JPS649907B2 - - Google Patents
Info
- Publication number
- JPS649907B2 JPS649907B2 JP12821980A JP12821980A JPS649907B2 JP S649907 B2 JPS649907 B2 JP S649907B2 JP 12821980 A JP12821980 A JP 12821980A JP 12821980 A JP12821980 A JP 12821980A JP S649907 B2 JPS649907 B2 JP S649907B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- atomic
- amorphous
- spinning nozzle
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910052751 metal Inorganic materials 0.000 claims description 103
- 239000002184 metal Substances 0.000 claims description 99
- 229910045601 alloy Inorganic materials 0.000 claims description 53
- 239000000956 alloy Substances 0.000 claims description 53
- 238000009987 spinning Methods 0.000 claims description 47
- 239000000110 cooling liquid Substances 0.000 claims description 45
- 239000005300 metallic glass Substances 0.000 claims description 21
- 150000002739 metals Chemical class 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 12
- 229910052710 silicon Inorganic materials 0.000 claims description 10
- 229910052720 vanadium Inorganic materials 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 239000011148 porous material Substances 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 238000000034 method Methods 0.000 description 35
- 238000001816 cooling Methods 0.000 description 32
- 239000002826 coolant Substances 0.000 description 22
- 229910008423 Si—B Inorganic materials 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 239000007788 liquid Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000010791 quenching Methods 0.000 description 7
- 230000000171 quenching effect Effects 0.000 description 7
- 239000007789 gas Substances 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 229910052752 metalloid Inorganic materials 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910000531 Co alloy Inorganic materials 0.000 description 3
- 229910000640 Fe alloy Inorganic materials 0.000 description 3
- 229910000990 Ni alloy Inorganic materials 0.000 description 3
- 239000012300 argon atmosphere Substances 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 238000005491 wire drawing Methods 0.000 description 3
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 229910000676 Si alloy Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000003779 heat-resistant material Substances 0.000 description 2
- 239000012770 industrial material Substances 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000002074 melt spinning Methods 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 239000010979 ruby Substances 0.000 description 2
- 229910001750 ruby Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- 229910000521 B alloy Inorganic materials 0.000 description 1
- 229910001339 C alloy Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910017758 Cu-Si Inorganic materials 0.000 description 1
- 229910017931 Cu—Si Inorganic materials 0.000 description 1
- 238000005280 amorphization Methods 0.000 description 1
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000009940 knitting Methods 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/06—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
- B22D11/0611—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires
- B22D11/062—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires the metal being cast on the inside surface of the casting wheel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15391—Elongated structures, e.g. wires
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Power Engineering (AREA)
- Continuous Casting (AREA)
Description
(産業上の利用分野)
本発明は、耐熱性並びに強度に優れた断面の円
形な非晶質金属フイラメントの製造方法に関する
ものである。
(従来の技術)
溶融金属から直接金属フイラメントを製造する
方法は、安価な金属フイラメントの製造方法であ
る。しかも、得られた金属フイラメントが非晶質
構造を有するならば、化学的、電気的、物理的に
数多くの優れた特長を有しており、電気及び電子
部品、複合材、繊維素材等の多くの分野において
実用化される可能性が極めて強い。特に非晶質合
金の場合、適切な合金組成を選択することによ
り、従来実用化されている結晶金属、結晶合金に
比べ、強度が著しく高く、加工硬化もなく、非常
に粘い等の優れた機械的性質を有しているので、
断面の円形な高品位の非晶質金属フイラメントを
得ることができるならば、将来有望な各種工業資
材として大いに期待される。
非晶質金属に関しては、「日本金属学会報」No.
3、Vol.15(1976年)、「サイエンス」No.8(1978
年)等にすでに知られているとおりである。この
ような優れた特性を有する非晶質金属について、
断面が円形な高品位のフイラメントを、溶融紡糸
という簡便な製造方法で得ることが強く嘱望され
ている。
現在、溶融金属から直接冷却液体中に紡出固化
して断面の円形な非晶質金属フイラメントが得ら
れるのは、Pd77.5―Cu6―Si16.5系合金(数字は原
子%)のように、臨界冷却速度が103℃/秒程度
の合金に限られている(Scripta metallurgica
Vol.13、1979年、P463〜467)。合金の非晶質化
の難易は、金属の種類や組成に大きく依存し、特
に実用材として重要なFe、Ni、Co系合金の臨界
冷却速度は、およそ105〜106℃/秒の範囲にあ
り、冷却液体中では冷却速度が遅いため、断面の
円形な非晶質金属フイラメントは得られにくいと
されている。すなわち、現在Fe、Ni、Co系合金
の非晶質金属を得るには、冷却速度の速いガン
法、ピストン・アンビル法、ロール急冷法、遠心
急冷法、プラズマ・ジエツト法等が採用されてい
る。しかし、上記の方法のうち、ロール急冷法及
び遠心急冷法以外は、すべて不定形板状のものし
か得られない。ロール急冷法、遠心急冷法におい
ても、定形リボン状のものしか得られていないの
が実状であり、偏平なるがゆえに特殊な用途以外
には使用できないという欠点を有している。
このリボン状の非晶質金属フイラメントの製造
方法は、前述した非晶質合金に関する文献をはじ
め、特開昭49−91014号(U.S.3856513)、特開昭
53−125228号、特開昭53−125229号、特開昭52−
88219号、特公昭52−50727号、特開昭50−101203
号、特開昭51−4017号、特開昭51−109221号
(DT2606581、FR2301605)、特開昭53−12719
号、特開昭53−12720号、特開昭52−133826号
(DT2719710、FR2350159)、特開昭52−88220号
等、多くの特許公報によつて知られている。
このように、従来の非晶質金属フイラメントの
製造方法は、溶融金属を急冷体の表面に噴射して
行う原理に基づいているため、接触した面での偏
平化は避けられず、断面の円形なフイラメントを
得ることは到底不可能であつた。ロールの表面に
丸い溝をつけて、そこに溶融金属を噴射して断面
を円形化しようという試みもなされたが、非常に
細いその溝の中に溶融金属を正確に噴射すること
ができない等、技術的には非常に成功の可能性の
小さいものであつた。
一方、溶融金属から直接断面の円形な金属フイ
ラメントを得るため、数多くの製造法が開発され
ている。その一つの方法として、非常に不安定な
低粘性金属流が連続性を保つている間に冷却固化
される、いわゆる現在多量生産されている合成繊
維の溶融紡糸と同様の方式がある。例えば、特公
昭45−24013号公報には、かかる冷却固化にかか
わる安定化手段として、金属と反応性のある雰囲
気ガス中に紡出し、溶融フイラメント表面に酸化
あるいは窒化皮膜を形成する方法が提案されてい
る。ところが、この提案について詳細に検討して
みると、皮膜の形成だけでは溶融金属を固化状態
と同様に安定化することは極めて困難である。ま
してや、この方法は、酸化あるいは窒化皮膜等を
形成する特定の金属しか採用できない。
また、特公昭44−25374号公報は、溶融金属の
冷却方法に極めて有用な一手段を提供するもの
で、特に融剤粒子を不活性ガス中に浮遊する状態
でコロナ放電によるイオン化領域中に噴霧し、こ
の融剤の潜熱を利用して溶融金属を冷却固化する
方法は注目に値する。この同様の冷却方法に関し
ては、例えば、特開昭48−56560号公報、特開昭
48−71359号公報にも、泡沫密集又は気泡中に溶
融金属を紡出し、冷却固化する方法が提案されて
いる。しかるに、いずれの方法においても、冷却
固化速度はかなり遅く、紡糸流の化学的又は静電
気的安定化はまだ不十分である。
また、他の方法として「化繊月報」No.7(1974
年)P61に記載の、ガラス管中に銅、銀、その他
チツプ状の金属を入れ、これを誘導加熱コイルに
よつてガラス管と金属を加熱溶融し、下部より予
め加熱したガラス棒で引つ張り出して巻き取る、
ガラスの曳糸性を利用した金属の複合紡糸法があ
る。しかしながら、この複合紡糸法は、ガラスの
溶融粘度と金属の溶融温度との特定の組み合わせ
の場合のみ有効であり、すべての金属に利用でき
るには至つていない。しかも、複合紡糸であるが
ゆえに溶融部、紡糸ノズル部の構造が複雑で、か
つ高度の精密性が要求される。そのうえ、金属フ
イラメントとして使用するには、外周部のガラス
皮膜を除去する必要があり、製造コストが高く、
工業化するには多くの問題を含蓄している。
また、特開昭49−135820号公報のごとく、紡糸
した溶融金属を並流する冷却液中に噴出して金属
フイラメントを製造する方法も提案されている
が、紡糸した溶融金属と冷却液が同速かつ低速
(200m/分以下)で並流なるため、後述のごとく
冷却能が不十分である。しかも、冷却液が重力に
よる自然落下流なるため、紡糸した溶融金属との
衝突、沸騰、対流により冷却液及び液面を安定に
保持することが非常に困難で、断面の円形な高品
質の非晶質フイラメントを得ることができない。
さらに、固化したフイラメントを連続的に直接巻
き取ることは、工業的にも非常に難しい。
また回転ドラムの中に冷却液体を入れ、遠心力
でドラムの内壁に液膜を形成させ、この液膜中に
溶融した鉛のジエツトを噴出し、断面の円形な鉛
の連続細線を製造する方法が、昭和53年度目本金
属学会・秋期大会(第83回、於:富山)の講演予
稿集タイトルNo.331、特開昭55−64948号公報に記
載されている。しかし、この方法は、鉛のような
曳糸性の良い低融点金属ではじめて適用できるも
のであつて、特に、この方法の実施の際の必要条
件と記載されている溶融金属流の噴出速度をドラ
ムの回転速度より速くする条件では、非晶質合金
の高品質連続細線化は到底不可能であつた。しか
も、この方法で得られた鉛の連続細線は、非晶質
ではなく、断面の真円度も低く、湾曲し、長さ方
向の太さ斑も大きく、実用に併せるものではなか
つた。
(発明が解決しようとする課題)
そこで、本発明者らは、先に実用材料として重
要なFe、Ni、Co金属元素に半金属元素を種々組
み合わせた合金を用い、回転冷却液体中に溶融金
属を導いて急冷固化した時、どの金属元素が優れ
た細線形成能を有するかについて検討した。その
結果、Ni基合金は回転冷却液体中でほとんど球
状のシヨツトとなり、細線形成能が劣ることが判
明し、一方、原料価格の一番安いFe基合金が非
常に優れた細線形成能を有しており、Co基合金
がFe基合金に比べやや劣る細線形成能を有して
いる。ここでいう細線形成能とは、回転冷却液体
中に溶融金属を紡出して冷却固化した時に、断面
が円形で、長さ方向に太さ斑のない均一な連続フ
イラメントを形成し得る性質をいう。
実例を挙げてより詳細に説明すると、Ni基合
金の代表的なNi―Si―B系合金は、遠心急冷法
によつて非常に簡単に均一な非晶質連続偏平フイ
ラメントが得られることは周知のことである。し
かし、溶融金属流を回転冷却液体中に紡出して急
冷固化しても、連続フイラメント状のものはほと
んど得られず、ほとんど球状のシヨツトとなる。
また、臨界冷却速度が1.8×103℃/秒と遅いPd82
―Si18(原子%)合金も、回転冷却液体中で急冷
固化すると、ほとんど球状のシヨツトとなり、細
線形成能が劣つているが、この合金にCuを付与
したPd―Cu―Si系合金は、優れた細線形成能を
有しており、非常に均一で断面の円形な非晶質連
続フイラメントを得ることができる。しかし、こ
の合金は非常に高価である。
次に、合金の非晶質化に寄与する半金属元素の
細線形成能との関係についても検討してみると、
半金属元素の種類、組み合わせによつても回転冷
却液体中での細線形成能に驚くほど差があり、例
えば、前述のごとく、非常に優れた細線形成能を
有するFe、Co金属元素に半金属元素を付与した
合金系について回転冷却液体中での細線形成能に
ついて比較検討すると、Fe―Si―B≧Fe―P―
Si≧Co―Si―B≧Fe―P―C系合金の順に優れ
た細線形成能を有しており、Fe―P―B、Fe―
C―B系合金はほとんど細線形成能を有していな
い。上述のごとく、金属元素及び半金属元素の種
類によつて明らかに回転冷却液体中での細線形成
能が著しく異なる。その理由については、現在ま
だ明確にすることができないが、多分、溶融金属
流の粘性、表面張力、冷却速度、回転冷却液との
物理的、化学的作用等が影響していると考えられ
る。しかも、細線形成能と同様に、非晶質形成能
についても、付与する半金属元素の種類によつて
大きく左右され、一般には、Fe―P―C≧Fe―
Si―B>Co―Si―B≫Fe―P―Si系合金の順に
非晶質形成能が高く、Fe―P―Si系合金では、
均一な連続細線が得られても、非晶質形成能が低
いため、非晶質構造を有したものは得にくい。
これより、実用材として重要なFeを主体とす
る合金よりなり、断面の円形な非晶質金属フイラ
メント及び非晶質形成能を有する合金を、紡出ノ
ズルから冷却液を含有する回転体中に噴出して冷
却固化させた後、該回転体の回転遠心力で該回転
体の内壁に連続的に巻き取るに際し、該回転体の
周速度を紡出ノズルから溶融金属が噴出される速
度と同速にするか、又はそれより速くさせて、断
面の円形な非晶質金属フイラメントを製造する方
法について提案し、特許出願した。しかし、この
方法では、安定して高品質の非晶質金属フイラメ
ントを得るには十分ではなかつた。
(課題を解決するための手段)
本発明者らは、上記の問題点を解決すべく鋭意
研究した結果、特定の合金を特定の孔径を有する
紡出ノズルから噴出して回転冷却液体中で冷却固
化させてから巻取ると、断面の円形な高品質の非
晶質金属フイラメントが得られることを見出し、
本発明を完成した。
すなわち、本発明は、非晶質形成能を有する合
金を紡出ノズルから冷却液を含有する回転体中に
噴出して冷却固化させた後に巻取るに際し、非晶
質形成能を有する合金としてSi17.5原子%以下
で、B5〜22.5原子%で、SiとBとの和が20〜32.5
原子%であり、残部が実質的にFeからなる合金
を、紡出ノズルとして下記一般式()を満足する
孔径(D)を有する紡出ノズルを、それぞれ用い、か
つ該回転体の周速度を紡出ノズルから溶融金属が
噴出される速度と同速にするか、又はそれより速
くさせることを特徴とする断面の円形な非晶質金
属フイラメントの製造方法及び非晶質形成能を有
する合金を紡出ノズルから冷却液を含有する回転
体中に噴出して冷却固化させた後に巻取るに際
し、非晶質形成能を有する合金としてSi17.5原子
%以下で、B5〜22.5原子%で、Co、Ni、Cr、
Mo、V、W及びZrからなる群より選ばれた1種
又は2種以上の金属が30原子%以下であり、残部
が実質的にFeからなる合金(ただし、SiとBと
の和が20〜32.5原子%であり、Co30原子%以下、
Ni20原子%以下、Cr10原子%以下、Mo10原子%
以下、V5原子%以下、W5原子%以下、Zr5原子
%以下である。)を、紡出ノズルとして下記一般
式()を満足する孔径(D)を有する紡出ノズルを、
それぞれ用い、かつ該回転体の周速度を紡出ノズ
ルから溶融金属が噴出される速度と同速にする
か、又はそれより速くさせることを特徴とする断
面の円形な非晶質金属フイラメントの製造方法を
要旨とするものである。
D≦270−9|Si−10|−25|B+Si/2−20|
…()
〔ただし、Dは紡出ノズルトの孔径(μm)、Siは
合金中のSi原子%、Bは合金中のB原子%を表
す。〕
本発明における合金について説明すると、前記
したとおり、実用材として重要なFe、Ni、Co系
合金の中で、Fe―Si―B系合金が回転冷却液体
中において優れた細線形成能と非晶質形成能を兼
備している。
また、Fe―Si―B系合金中のSiとBの付与量
により、非晶質形成能が大きく影響される。すな
わち、SiとBの付与量は、Si17.5原子%以下、B5
〜22.5原子%で、SiとBとの和が20〜32.5原子%
であることが必要で、SiとBの付与量をこれより
増加させても、減少させても、非晶質形成能は低
下する。
次に、前記Fe―Si―B系合金では、ノズル塞
りや汚れ等を生じる傾向があり、Fe金属元素の
一部をCo30原子%、Ni20原子%の付与量までで
あれば、非晶質形成能と細線形成能をほとんど変
えずにノズル塞りや汚れ等を改良することができ
る。また、Cr、Mo、V、W及びZrの金属元素を
Fe金属元素の一部と置換すれば、耐熱性及び強
度を向上させることができる。この場合、Cr、
Moにあつては、それぞれ10原子%以下、V、W
及びZrにあつては、それぞれ5原子%以下であ
れば、大幅な非晶質形成能及び細線形成能を低下
させずに、断面の円形な高品質の連続した非晶質
金属フイラメントを得ることができる。上記の
Fe金属元素の一部を置換する量は、いずれも合
計で30原子%までが限度である。また、Al、
Mn、P、C等を添加した合金であつても、大幅
な非晶質形成能及び細線形成能を低下させない範
囲において採用することができる。
次に、本発明において、紡出ノズルの孔径D
(μm)が下記一般式()を満足するように選定す
ることが必要である。
D≦270−9|Si−10|−25|B+Si/2−20|
…()
〔ただし、Dは、紡出ノズルの孔径(μm)、Siは
合金中のSi原子%、Bは合金中のB原子%を表
す。〕
この紡出ノズルを用いて得られるフイラメント
の線径(μm)は、紡出ノズル孔径D(μm)と同
じか又はやや細めとなる。この式()を満足しな
い紡出ノズル孔径Dを用いて、Fe―Si―Bある
いはFe―Me―Si―B系合金を溶融紡糸して回転
冷却液体中で冷却固化させても、得られるフイラ
メントは結晶構造を有し、脆く、非晶質金属とし
ての特長を有しておらず、実用性の乏しいものと
なる。
本発明に用いられる冷却液とは、例えば、純粋
な液体、溶液、エマルジヨン等をいい、紡糸した
溶融金属と反応して安定な表面を形成するもの、
あるいは紡糸した溶融金属と化学的に非反応性な
ものであればよい。特に、その冷却液中で急冷し
て断面が円形で均一な非晶質連続フイラメントを
得るには、適切な冷却速度を有するものを選定す
ると同時に、冷却液及び液面が安定して乱れず、
しかも人為的な撹拌によつて冷却速度をより上昇
させることができるものが望ましい。特に、常温
もしくは常温以下の水又は金属塩等を溶解した電
解質水溶液を用いることが好ましい。
一般に、溶融金属を冷却液に接触させて急冷す
る過程は、だいたい3つの段階に分かれていると
考えられている。第1段階では、冷却液の蒸気膜
が金属全体を覆う期間で、冷却は蒸気膜を通して
放射によつて行われるので、冷却速度は比較的遅
い。第2段階では、蒸気膜が破れ、激しい沸騰が
連続的におこり、熱は主として蒸発熱として奪わ
れるので、冷却速度は最も速い。第3段階では、
沸騰が止まり、冷却は伝導と対流によつて行われ
るので、冷却速度は再び小さくなる。すなわち、
急速な冷却を行うためには、(イ)第1段階をできる
だけ短くして、速く第2段階に達するような冷却
液を選ぶこと、(ロ)なるべく速く、人為的な手段に
よつて冷却液又は冷却しようとする溶融金属を速
やかに動かし、第1段階の蒸気膜を破壊し、速く
第2段階の冷却に移らせることが最も有効であ
る。その一例として、強烈に撹拌した水の冷却速
度は、静止水に比べ約4倍になることで十分理解
できる。要するに、冷却速度を上昇させるには、
冷却液として沸騰点が高いこと、蒸発の潜熱が大
きく、その意味からも冷却を速めるごときもので
あること、蒸気又は気泡の逸散が速いため、流動
性が良いこと等が必要条件となる。もちろん、そ
の他に安価なこと、変質しないこと等の問題のあ
ることはいうに及ばない。しかも、人為的に速く
第1段階の蒸気膜を破壊させて第2段階の冷却に
移らせ、かつ冷却液及び冷却液面を常に安定に保
持させるには、冷却液を回転体に含有せしめるこ
と、冷却速度を人為的に上げるには、比熱の大な
る冷却液を用いること、回転体の回転速度を速く
すること、紡出ノズルより噴出される溶融金属の
速度を速くすること、紡出した溶融金属の冷却液
面に対する導入角を大きくすること、紡出ノズル
と冷却液面との距離を近くすることが望ましい。
紡出した溶融金属の冷却液面に対する導入角と
は、紡出した溶融金属が冷却液面に最初に接した
点における接線と紡出した溶融金属とのなす角を
いう。
次に、本発明を図面によりさらに詳細に説明す
る。第1図、第2図及び第3図は、本発明の一実
施態様を示す装置で、第1図及び第2図は横型装
置の概略図、第3図は縦型装置の概略図である。
1は溶融紡糸すべき原料金属3を入れるルツボ
で、このルツボ1は、適当な耐熱性物質、例え
ば、石英、ジルコニア、アルミナ、窒化ホウソ等
のセラミツクよりなる。このルツボ1は、1個以
上の紡出孔を有するノズル2を有しており、金属
フイラメントの所望の直径の大きさに近い。材質
はルツボ1と同様、耐熱性物質からなり、石英、
ジルコニア、アルミナ、窒化ホウソ等のセラミツ
ク、人工ルビー、サフアイア等からなつている。
5は溶融紡糸すべき原料金属3を加熱溶融するた
めの加熱炉であり、6は駆動モーター7によつて
回転する回転ドラムで、8は回転遠心力により回
転ドラム6の内側に冷却液面9を形成する冷却液
である。10はその冷却液8を供給及び排出する
ための管である。冷却液8の種類及びその温度の
選択は、溶融金属4の熱容量に関係して行われ、
溶融金属4の熱容量は、その温度、比熱、融解潜
熱及びその断面積に正比例して増加する。従つ
て、溶融金属4の熱容量が大きくなればなるほど
冷却液をより冷たく、又はその比熱、密度、蒸発
熱及び熱伝導率をより高くすることが望ましい。
冷却液の他の望ましい性質は、溶融金属4の液媒
体中での分裂を最小にするように、低粘度、非燃
性かつ低価格であることである。その代表的な冷
却液としては、常温以下の水が使用される。しか
し、一般に冷却速度を高くした方が高品質の非晶
質金属フイラメントが得やすいため、常温以下に
冷却した電解水溶液、例えば、10〜25%重量の塩
化ナトリウム水溶液、5〜15%重量の苛性ソーダ
水溶液、10〜25%重量の塩化マグネシウム水溶
液、50%重量の塩化亜鉛水溶液が好ましい。溶融
金属4と冷却液面9とのなす導入角及び回転ドラ
ム6の回転は任意の方向でよい。紡出ノズル2よ
り噴出される溶融金属4及び回転ドラム6の速度
は、細線形成能に大きな影響を及ぼし、回転ドラ
ム6の周速度は、紡出ノズル2より噴出される溶
融金属4の速度と同速にするか、又はそれ以上に
することが必要である。特に、回転ドラム6の周
速度を紡出ノズル2より噴出される溶融金属4の
速度よりも5〜30%速くすることが好ましい。ま
た、回転ドラム6の周速度は、冷却液を安定にド
ラム内に保持すると同時に冷却速度を上げる点か
らも、300m/分以上が好ましい。導入角の大き
さは20゜以上が好ましい。また、紡出ノズル2と
冷却液面9との距離は、紡出した溶融金属4が乱
れ、破断、切断を生じない範囲で、できるだけ近
くすることが好ましく、特に10mm以下が好まし
い。11はルツボ1を支持して上下に移動するた
めのエアピストンであり、12はルツボ1を一定
の速度で左右に移動し、冷却固化した金属フイラ
メントを回転ドラム6内壁に連続して規則正しく
巻き取るための綾振器である。また、第3図は、
機構的には第1図及び第2図の装置を縦型にした
装置を示すもので、利点としては、冷却液の供
給、排出をする必要がないこと、非常に低速回転
でも均一な冷却液面を形成し得ることである。逆
に、回転速度を変えると、冷却液面の角度が変化
する(低速回転の場合、点線で図示した液面の方
向に移動する)。また、冷却液面に紡出した溶融
金属を垂直にするため、紡出ノズル部を細工(曲
げる)する必要がある。14は回転ドラム6に脱
着可能な遮蔽板で、紡出巻き取り中の状態をよく
観察できる透明板が好ましい。
原料金属3は、まずルツボ1の送入口よりガス
流体輸送等により導入され、加熱炉5の位置で加
熱溶解される。同時に、駆動モーター7により回
転ドラム6を所定の回転速度にして、冷却液供給
管10より冷却液を回転ドラム6の内側に供給す
る。次いで、綾振器12、エアピストン11によ
り、紡出ノズル2が冷却液面9に対向するごと
く、第1図、第2図に示す位置に下降されると同
時に、原料金属3にガス圧が加えられて、溶融金
属4が冷却液面9に向かつて導入される。ルツボ
1内部は、原料金属3の酸化を防ぐため、絶えず
不活性ガス15、例えば、アルゴンガスを送入
し、不活性雰囲気としておくものとする。冷却液
面9に導入された金属は、噴出方向と回転ドラム
の回転方向及び遠心力の合力により冷却液8の中
を進み、冷却固化され、回転ドラム6の内壁もし
くはすでに冷却固化した集積金属フイラメント1
3の内側に、綾振器12によつて規則正しく巻か
れる。紡出終了後は、冷却液排出管10の先端を
冷却液8中に挿入し、冷却液を排出する。回転ド
ラム6を停止し、遮蔽板14を取り外し、回ドラ
ム6内壁に集積された断面が円形で、高品位の非
晶質金属フイラメント13を得ることができる。
この形体は、このままで製品として直接使用でき
る。また、使用量に応じてこれを再度小量に巻き
返すことは、もちろん可能である。また、より高
強度、高品位の非晶質金属フイラメントを得るた
め、ダイスを用いて伸線加工等を行うこともでき
る。
本発明における断面の円形な金属フイラメント
とは、同一断面の最長軸直径Rnaxと最短軸直径
Rnioの比Rnio/Rnax×100が70(%)以上の真円度
のものをいう。
得られた金属フイラメントが非晶質構造を有し
ているか否かは、X―線回折測定により判定し
た。
(実施例)
次に、本発明を実施例により具体的に説明す
る。
実施例1〜11、比較例1〜13
第1図及び第2図に示した内径500mmφの横型
回転ドラムを有する装置を用い、各種金属組成
(原子%)よりなる合金を、アルゴン雰囲気中で
融点より70℃高い温度で溶融し、種々の孔径D
(μm)の紡出ノズル(ルビー)よりアルゴンガス
圧を調整して、400m/分の速度で溶融金属を噴
出させ、深さ25mmの水中(5℃)に導いた。この
時の回転ドラムの速度は440m/分、導入角は75゜
であつた。噴出した溶融金属は、冷却水中で急速
に冷却固化されつつ、遠心力により回転ドラムの
内壁に連続して集積された。この時の紡出ノズル
と冷却液面との距離は5mmに保持した。なお、溶
融金属の噴出速度は、大気中に一定の時間噴出し
て集められた金属重量から測定した。
用いた合金組成、紡出ノズル孔径D(μm)、細
線形成能及びX―線回折結果を、表―1にまとめ
て示す。
(Industrial Application Field) The present invention relates to a method for producing an amorphous metal filament having a circular cross section and excellent heat resistance and strength. (Prior Art) A method of producing a metal filament directly from molten metal is an inexpensive method of producing a metal filament. Moreover, if the obtained metal filament has an amorphous structure, it has many excellent chemical, electrical, and physical features, and can be used in many electrical and electronic parts, composite materials, fiber materials, etc. There is an extremely strong possibility that it will be put into practical use in the following fields. In particular, in the case of amorphous alloys, by selecting an appropriate alloy composition, it is possible to achieve excellent properties such as significantly higher strength, no work hardening, and extremely viscous properties compared to conventionally used crystalline metals and crystalline alloys. Because it has mechanical properties,
If it is possible to obtain a high-quality amorphous metal filament with a circular cross section, it is highly expected to be used as a promising industrial material in the future. Regarding amorphous metals, see "Journal of Metals, Japan" No.
3, Vol.15 (1976), “Science” No.8 (1978
This is already known in 2010). Regarding amorphous metals with such excellent properties,
There is a strong desire to obtain high-quality filaments with a circular cross section by a simple manufacturing method called melt spinning. Currently, amorphous metal filaments with a circular cross section can be obtained by spinning directly from molten metal into a cooling liquid and solidifying them, such as the Pd 77.5 - Cu 6 - Si 16.5 alloy (numbers are in atomic percent). The critical cooling rate is limited to alloys with a critical cooling rate of around 10 3 °C/s (Scripta metallurgica
Vol.13, 1979, P463-467). The difficulty of making an alloy amorphous depends largely on the type and composition of the metal, and the critical cooling rate for Fe, Ni, and Co alloys, which are particularly important as practical materials, is approximately in the range of 10 5 to 10 6 °C/sec. It is said that it is difficult to obtain an amorphous metal filament with a circular cross section because the cooling rate is slow in a cooling liquid. That is, currently, methods such as the gun method, piston-anvil method, roll quenching method, centrifugal quenching method, plasma jet method, etc., which have a high cooling rate, are used to obtain amorphous metals such as Fe, Ni, and Co alloys. . However, among the above-mentioned methods, all methods other than the roll quenching method and the centrifugal quenching method can only yield irregularly shaped plates. In the roll quenching method and the centrifugal quenching method, the reality is that only regular ribbons can be obtained, and because they are flat, they have the disadvantage that they cannot be used for anything other than special purposes. The method for manufacturing this ribbon-shaped amorphous metal filament is described in the literature on amorphous alloys mentioned above, as well as in Japanese Patent Application Laid-Open No. 49-91014 (US3856513),
No. 53-125228, JP-A-53-125229, JP-A-52-
No. 88219, Special Publication No. 52-50727, Japanese Patent Publication No. 101203, No. 1977
No., JP-A-51-4017, JP-A-51-109221 (DT2606581, FR2301605), JP-A-53-12719
It is known from many patent publications such as JP-A-53-12720, JP-A-52-133826 (DT2719710, FR2350159), and JP-A-52-88220. In this way, the conventional manufacturing method of amorphous metal filament is based on the principle of injecting molten metal onto the surface of a rapidly cooling body, so flattening of the contact surface is unavoidable, resulting in a circular cross-section. It was simply impossible to obtain a filament with such properties. Attempts have been made to make the cross section circular by making round grooves on the surface of the roll and injecting molten metal into them, but there were problems such as the inability to accurately inject molten metal into the very narrow grooves. Technically, the chances of success were extremely small. On the other hand, a number of manufacturing methods have been developed to obtain metal filaments with circular cross sections directly from molten metal. One method is similar to the so-called melt-spinning of synthetic fibers, which is currently mass-produced, in which a highly unstable, low-viscosity metal stream is cooled and solidified while maintaining continuity. For example, Japanese Patent Publication No. 45-24013 proposes a method of forming an oxidized or nitrided film on the surface of a molten filament by spinning it into an atmospheric gas that is reactive with metals as a stabilizing means related to such cooling and solidification. ing. However, when this proposal is examined in detail, it is extremely difficult to stabilize the molten metal in the same way as in the solidified state just by forming a film. Furthermore, this method can only employ specific metals that form oxidized or nitrided films. In addition, Japanese Patent Publication No. 44-25374 provides an extremely useful method for cooling molten metal, and in particular, flux particles are suspended in an inert gas and sprayed into an ionized region by corona discharge. However, the method of cooling and solidifying molten metal using the latent heat of this flux is noteworthy. Regarding this similar cooling method, for example, Japanese Patent Application Laid-Open No. 48-56560,
No. 48-71359 also proposes a method in which molten metal is spun into dense foam or bubbles and then cooled and solidified. However, in either method, the cooling solidification rate is quite slow, and the chemical or electrostatic stabilization of the spinning flow is still insufficient. In addition, as another method, "Chemical Fiber Monthly" No. 7 (1974
2007) As described on page 61, copper, silver, and other chip-shaped metals are placed in a glass tube, the glass tube and metal are heated and melted using an induction heating coil, and then pulled from the bottom with a preheated glass rod. Pull it out and roll it up.
There is a metal composite spinning method that takes advantage of the stringiness of glass. However, this composite spinning method is effective only for a specific combination of the melt viscosity of glass and the melting temperature of metal, and has not yet been applied to all metals. Moreover, because it is a composite spinning method, the structure of the melting section and the spinning nozzle section is complex, and a high degree of precision is required. Furthermore, in order to use it as a metal filament, it is necessary to remove the glass film on the outer periphery, which increases manufacturing costs.
Industrialization involves many problems. Furthermore, as in Japanese Patent Application Laid-Open No. 135820/1982, a method has been proposed in which a metal filament is produced by spouting spun molten metal into a cocurrently flowing cooling liquid; however, the spun molten metal and the cooling liquid are Because the flow is parallel at low speeds (200 m/min or less), the cooling capacity is insufficient as described below. Moreover, since the coolant falls naturally due to gravity, it is extremely difficult to maintain a stable coolant and liquid level due to collisions with spun molten metal, boiling, and convection. Unable to obtain crystalline filaments.
Furthermore, it is industrially very difficult to directly wind up the solidified filament continuously. Another method involves placing a cooling liquid in a rotating drum and using centrifugal force to form a liquid film on the inner wall of the drum, and spouting a jet of molten lead into this liquid film to produce a continuous thin lead wire with a circular cross section. is described in Proceedings of the 1983 Autumn Meeting of the Japan Institute of Metals (83rd, Toyama) Title No. 331, Japanese Patent Application Laid-Open No. 1983-64948. However, this method can only be applied to low-melting metals with good stringiness, such as lead, and in particular, the ejection speed of the molten metal stream, which is described as a necessary condition for implementing this method, cannot be applied. Under conditions where the rotational speed of the drum is higher than that of the drum, it is absolutely impossible to form a high-quality continuous thin wire of an amorphous alloy. Moreover, the continuous thin lead wire obtained by this method was not amorphous, had a low circularity in cross section, was curved, and had large thickness variations in the length direction, making it unsuitable for practical use. (Problem to be Solved by the Invention) Therefore, the present inventors first used an alloy of various combinations of metal elements Fe, Ni, and Co, which are important as practical materials, and metalloid elements, and used a molten metal in a rotating cooling liquid. We investigated which metal elements have an excellent ability to form fine wires when rapidly solidified. As a result, it was found that the Ni-based alloy formed almost spherical shots in the rotating cooling liquid and had an inferior ability to form fine wires, whereas the Fe-based alloy, which had the lowest raw material price, had an extremely superior ability to form fine wires. Co-based alloys have a slightly inferior ability to form fine lines compared to Fe-based alloys. The ability to form fine wires here refers to the ability to form continuous filaments with a circular cross section and uniform thickness in the length direction when molten metal is spun into a rotating cooling liquid and cooled and solidified. . To explain in more detail by giving an example, it is well known that uniform amorphous continuous flat filaments can be obtained very easily from the Ni-Si-B alloy, which is a typical Ni-based alloy, by centrifugal quenching. It is about. However, even when a molten metal stream is spun into a rotating cooling liquid and rapidly solidified, continuous filament-like objects are hardly obtained, and mostly spherical shots are obtained.
In addition, Pd 82 has a slow critical cooling rate of 1.8×10 3 °C/sec.
-Si 18 (atomic %) alloy also becomes almost spherical shots when rapidly solidified in a rotating cooling liquid, and its ability to form fine wires is poor, but Pd-Cu-Si alloys with Cu added to this alloy It has excellent ability to form fine wires and can produce amorphous continuous filaments with very uniform circular cross sections. However, this alloy is very expensive. Next, we will examine the relationship between the metalloid elements that contribute to the amorphization of the alloy and their ability to form fine lines.
There are surprising differences in the ability to form fine wires in a rotating cooling liquid depending on the type and combination of metalloid elements.For example, as mentioned above, metalloid elements such as Fe and Co, which have extremely excellent ability to form fine wires, A comparative study of the ability of thin wire formation in a rotating cooling liquid for alloy systems to which elements have been added shows that Fe-Si-B≧Fe-P-
Si≧Co-Si-B≧Fe-P-C alloy has excellent fine wire forming ability in the order of Fe-P-B, Fe-
C—B alloys have almost no ability to form fine wires. As mentioned above, the ability to form thin wires in a rotating cooling liquid clearly differs depending on the type of metal element and metalloid element. The reason for this cannot be clarified at present, but it is thought that the viscosity of the molten metal flow, surface tension, cooling rate, physical and chemical interactions with the rotating coolant, etc. are influential. Moreover, like the ability to form fine lines, the ability to form an amorphous state is greatly influenced by the type of metalloid element added, and generally Fe-P-C≧Fe-
The amorphous formation ability is higher in the order of Si-B>Co-Si-B>Fe-P-Si alloys, and in Fe-P-Si alloys,
Even if a uniform continuous thin wire is obtained, it is difficult to obtain one with an amorphous structure due to the low ability to form an amorphous structure. From this, an amorphous metal filament with a circular cross section and an alloy having the ability to form an amorphous state, which is made of an alloy mainly composed of Fe, which is important as a practical material, is transferred from a spinning nozzle into a rotating body containing a cooling liquid. After being spouted and cooled and solidified, when the rotating centrifugal force of the rotating body is used to continuously wind the molten metal onto the inner wall of the rotating body, the circumferential speed of the rotating body is set to be the same as the speed at which the molten metal is spouted from the spinning nozzle. He proposed a method for manufacturing an amorphous metal filament with a circular cross section at a faster speed or faster, and filed a patent application. However, this method was not sufficient to stably obtain a high quality amorphous metal filament. (Means for Solving the Problems) As a result of intensive research to solve the above problems, the present inventors have found that a specific alloy is spouted from a spinning nozzle having a specific hole diameter and cooled in a rotating cooling liquid. It was discovered that a high-quality amorphous metal filament with a circular cross section could be obtained by solidifying and then winding the filament.
The invention has been completed. That is, in the present invention, when an alloy having an amorphous-forming ability is spouted from a spinning nozzle into a rotating body containing a cooling liquid, cooled and solidified, and then wound up, Si17 is used as an alloy having an amorphous-forming ability. .5 at% or less, B5 to 22.5 at%, and the sum of Si and B is 20 to 32.5
atomic %, the remainder being substantially Fe, using a spinning nozzle having a hole diameter (D) satisfying the following general formula (), and the circumferential speed of the rotating body. A method for producing an amorphous metal filament with a circular cross section, characterized in that the speed is the same as or faster than the speed at which molten metal is ejected from a spinning nozzle, and an alloy having the ability to form an amorphous state. When it is spouted from a spinning nozzle into a rotating body containing a cooling liquid, cooled and solidified, and then wound up, an alloy with an amorphous forming ability of less than 17.5 at% of Si, 5 to 22.5 at% of B, and Co , Ni, Cr,
An alloy in which one or more metals selected from the group consisting of Mo, V, W, and Zr accounts for 30 atomic % or less, and the balance consists essentially of Fe (provided that the sum of Si and B is 20 atomic % or less). ~32.5 atomic%, Co30 atomic% or less,
Ni 20 atomic% or less, Cr 10 atomic% or less, Mo 10 atomic%
Below, V5 atomic% or less, W5 atomic% or less, and Zr5 atomic% or less. ), and a spinning nozzle having a hole diameter (D) that satisfies the following general formula (),
production of an amorphous metal filament with a circular cross section, characterized in that the circumferential speed of the rotating body is the same as or faster than the speed at which molten metal is spouted from a spinning nozzle. The gist is the method. D≦270−9|Si−10|−25|B+Si/2−20|
...() [However, D represents the pore diameter (μm) of the spinning nozzle, Si represents the Si atomic % in the alloy, and B represents the B atomic % in the alloy. ] As mentioned above, among the Fe, Ni, and Co alloys that are important as practical materials, the Fe-Si-B alloy has excellent ability to form thin wires in a rotating cooling liquid and is amorphous. It also has quality-forming ability. Furthermore, the ability to form an amorphous state is greatly influenced by the amounts of Si and B added to the Fe--Si--B alloy. In other words, the amount of Si and B applied is less than 17.5 atomic% Si, B5
~22.5 at%, and the sum of Si and B is 20 to 32.5 at%
It is necessary that the amount of Si and B is increased or decreased, and the ability to form an amorphous state decreases. Next, the Fe-Si-B alloy has a tendency to cause nozzle clogging and stains, and if a portion of the Fe metal element is added up to 30 atomic percent Co and 20 atomic percent Ni, it will form an amorphous state. Nozzle clogging, dirt, etc. can be improved with almost no change in performance and fine line forming ability. In addition, metal elements such as Cr, Mo, V, W and Zr
By substituting part of the Fe metal element, heat resistance and strength can be improved. In this case, Cr,
For Mo, 10 atomic% or less, V, W
and Zr, if each is 5 atomic % or less, a high quality continuous amorphous metal filament with a circular cross section can be obtained without significantly reducing the ability to form an amorphous state and the ability to form a thin wire. I can do it. above
The total amount of Fe metal element to be partially substituted is limited to 30 atomic % in all cases. Also, Al,
Even alloys to which Mn, P, C, etc. are added can be used as long as they do not significantly reduce the ability to form an amorphous state and the ability to form fine wires. Next, in the present invention, the hole diameter D of the spinning nozzle
(μm) must be selected so that it satisfies the following general formula (). D≦270−9|Si−10|−25|B+Si/2−20|
...() [where, D is the pore diameter (μm) of the spinning nozzle, Si is the Si atomic % in the alloy, and B is the B atomic % in the alloy. ] The wire diameter (μm) of the filament obtained using this spinning nozzle is the same as or slightly smaller than the spinning nozzle hole diameter D (μm). Even if Fe-Si-B or Fe-Me-Si-B alloy is melt-spun and solidified by cooling in a rotating cooling liquid using a spinning nozzle hole diameter D that does not satisfy this formula (), the resulting filament is has a crystalline structure, is brittle, does not have the characteristics of an amorphous metal, and is of poor practical use. The cooling liquid used in the present invention refers to, for example, a pure liquid, solution, emulsion, etc., which reacts with the spun molten metal to form a stable surface.
Alternatively, any material may be used as long as it is chemically non-reactive with the spun molten metal. In particular, in order to obtain a uniform amorphous continuous filament with a circular cross section by rapid cooling in the cooling liquid, it is necessary to select a filament with an appropriate cooling rate, and at the same time, to ensure that the cooling liquid and liquid level are stable and undisturbed.
Moreover, it is desirable that the cooling rate can be further increased by artificial stirring. In particular, it is preferable to use water at room temperature or below room temperature, or an electrolyte aqueous solution in which a metal salt or the like is dissolved. Generally, the process of bringing molten metal into contact with a cooling liquid to rapidly cool it is considered to be divided into roughly three stages. In the first stage, the cooling rate is relatively slow, during which the vapor film of the coolant covers the entire metal, and the cooling is carried out by radiation through the vapor film. In the second stage, the vapor film ruptures, intense boiling occurs continuously, and heat is mainly removed as heat of vaporization, so the cooling rate is the fastest. In the third stage,
Boiling stops and cooling occurs by conduction and convection, so the cooling rate decreases again. That is,
In order to perform rapid cooling, (a) choose a coolant that will make the first stage as short as possible and reach the second stage quickly, and (b) cool the coolant as quickly as possible by artificial means. Alternatively, it is most effective to quickly move the molten metal to be cooled, destroy the first stage vapor film, and quickly move on to the second stage cooling. As an example, it is well understood that the cooling rate of intensely stirred water is about four times that of still water. In short, to increase the cooling rate,
As a cooling liquid, it must have a high boiling point, have a large latent heat of evaporation, which can speed up cooling, and have good fluidity because steam or bubbles dissipate quickly. Of course, it goes without saying that there are other problems such as being cheap and not deteriorating. Moreover, in order to artificially quickly destroy the first stage vapor film and move on to the second stage cooling, and to keep the coolant and the coolant level stable at all times, it is necessary to contain the coolant in the rotating body. To artificially increase the cooling rate, use a cooling liquid with a large specific heat, increase the rotation speed of the rotating body, increase the speed of the molten metal spouted from the spinning nozzle, It is desirable to increase the introduction angle of the molten metal to the cooling liquid level and to shorten the distance between the spinning nozzle and the cooling liquid level. The introduction angle of the spun molten metal with respect to the cooling liquid level refers to the angle formed by the tangent at the point where the spun molten metal first contacts the cooling liquid level and the spun molten metal. Next, the present invention will be explained in more detail with reference to the drawings. Figures 1, 2 and 3 are apparatuses showing one embodiment of the present invention; Figures 1 and 2 are schematic diagrams of a horizontal type apparatus, and Figure 3 is a schematic diagram of a vertical type apparatus. .
Reference numeral 1 denotes a crucible in which a raw metal 3 to be melt-spun is placed, and the crucible 1 is made of a suitable heat-resistant material, such as ceramic such as quartz, zirconia, alumina, and borium nitride. This crucible 1 has a nozzle 2 with one or more spinning holes, close to the desired diameter size of the metal filament. Like crucible 1, the material is made of heat-resistant materials such as quartz,
It is made of ceramics such as zirconia, alumina, and borax nitride, artificial ruby, and sapphire.
5 is a heating furnace for heating and melting the raw metal 3 to be melt-spun, 6 is a rotating drum rotated by a drive motor 7, and 8 is a cooling liquid surface 9 inside the rotating drum 6 due to centrifugal force. It is a cooling liquid that forms 10 is a pipe for supplying and discharging the cooling liquid 8. The type of cooling liquid 8 and its temperature are selected in relation to the heat capacity of the molten metal 4,
The heat capacity of the molten metal 4 increases in direct proportion to its temperature, specific heat, latent heat of fusion and its cross-sectional area. Therefore, the larger the heat capacity of the molten metal 4, the colder the cooling liquid or the higher its specific heat, density, heat of vaporization, and thermal conductivity.
Other desirable properties of the coolant are low viscosity, nonflammability, and low cost so as to minimize fragmentation of the molten metal 4 in the liquid medium. As a typical cooling liquid, water at room temperature or lower is used. However, in general, it is easier to obtain a high-quality amorphous metal filament by increasing the cooling rate. Aqueous solutions, 10-25% by weight aqueous magnesium chloride, 50% by weight aqueous zinc chloride are preferred. The introduction angle between the molten metal 4 and the coolant surface 9 and the rotation of the rotating drum 6 may be in any direction. The speed of the molten metal 4 spouted from the spinning nozzle 2 and the speed of the rotating drum 6 have a great influence on the ability to form fine wires, and the circumferential speed of the rotating drum 6 is the same as the speed of the molten metal 4 spouted from the spinning nozzle 2. It is necessary to make the speed the same or faster. In particular, it is preferable that the circumferential speed of the rotating drum 6 is 5 to 30% faster than the speed of the molten metal 4 spouted from the spinning nozzle 2. Further, the circumferential speed of the rotating drum 6 is preferably 300 m/min or more from the viewpoint of stably retaining the cooling liquid within the drum and increasing the cooling rate. The size of the introduction angle is preferably 20° or more. Further, the distance between the spinning nozzle 2 and the coolant surface 9 is preferably as close as possible within a range where the spun molten metal 4 is not disturbed, broken, or cut, and is particularly preferably 10 mm or less. 11 is an air piston for supporting the crucible 1 and moving it up and down; 12 is an air piston for moving the crucible 1 from side to side at a constant speed, and winding up the cooled and solidified metal filament continuously and regularly on the inner wall of the rotating drum 6; It is a twill shaker for. Also, Figure 3 shows
Mechanically, this device is a vertical version of the device shown in Figures 1 and 2.The advantages are that there is no need to supply or drain the coolant, and that the coolant is uniform even at very low speeds. It is possible to form a surface. Conversely, when the rotational speed is changed, the angle of the coolant level changes (in the case of low speed rotation, the coolant moves in the direction of the liquid level indicated by the dotted line). Furthermore, in order to make the spun molten metal perpendicular to the surface of the cooling liquid, it is necessary to modify (bend) the spinning nozzle. Reference numeral 14 denotes a shielding plate that can be attached to and removed from the rotating drum 6, and is preferably a transparent plate that allows the state during spinning and winding to be clearly observed. The raw metal 3 is first introduced through the inlet of the crucible 1 by gas fluid transport or the like, and is heated and melted in the heating furnace 5 . At the same time, the drive motor 7 sets the rotary drum 6 at a predetermined rotational speed, and the coolant is supplied to the inside of the rotary drum 6 from the coolant supply pipe 10 . Next, the spinning nozzle 2 is lowered by the traverse shaker 12 and the air piston 11 to the position shown in FIGS. In addition, molten metal 4 is introduced towards the coolant level 9. In order to prevent the raw metal 3 from oxidizing, an inert gas 15 such as argon gas is constantly fed into the crucible 1 to create an inert atmosphere. The metal introduced into the cooling liquid surface 9 advances through the cooling liquid 8 due to the resultant force of the ejection direction, the rotational direction of the rotating drum, and the centrifugal force, and is cooled and solidified, and is deposited on the inner wall of the rotating drum 6 or on the accumulated metal filament that has already been cooled and solidified. 1
3 is wound regularly by a twill vibrator 12. After spinning is completed, the tip of the coolant discharge pipe 10 is inserted into the coolant 8 and the coolant is discharged. By stopping the rotating drum 6 and removing the shielding plate 14, it is possible to obtain a high-quality amorphous metal filament 13 with a circular cross section and accumulated on the inner wall of the rotating drum 6.
This form can be used directly as a product. Furthermore, it is of course possible to rewind the amount to a smaller amount depending on the amount used. Further, in order to obtain an amorphous metal filament with higher strength and higher quality, wire drawing processing or the like can be performed using a die. In the present invention, a metal filament with a circular cross section refers to the longest axis diameter R nax and the shortest axis diameter of the same cross section.
The roundness of R nio ratio R nio / R nax × 100 is 70 (%) or more. Whether or not the obtained metal filament had an amorphous structure was determined by X-ray diffraction measurement. (Example) Next, the present invention will be specifically explained using examples. Examples 1 to 11, Comparative Examples 1 to 13 Using an apparatus having a horizontal rotating drum with an inner diameter of 500 mm as shown in Figs. melts at a temperature 70℃ higher than
By adjusting the argon gas pressure from a (μm) spinning nozzle (Ruby), the molten metal was spouted at a speed of 400 m/min and introduced into water (5° C.) to a depth of 25 mm. The speed of the rotating drum at this time was 440 m/min, and the introduction angle was 75°. The spouted molten metal was rapidly cooled and solidified in the cooling water, and continuously accumulated on the inner wall of the rotating drum due to centrifugal force. At this time, the distance between the spinning nozzle and the cooling liquid level was maintained at 5 mm. Note that the ejection speed of the molten metal was measured from the weight of the metal collected after ejecting it into the atmosphere for a certain period of time. The alloy composition used, the spinning nozzle hole diameter D (μm), the ability to form fine wires, and the X-ray diffraction results are summarized in Table 1.
【表】【table】
【表】
実験No.3、13、19の合金は、細線形成能が低
く、X―線回折測定に供し得る程度の試料も得ら
れなかつた。実験No.1、5、7、9では、用いた
紡出ノズル孔径D(μm)が式()を満足せず、大
きすぎるため、非晶質構造を有するフイラメント
は得られなかつた。実験No.11〜24は、Fe金属元
素の一部をCo、Ni、Cr、Mo、V、Zr、Wで置
換した合金で、そのうち、実験No.11、13、15、
17、19、21、23は置換量が多く、本発明の範囲外
のため、非晶質構造を有するフイラメントを得る
ことができなかつた。
なお、長さ方向の太さ斑の測定には、10m試長
中ランダム10点直径を測定し、直径の最大と最小
との差を平均直径で割り、それを100倍して求め
た。なお、X―線回折分析には、FeKα照射を用
いて測定した。
実施例 12
Fe77.5原子%、Si10原子%、B12.5原子%組成
の合金をアルゴン雰囲気中で溶融し、紡出ノズル
孔径(D)150μmよりアルゴンガス3.5Kg/cm2ゲージ
圧で溶融金属を噴出させて、回転ドラム速度480
m/分、導入角60゜で導いた以外は、実施例1と
同様にして金属フイラメントを製造した。なお、
この時の溶融金属の噴出速度は430m/分であつ
た。
得られた金属フイラメントの平均直径は
135μm、真円度98%、長さ方向の太さ斑2.5%の
高品位の非晶質極細フイラメントであつた。
上記フイラメントは、引張強度320Kg/mm2、結
晶化温度500℃と優れた機械的、熱的性質を有し
ており、しかも、このフイラメントをダイヤモン
ドダイスを用いて常温で直径110μmまで伸線加工
すると、引張強度400Kg/mm2と向上し、非常に均
一な非晶質極細フイラメントであつた。
実施例 13
Fe71.3原子%、Cr6.2原子%、Si10原子%、
B12.5原子%組成の合金をアルゴン雰囲気中で溶
融し、実施例2と同様にして平均直径135μm、真
円度95%、長さ方向の太さ斑5%の高品位の極細
フイラメントを得た。
このフイラメントを、FeKα照射を用いてX―
線回折分析したところ、非晶質状態の特長のある
広い回折ピークのみが観察された。このフイラメ
ントの機械的強度、結晶化温度を測定すると、そ
れぞれ350Kg/mm2、550℃と、Cr付与の効果も認
められた。
実施例 14
Fe58原子%、Co14.5原子%、Si10原子%、
B17.5原子%組成の合金をアルゴン雰囲気中で溶
融し、紡出ノズル孔径(D)180μmよりアルゴンガス
4.0Kg/cm2ゲージ圧で溶融金属を500m/分の速度
で噴出させ、深さ30mmの−15℃に冷却した濃度20
%塩化ナトリウム水溶液中に導いた。この時の回
転ドラムの速度は550m/分、導入角は80゜であつ
た。噴出した溶融金属は、−15℃の冷却塩化ナト
リウム水溶液中で急冷固化されつつ、遠心力によ
り回転ドラムの内壁に連続して集積された。
得られた金属フイラメントは、平均直径
160μm、真円度94%、太さ斑4%、強度300Kg/
mm2であつた。また、機械的強度及び均一性を上げ
る目的で、ダイヤモンドダイスを用い、直径
130μmまで伸線加工を行つたところ、強度は380
Kg/mm2となつた。
この金属フイラメントを、FeKα照射を用いた
X―線回折で測定すると、非晶質状態の特長ある
幅広い回折ピークのみが観察された。
(発明の効果)
本発明によつて得られた非晶質金属フイラメン
トは、そのフイラメントの長さ方向の太さ斑が、
上記の実施例が示すごとく12%以下と優れた均一
性を有している。この長さ方向の太さ斑が非常に
少ないということはそのフイラメントの強力、伸
度のバラツキが少なく、しかも非晶質金属フイラ
メントが伸線加工、撚り加工、織り加工、編み加
工等の二次加工が必要であるため、その加工中に
非晶質金属フイラメントの破断がおきにくいとい
うことを示している。
本発明によれば、容易に、しかも経済的な方法
で断面の円形な非晶質金属フイラメントを安定し
て得ることができ、得られたフイラメントは、安
価で、かつ強度が著しく高く、加工硬化もなく、
非常に粘い(靭性)等の優れた機械的性質を有し
ており、断面を円形にし、長さ方向の太さ斑を少
なくすることによつて、伸線加工、撚り加工、織
り加工、編み加工等の二次加工ができるようにな
つたため、従来より製造されている板状、粉末状
の非晶質金属では適用できなかつた織編状、撚り
状等の繊維素材として、さらには電気及び電子部
品、複合材等の各種工業用資材として、非常に有
用である。[Table] The alloys of Experiment Nos. 3, 13, and 19 had low ability to form fine lines, and samples suitable for X-ray diffraction measurements could not be obtained. In Experiments Nos. 1, 5, 7, and 9, the diameter D (μm) of the spinning nozzle used did not satisfy the formula () and was too large, so a filament with an amorphous structure could not be obtained. Experiment Nos. 11 to 24 are alloys in which a part of the Fe metal element is replaced with Co, Ni, Cr, Mo, V, Zr, and W. Among them, Experiment Nos. 11, 13, 15,
Nos. 17, 19, 21, and 23 had a large amount of substitution and were outside the scope of the present invention, so it was not possible to obtain a filament with an amorphous structure. To measure the uneven thickness in the length direction, the diameter was measured at 10 random points over a 10 m trial length, the difference between the maximum and minimum diameters was divided by the average diameter, and the result was multiplied by 100. Note that the X-ray diffraction analysis was performed using FeKα irradiation. Example 12 An alloy with a composition of 77.5 atomic% Fe, 10 atomic% Si, and 12.5 atomic% B was melted in an argon atmosphere, and the molten metal was heated with argon gas at 3.5 kg/cm 2 gauge pressure from a spinning nozzle hole diameter (D) of 150 μm. The rotating drum speed is 480
A metal filament was produced in the same manner as in Example 1, except that the conduction was carried out at m/min and at an introduction angle of 60°. In addition,
The jetting speed of the molten metal at this time was 430 m/min. The average diameter of the metal filament obtained is
It was a high-quality amorphous ultrafine filament with a diameter of 135 μm, a circularity of 98%, and a thickness unevenness in the length direction of 2.5%. The above filament has excellent mechanical and thermal properties with a tensile strength of 320 Kg/mm 2 and a crystallization temperature of 500°C. Moreover, when this filament is drawn to a diameter of 110 μm at room temperature using a diamond die, The tensile strength was improved to 400 Kg/mm 2 , and the filament was a very uniform amorphous ultrafine filament. Example 13 Fe71.3 at%, Cr6.2 at%, Si10 at%,
An alloy with a composition of 12.5 atomic percent B was melted in an argon atmosphere, and a high-quality ultra-fine filament with an average diameter of 135 μm, circularity of 95%, and uneven thickness in the length direction of 5% was obtained in the same manner as in Example 2. Ta. This filament was exposed to X-
Upon line diffraction analysis, only broad diffraction peaks characteristic of the amorphous state were observed. When the mechanical strength and crystallization temperature of this filament were measured, they were 350 Kg/mm 2 and 550° C., respectively, and the effect of adding Cr was also recognized. Example 14 Fe58 at%, Co14.5 at%, Si10 at%,
An alloy with a composition of 17.5 atomic percent B is melted in an argon atmosphere, and argon gas is applied from a spinning nozzle with a hole diameter (D) of 180 μm.
Molten metal was ejected at a speed of 500 m/min at 4.0 Kg/cm 2 gauge pressure and cooled to -15°C at a depth of 30 mm.
% sodium chloride aqueous solution. The speed of the rotating drum at this time was 550 m/min, and the introduction angle was 80°. The spouted molten metal was rapidly solidified in a cooled sodium chloride aqueous solution at -15°C, and was continuously accumulated on the inner wall of the rotating drum by centrifugal force. The resulting metal filament has an average diameter
160μm, roundness 94%, thickness unevenness 4%, strength 300Kg/
It was warm in mm2 . In addition, in order to increase mechanical strength and uniformity, we used a diamond die to
After wire drawing to 130μm, the strength was 380
Kg/ mm2 . When this metal filament was measured by X-ray diffraction using FeKα irradiation, only a broad diffraction peak characteristic of the amorphous state was observed. (Effect of the invention) The amorphous metal filament obtained by the present invention has thickness unevenness in the length direction of the filament.
As shown in the above examples, it has excellent uniformity of 12% or less. The fact that there is very little variation in thickness in the length direction means that the filament is strong and has little variation in elongation. This indicates that since processing is required, the amorphous metal filament is less likely to break during processing. According to the present invention, an amorphous metal filament with a circular cross section can be stably obtained easily and economically, and the obtained filament is inexpensive, has extremely high strength, and is work hardened. Without any
It has excellent mechanical properties such as extremely sticky (toughness), and by making the cross section circular and reducing thickness unevenness in the length direction, it can be used for wire drawing, twisting, weaving, etc. Since secondary processing such as knitting has become possible, it can be used as textile materials such as woven, knitted, twisted, etc., which could not be applied to conventionally manufactured plate-shaped and powdered amorphous metals, and even electrically. It is also very useful as various industrial materials such as electronic parts and composite materials.
第1図及び第2図は、本発明に用いる横型装置
の一例を示す概略図、第3図は、本発明に用いる
縦型装置の一例を示す概略図である。
1…ルツボ、2…紡出ノズル、3…原料金属、
4…溶融金属(流)、5…加熱炉、6…回転ドラ
ム、7…駆動モーター、8…冷却液体、9…冷却
液面、10…冷却液供給、排出管、11…エアピ
ストン、12…綾振器、13…金属フイラメン
ト、14…遮蔽板、15…不活性ガス。
1 and 2 are schematic diagrams showing an example of a horizontal type device used in the present invention, and FIG. 3 is a schematic diagram showing an example of a vertical type device used in the present invention. 1... Crucible, 2... Spinning nozzle, 3... Raw metal,
4... Molten metal (flow), 5... Heating furnace, 6... Rotating drum, 7... Drive motor, 8... Cooling liquid, 9... Cooling liquid level, 10... Cooling liquid supply, discharge pipe, 11... Air piston, 12... Traversal shaker, 13...metal filament, 14...shielding plate, 15...inert gas.
Claims (1)
冷却液を含有する回転体中に噴出して冷却固化さ
せた後に巻取るに際し、非晶質形成能を有する合
金としてSi17.5原子%以下で、B5〜22.5原子%
で、SiとBとの和が20〜32.5原子%であり、残部
が実質的にFeからなる合金を、紡出ノズルとし
て下記一般式()を満足する孔径(D)を有す
る紡出ノズルを、それぞれ用い、かつ該回転体の
周速度を紡出ノズルから溶融金属が噴出される速
度と同速にするか、又はそれより速くさせること
を特徴とする断面の円形な非晶質金属フイラメン
トの製造方法。 D≦270−9|Si−10|−25|B+Si/2−20|
…() 〔ただし、Dは、紡出ノズルの孔径(μm)、Siは
合金中のSi原子%、Bは合金中のB原子%を表
す。〕 2 非晶質形成能を有する合金を紡出ノズルから
冷却液を含有する回転体中に噴出して冷却固化さ
せた後に巻取るに際し、非晶質形成能を有する合
金としてSi17.5原子%以下で、B5〜22.5原子%
で、Co、Ni、Cr、Mo、V、W及びZrからなる
群より選ばれた1種又は2種以上の金属が30原子
%以下であり、残部が実質的にFeからなる合金
(ただし、SiとBとの和が20〜32.5原子%であり、
Co30原子%以下、Ni20原子%以下、Cr10原子%
以下、Mo10原子%以下、V5原子%以下、W5原
子%以下、Zr5原子%以下である。)を、紡出ノ
ズルとして下記一般式()を満足する孔径
(D)を有する紡出ノズルを、それぞれ用い、か
つ該回転体の周速度を紡出ノズルから溶融金属が
噴出される速度と同速にするか、又はそれより速
くさせることを特徴とする断面の円形な非晶質金
属フイラメントの製造方法。 D≦270−9|Si−10|−25|B+Si/2−20|
…() 〔ただし、Dは、紡出ノズルの孔径(μm)、Siは
合金中のSi原子%、Bは合金中のB原子%を表
す。〕[Claims] 1. When an alloy having an amorphous-forming ability is spouted from a spinning nozzle into a rotating body containing a cooling liquid, cooled and solidified, and then wound up, an alloy having an amorphous-forming ability is used. Si17.5 at% or less, B5~22.5 at%
An alloy in which the sum of Si and B is 20 to 32.5 at. , respectively, and the circumferential speed of the rotating body is made equal to or faster than the speed at which the molten metal is spouted from the spinning nozzle. Production method. D≦270−9|Si−10|−25|B+Si/2−20|
...() [where, D is the pore diameter (μm) of the spinning nozzle, Si is the Si atomic % in the alloy, and B is the B atomic % in the alloy. ] 2 When the alloy having the ability to form an amorphous is ejected from a spinning nozzle into a rotating body containing a cooling liquid, cooled and solidified, and then wound up, 17.5 at.% of Si is used as the alloy having the ability to form an amorphous. Below, B5~22.5 atomic%
An alloy in which one or more metals selected from the group consisting of Co, Ni, Cr, Mo, V, W and Zr is 30 atomic % or less, and the balance is substantially Fe (however, The sum of Si and B is 20 to 32.5 at%,
Co30 at% or less, Ni20 at% or less, Cr10 at%
Below, Mo is 10 atomic % or less, V 5 atomic % or less, W 5 atomic % or less, and Zr 5 atomic % or less. ), a spinning nozzle having a hole diameter (D) satisfying the following general formula () is used, and the circumferential speed of the rotating body is the same as the speed at which molten metal is spouted from the spinning nozzle. 1. A method for producing an amorphous metal filament having a circular cross section, characterized in that the manufacturing speed is increased or faster. D≦270−9|Si−10|−25|B+Si/2−20|
...() [where, D is the pore diameter (μm) of the spinning nozzle, Si is the Si atomic % in the alloy, and B is the B atomic % in the alloy. ]
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12821980A JPS5752550A (en) | 1980-09-16 | 1980-09-16 | Production of amorphous metallic filament |
DE8181301624T DE3173283D1 (en) | 1980-04-17 | 1981-04-14 | Amorphous metal filaments and process for producing the same |
EP81301624A EP0039169B1 (en) | 1980-04-17 | 1981-04-14 | Amorphous metal filaments and process for producing the same |
US06/597,576 US4523626A (en) | 1980-04-17 | 1984-04-09 | Amorphous metal filaments and process for producing the same |
US07/033,871 US4735864A (en) | 1980-04-17 | 1987-04-02 | Amorphous metal filaments and process for producing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12821980A JPS5752550A (en) | 1980-09-16 | 1980-09-16 | Production of amorphous metallic filament |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5752550A JPS5752550A (en) | 1982-03-29 |
JPS649907B2 true JPS649907B2 (en) | 1989-02-20 |
Family
ID=14979433
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12821980A Granted JPS5752550A (en) | 1980-04-17 | 1980-09-16 | Production of amorphous metallic filament |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5752550A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0763287B2 (en) * | 1986-04-30 | 1995-07-12 | ユニチカ株式会社 | Fishing line |
JP2855131B2 (en) * | 1990-03-02 | 1999-02-10 | キヤノン株式会社 | X-ray equipment |
CN105522128A (en) * | 2015-12-16 | 2016-04-27 | 北京科技大学 | Method for preparing high silicon steel wire through short technological process |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5950743B2 (en) * | 1976-11-05 | 1984-12-10 | 東北大学金属材料研究所長 | Amorphous alloy with excellent heat resistance and strength |
JPS6038228B2 (en) * | 1978-11-10 | 1985-08-30 | 逸雄 大中 | Manufacturing method of thin metal wire |
-
1980
- 1980-09-16 JP JP12821980A patent/JPS5752550A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5752550A (en) | 1982-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0113944B2 (en) | ||
US4735864A (en) | Amorphous metal filaments and process for producing same | |
US3845805A (en) | Liquid quenching of free jet spun metal filaments | |
US7575040B2 (en) | Continuous casting of bulk solidifying amorphous alloys | |
US4495691A (en) | Process for the production of fine amorphous metallic wires | |
JPS6330100B2 (en) | ||
US3881542A (en) | Method of continuous casting metal filament on interior groove of chill roll | |
JPS5942586B2 (en) | Continuous metal strip manufacturing equipment | |
JP2005163171A (en) | High strength nickel-based amorphous alloy | |
US3939900A (en) | Apparatus for continuous casting metal filament on interior of chill roll | |
JPS6238066B2 (en) | ||
JPH0260752B2 (en) | ||
JPS649909B2 (en) | ||
JPS649907B2 (en) | ||
JPS649906B2 (en) | ||
US3960200A (en) | Apparatus for liquid quenching of free jet spun metal | |
JPH0113945B2 (en) | ||
JPH0260750B2 (en) | ||
JPH0260751B2 (en) | ||
JPH0360907B2 (en) | ||
JPH07316755A (en) | Al-base amorphous metallic filament | |
JPS5964740A (en) | Amorphous metal filament and manufacture thereof | |
US4060430A (en) | Production of filaments of hexagonal close-packed metals and alloys thereof | |
Rosen et al. | Centrifuge melt spinning | |
JP2004098090A (en) | Method for producing magnesium rapidly solidified alloy product |