present invention will be described below with reference to the drawings. Fig. 1 is a system diagram of the NH 3 injection amount control device according to the embodiment of the present invention, and Fig. 2 shows the exhaust gas amount on the vertical axis.
It is a characteristic curve diagram in which the horizontal axis shows the air flow rate.
第1図において、符号19から40は第4図の
ものと同一のものを示す。 In FIG. 1, numerals 19 to 40 indicate the same parts as in FIG.
41は本考案の混焼ボイラの排ガス量設定回路
で、この排ガス設定回路41は、専焼用関数発生
器42、混焼用関数発生器43、乗算器44、燃
料混焼比率発信器45、混焼比信号46、加算器
47から構成されている。 41 is an exhaust gas amount setting circuit for the mixed combustion boiler of the present invention, and this exhaust gas setting circuit 41 includes a dedicated combustion function generator 42, a mixed combustion function generator 43, a multiplier 44, a fuel mixed combustion ratio transmitter 45, and a mixed combustion ratio signal 46. , an adder 47.
第2図は空気流量と排ガス量の相関関係を示し
たもので、曲線Aは石炭専焼時の特性、曲線Bは
油専焼時の特性で専焼用関数発生器42にプログ
ラムする。 FIG. 2 shows the correlation between the air flow rate and the amount of exhaust gas. Curve A shows the characteristics when coal is fired exclusively, and curve B shows the characteristics when oil is fired exclusively, which are programmed into the function generator 42 for firing exclusively.
曲線Cは曲線Aから曲線Bを差し引いたもので
混焼用関数発生器43にプログラムし、油専焼か
ら石炭専焼まで燃料混焼比0〜100%までの排ガ
ス量の変化幅である。 Curve C is obtained by subtracting curve B from curve A, and is programmed into the co-combustion function generator 43, and is the range of change in the amount of exhaust gas from oil-only combustion to coal-only combustion with a fuel co-combustion ratio of 0 to 100%.
従つて、燃料混焼比率発信器45の混焼比率信
号46を乗算器44を通して混焼用関数発生器4
3からの混焼排ガス量に乗算したものが燃料混焼
比による排ガス量の変化幅となる。 Therefore, the co-firing ratio signal 46 from the fuel co-firing ratio transmitter 45 is passed through the multiplier 44 to the co-firing function generator 4.
The value multiplied by the co-combustion exhaust gas amount from 3 becomes the variation range of the exhaust gas amount due to the fuel co-combustion ratio.
つまり、空気流量発信器19からの空気流量信
号20を専焼用関数発生器42で油専焼排ガス量
信号48とし、一方、空気量信号20を混焼用関
数発生器43で混焼排ガス量信号49に変換し、
この混焼排ガス量信号49と混焼比信号46を乗
算器44で乗算する。この乗算した信号50と油
専焼排ガス量信号48を加算器47で加算したも
のがその燃焼状態における排ガス量信号22とな
る。 That is, the air flow rate signal 20 from the air flow rate transmitter 19 is converted into the oil-only exhaust gas amount signal 48 by the dedicated combustion function generator 42, and the air amount signal 20 is converted into the mixed combustion exhaust gas amount signal 49 by the mixed combustion function generator 43. death,
The mixed combustion exhaust gas amount signal 49 and the mixed combustion ratio signal 46 are multiplied by a multiplier 44 . The product obtained by adding the multiplied signal 50 and the oil-only combustion exhaust gas amount signal 48 by an adder 47 becomes the exhaust gas amount signal 22 in the combustion state.
この様に本考案においては、燃料混焼比がどの
様に変化しても自動的に排ガス量のプログラムを
排ガス量設定回路41で可変設定できるようにし
たものである。 In this way, in the present invention, no matter how the fuel co-combustion ratio changes, the exhaust gas amount program can be automatically and variably set by the exhaust gas amount setting circuit 41.
従つて、例えば油と石炭を混焼し、しかもDSS
運転を行なう石炭焚ボイラであつても、常に排ガ
ス量設定回路41でその混焼比率に応じて排ガス
量を可変設定できるので、負荷追従性はよくな
り、NOx排出量も規制値を満足するものとなる。 Therefore, for example, when oil and coal are co-fired, DSS
Even if the coal-fired boiler is operated, the exhaust gas amount can always be variably set in accordance with the co-firing ratio using the exhaust gas amount setting circuit 41, so load followability is improved and the NOx emissions also meet the regulatory values. Become.
なお、この可変設定できる排ガス量信号22を
もとにNH3注入量を制御するが、その制御は従
来の第4図のものと同一であるのでその説明は省
略する。 The NH 3 injection amount is controlled based on this variably settable exhaust gas amount signal 22, but since the control is the same as the conventional one shown in FIG. 4, its explanation will be omitted.
本考案によれば石炭焚きボイラのDSS運転時で
あつても負荷変化に追従して排ガス量を可変設定
することができ、しかも負荷に追従して適確にア
ンモニアを注入することができる。
According to the present invention, even during DSS operation of a coal-fired boiler, it is possible to variably set the amount of exhaust gas in accordance with load changes, and moreover, it is possible to accurately inject ammonia in accordance with the load.
第1図は本考案の実施例に係るアンモニア注入
量制御装置の系統図、第2図は排ガス量と空気流
量の相関関係を示す特性曲線図、第3図は脱硝装
置が設置された石炭焚きボイラの代表的な煙風道
系統図、第4図は従来のアンモニア注入量制御装
置の系統図である。
41…排ガス量設定回路、42…専焼用関数発
生器、43…混焼用関数発生器、44…乗算器、
46…混焼比信号、47…加算器。
Fig. 1 is a system diagram of an ammonia injection amount control device according to an embodiment of the present invention, Fig. 2 is a characteristic curve diagram showing the correlation between exhaust gas amount and air flow rate, and Fig. 3 is a coal-fired system with a denitrification device installed. FIG. 4, which is a typical smoke and air duct system diagram of a boiler, is a system diagram of a conventional ammonia injection amount control device. 41...Exhaust gas amount setting circuit, 42...Function generator for dedicated combustion, 43...Function generator for mixed combustion, 44...Multiplier,
46... Mixed firing ratio signal, 47... Adder.
Claims (1)
数発生器と、この排ガス量に脱硝入口NOx量を
乗算してNH3要求信号を演算する演算器とを備
え、NH3要求信号とNH3流量信号との偏差信号
によつてNH3流量を制御するものにおいて、前
記関数発生器を専焼用関数発生器と混焼用関数発
生器に分けるとともに、混焼用関数発生器の後に
混焼比率を混焼用関数発生器からの信号に乗算す
る乗算器と、両関数発生器からの信号を加算する
加算器とからなる混焼比による排ガス量設定回路
を設け、混焼時の排ガス量を可変設定するように
構成したことを特徴とするアンモニア注入量制御
装置。 Equipped with a function generator that converts the signal from the gas generation source into the amount of exhaust gas, and a calculator that calculates the NH 3 demand signal by multiplying this amount of exhaust gas by the NOx amount at the denitrification inlet, and calculates the NH 3 demand signal and the NH 3 flow rate. In a device that controls the NH 3 flow rate by a deviation signal from the signal, the function generator is divided into a function generator for exclusive combustion and a function generator for mixed combustion, and after the function generator for mixed combustion, a function generator for the mixed combustion ratio is set. An exhaust gas amount setting circuit based on the co-firing ratio is provided, consisting of a multiplier that multiplies the signal from the generator and an adder that adds the signals from both function generators, and is configured to variably set the amount of exhaust gas during co-firing. An ammonia injection amount control device characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11968284U JPS6137223U (en) | 1984-08-03 | 1984-08-03 | Ammonia injection amount control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11968284U JPS6137223U (en) | 1984-08-03 | 1984-08-03 | Ammonia injection amount control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6137223U JPS6137223U (en) | 1986-03-07 |
JPS64994Y2 true JPS64994Y2 (en) | 1989-01-11 |
Family
ID=30678549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11968284U Granted JPS6137223U (en) | 1984-08-03 | 1984-08-03 | Ammonia injection amount control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6137223U (en) |
-
1984
- 1984-08-03 JP JP11968284U patent/JPS6137223U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6137223U (en) | 1986-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5626085A (en) | Control of staged combustion, low NOx firing systems with single or multiple levels of overfire air | |
CN204962817U (en) | SCR flue gas denitration system that full load mode put into operation | |
CN110094725B (en) | A kind of ultra-low nitrogen combustion method for coal-fired generator set | |
CN101050853B (en) | Method for reducing nitrogen oxides by co-combusting gas fuel in pulverized coal boiler | |
EP1172525A1 (en) | Method of repowering boiler turbine generator plants and repowered boiler turbine generator plants | |
CN106224948A (en) | A kind of self adaptation CFBB control method | |
CN112580890B (en) | Method and system for predicting variable cost of power generation by blending and burning mixed coal of boiler for power generation | |
EP2686525B1 (en) | Cogeneration power plant | |
JPS64994Y2 (en) | ||
JPH03286906A (en) | Boiler | |
CN105889904A (en) | Method for reducing nitrogen oxides of pulverized coal boiler mixed combustion gas fuel | |
US7845291B2 (en) | Control method for waste incineration plants with auxiliary burner operation | |
CN202420214U (en) | Waste-heat utilization flue after-burning device | |
CN219014361U (en) | Boiler system | |
Sakai et al. | Design and Operating Experience of the Latest 1,000-MW Coal-Fired Boiler | |
CN108731027A (en) | A kind of control system and method for Rear of Utility Boiler smoke temperature | |
JPS6361815A (en) | Boiler automatic control system | |
JPH0811171B2 (en) | Ammonia injection amount control device | |
JPH0781151B2 (en) | High efficiency NOx control method | |
CN207648832U (en) | Boiler whole process denitrating system | |
JPS60263014A (en) | Combustion controlling method | |
JPH0220896B2 (en) | ||
JP2024121432A (en) | Denitrification control device, denitrification control method, and program | |
JPH0318832Y2 (en) | ||
JPH08117553A (en) | Method and device for controlling injection amount of ammonia of denitration apparatus |