[go: up one dir, main page]

JPS649648B2 - - Google Patents

Info

Publication number
JPS649648B2
JPS649648B2 JP13852781A JP13852781A JPS649648B2 JP S649648 B2 JPS649648 B2 JP S649648B2 JP 13852781 A JP13852781 A JP 13852781A JP 13852781 A JP13852781 A JP 13852781A JP S649648 B2 JPS649648 B2 JP S649648B2
Authority
JP
Japan
Prior art keywords
magnetic
insulating layer
film
organic insulating
magnetic film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13852781A
Other languages
Japanese (ja)
Other versions
JPS5841409A (en
Inventor
Masanobu Hanazono
Shinichi Hara
Hiroshi Akyama
Masayoshi Waki
Harunobu Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DENSHI KEISANKI KIPPON GIJUTSU KENKYU KUMIAI
Original Assignee
DENSHI KEISANKI KIPPON GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DENSHI KEISANKI KIPPON GIJUTSU KENKYU KUMIAI filed Critical DENSHI KEISANKI KIPPON GIJUTSU KENKYU KUMIAI
Priority to JP13852781A priority Critical patent/JPS5841409A/en
Publication of JPS5841409A publication Critical patent/JPS5841409A/en
Publication of JPS649648B2 publication Critical patent/JPS649648B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3163Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Description

【発明の詳細な説明】 本発明は、薄膜技術を用いて製作されるいわゆ
る薄膜磁気ヘツドの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in so-called thin film magnetic heads fabricated using thin film technology.

薄膜磁気ヘツドは、磁気ドラム、磁気デイスク
等の高記録密度が要求される磁気記録装置の記録
再生ヘツドとして使用されるもので、下部磁性膜
とその上に積層された上部磁性膜とによつて形成
されその一端に磁気ギヤツプを有する開ループ状
の磁気回路と、上部磁性膜と下部磁性膜との間を
通つて磁気回路と交差するコイル導体と、を具備
した構成となつている。勿論磁気ギヤツプ、コイ
ル導体と上部磁性膜及び下部磁性膜との間、更に
コイル導体が複数個ある場合にはコイル導体間に
は絶縁物が介在されている。そして、薄膜磁気ヘ
ツドは通常非磁性の基板上に載置された構成とな
つている。
Thin-film magnetic heads are used as recording/reproducing heads for magnetic recording devices such as magnetic drums and magnetic disks that require high recording density. The structure includes an open-loop magnetic circuit formed with a magnetic gap at one end, and a coil conductor that passes between the upper magnetic film and the lower magnetic film and crosses the magnetic circuit. Of course, insulators are interposed between the magnetic gap, the coil conductor, and the upper and lower magnetic films, and between the coil conductors when there are a plurality of coil conductors. The thin film magnetic head is usually mounted on a nonmagnetic substrate.

第1図は従来の薄膜磁気ヘツドの代表的な2つ
の例を示すものである。
FIG. 1 shows two typical examples of conventional thin film magnetic heads.

第1図aは、下部磁性膜11とコイル導体12
との間にポリテトラフルオロエチレンの絶縁層1
3を介在し、これを磁気ギヤツプGまで延長する
と共に、コイル導体12相互間及びコイル導体1
2と上部磁性膜14との間にはポリテトラフルオ
ロエチレンをエツチングしない液でエツチングで
きる有機材料から選ばれた絶縁層15を介在した
薄膜磁気ヘツドである。このヘツドは、絶縁層1
5のエツチングによるパターニングの際に絶縁層
13がエツチングされるおそれがないので絶縁層
15の形状が上部磁性膜14上に正確に表われ
る。磁気ギヤツプGの深さlgは絶縁層15の端部
から磁気ギヤツプG先端までの寸法をいい、この
寸法は基板16上に磁気回路及びコイル導体を形
成後研摩することによつて所定値にされる。従つ
て、絶縁層15の形状が上部磁性膜14上に正確
に表われるこのヘツドでは、磁気ギヤツプGの深
さlgが高精度に形成できるという利点を有してい
る。一方、このヘツドは次のような欠点をも有し
ている。即ち、このヘツドは所定の磁気ギヤツプ
深さlgを得る研摩工程で問題が生じる。それは基
板として、アルミナ、アルミナとチタンカーバイ
トの焼結体、ホトセラム、フエライト、ガラス等
が、磁性膜としてはパーマロイが、それぞれ使用
されるのに対し、磁気ギヤツプにはそれらよりも
非常に軟らかいポリテトラフルオロエチレンが介
在されているためである。このように、硬度の大
幅に異なる材料で形成された面を研摩すると、硬
度の低いポリテトラフルオロエチレンの面が硬度
の高い磁性膜の面より0.1〜0.2μm程度凹部状とな
る。その結果、磁性膜の端部がだれ磁気特性が劣
化するという欠点が生じる。また、一般に有機材
料は流動し得ないため、ポリテトラフルオロエチ
レンも長時間使用している間に磁性膜端面よりも
突出し、記録媒体と接触するという事故を招くお
それがある。
FIG. 1a shows the lower magnetic film 11 and the coil conductor 12.
Insulating layer 1 of polytetrafluoroethylene between
3 and extending it to the magnetic gap G, and between the coil conductors 12 and the coil conductor 1.
2 and the upper magnetic film 14 is a thin film magnetic head with an insulating layer 15 made of an organic material that can be etched with a solution that does not etch polytetrafluoroethylene. This head has an insulating layer 1
Since there is no fear that the insulating layer 13 will be etched during patterning by etching in step 5, the shape of the insulating layer 15 can be accurately displayed on the upper magnetic film 14. The depth lg of the magnetic gap G is the dimension from the end of the insulating layer 15 to the tip of the magnetic gap G, and this dimension is made to a predetermined value by polishing after forming the magnetic circuit and coil conductor on the substrate 16. Ru. Therefore, this head in which the shape of the insulating layer 15 is accurately displayed on the upper magnetic film 14 has the advantage that the depth lg of the magnetic gap G can be formed with high precision. On the other hand, this head also has the following drawbacks. That is, this head presents problems in the polishing process to obtain a predetermined magnetic gap depth lg. The substrate used is alumina, a sintered body of alumina and titanium carbide, photoceram, ferrite, glass, etc., and the magnetic film is permalloy, whereas the magnetic gap is made of a much softer material. This is because tetrafluoroethylene is involved. In this way, when surfaces made of materials with significantly different hardnesses are polished, the polytetrafluoroethylene surface, which has a lower hardness, becomes recessed by about 0.1 to 0.2 μm than the magnetic film surface, which has a higher hardness. As a result, a disadvantage arises in that the edges of the magnetic film droop and the magnetic properties deteriorate. Furthermore, since organic materials generally cannot flow, polytetrafluoroethylene may also protrude beyond the end surface of the magnetic film during long-term use, leading to an accident in which it comes into contact with the recording medium.

第1図bは、絶縁層13をアルミナ層131と
熱硬化したホトレジスト層132との2層で形成
し、下部磁性膜11側に位置するアルミナ層13
1を磁気ギヤツプGまで延長すると共に、絶縁層
15を熱硬化したホトレジスト層で形成したヘツ
ドである。このヘツドは、磁気ギヤツプGが硬度
の高いアルミナ層で形成されているため、第1図
aのヘツドのような欠点は解決できるが、コイル
導体の上側及び下側がホトレジスト層で形成され
ているため、第1図aの構成では問題にならなか
つた磁気ギヤツプ深さが高精度に形成できないと
いう欠点を有している。
In FIG. 1b, the insulating layer 13 is formed of two layers, an alumina layer 131 and a thermoset photoresist layer 132, and the alumina layer 13 located on the lower magnetic film 11 side
1 extends to the magnetic gap G, and the insulating layer 15 is formed of a thermoset photoresist layer. In this head, the magnetic gap G is formed of a hard alumina layer, so the drawbacks of the head shown in Fig. 1a can be overcome; however, the upper and lower sides of the coil conductor are formed of photoresist layers. However, the magnetic gap depth, which was not a problem in the configuration shown in FIG. 1A, has the disadvantage that it cannot be formed with high precision.

本発明の目的は上記の欠点を除去した改良され
た薄膜磁気ヘツドを提供することにある。
It is an object of the present invention to provide an improved thin film magnetic head which eliminates the above-mentioned drawbacks.

かかる目的を達成する本発明薄膜磁気ヘツドの
特徴とするところは、下部磁性膜とその上に積層
された上部磁性膜とによつて形成され一端に磁気
ギヤツプを有する開ループ状の磁気回路と、上部
磁性膜と下部磁性膜との間を通つて磁気回路と交
差するコイル導体と、上部磁性膜と下部磁性膜と
コイル導体との間に介在する絶縁層、とを具備す
る薄膜磁気ヘツドにおいて、下部磁性膜とコイル
導体との間に介在する絶縁層を、下部磁性膜上に
形成した有機絶縁層と、有機絶縁層上にそれを被
覆するように形成しかつ一端が磁気ギヤツプまで
延びている無機絶縁層とから構成した点にある。
The thin-film magnetic head of the present invention that achieves the above object is characterized by an open-loop magnetic circuit formed by a lower magnetic film and an upper magnetic film laminated thereon, and having a magnetic gap at one end; A thin film magnetic head comprising a coil conductor passing between an upper magnetic film and a lower magnetic film and intersecting a magnetic circuit, and an insulating layer interposed between the upper magnetic film, the lower magnetic film and the coil conductor, An insulating layer interposed between the lower magnetic film and the coil conductor includes an organic insulating layer formed on the lower magnetic film and an organic insulating layer formed to cover the organic insulating layer, and one end of which extends to the magnetic gap. The point is that it is composed of an inorganic insulating layer.

以下、本発明を実施例として示した図面により
詳細に説明する。
Hereinafter, the present invention will be explained in detail with reference to the drawings shown as examples.

第2図において、21は基板27上に形成され
た下部磁性膜、22は下部磁性膜21の特定領域
上に形成された第1の有機絶縁層、23は大部分
が第1の有機絶縁層22上に第1の有機絶縁層2
2を被覆するように形成され、その一部分が下部
磁性膜21上に延在している無機絶縁層、24は
無機絶縁層23上に形成したコイル導体、25は
コイル導体24を被覆するように形成した第2の
有機絶縁層、26は一部261が無機絶縁層23
の下部磁性膜21に延在している部分上に、他の
一部262が直接下部磁性膜21上に、残りの部
分263が第2の有機絶縁層25上に位置するよ
うに形成され、これによつて一部に磁気ギヤツプ
Gを有する開ループ状磁気回路を構成する上部磁
性膜である。
In FIG. 2, 21 is a lower magnetic film formed on a substrate 27, 22 is a first organic insulating layer formed on a specific region of the lower magnetic film 21, and 23 is mostly the first organic insulating layer. a first organic insulating layer 2 on 22;
2, a coil conductor formed on the inorganic insulating layer 23, and 25 a coil conductor formed on the inorganic insulating layer 23; A part 261 of the formed second organic insulating layer 26 is the inorganic insulating layer 23
is formed so that another part 262 is directly located on the lower magnetic film 21 and the remaining part 263 is located on the second organic insulating layer 25, This is the upper magnetic film that constitutes an open loop magnetic circuit having a magnetic gap G in a portion thereof.

かかる構成にすれば、磁気ギヤツプGは磁性膜
と同等の硬度を有する無機絶縁物が介在されてい
るため、磁性膜端部がだれて磁気特性が劣化する
という欠点、及び長時間の使用によつて磁性膜端
面より突出し記録媒体と接触するという事故を招
くおそれは一掃することができる。また、第1の
有機絶縁層22が無機絶縁層23で被覆されてい
るため、第2の有機絶縁層25のエツチングの際
に第1の有機絶縁層22がエツチングされるおそ
れはなくなり、磁気ギヤツプの深さlgを高精度に
形成することができる。
With such a configuration, since the magnetic gap G is interposed with an inorganic insulator having the same hardness as the magnetic film, there is a drawback that the edges of the magnetic film sag and the magnetic properties deteriorate, and that there is no problem with long-term use. This eliminates the possibility of an accident in which the magnetic film protrudes from the end surface of the magnetic film and comes into contact with the recording medium. Furthermore, since the first organic insulating layer 22 is covered with the inorganic insulating layer 23, there is no fear that the first organic insulating layer 22 will be etched when the second organic insulating layer 25 is etched, and the magnetic gap is removed. The depth lg can be formed with high precision.

本発明薄膜磁気ヘツドに使用する無機絶縁層2
3としては、Al2O3,SiO2をはじめとしてあらゆ
る無機酸化物が使用できる。また、第1及び第2
の有機絶縁層22及び25についても特に使用上
の制限はないが、製作の容易さ或いは高周波特性
の向上という観点から検討すれば300℃以上の耐
熱性を有する有機材料で形成するのが望ましい。
これについて以下説明する。
Inorganic insulating layer 2 used in the thin film magnetic head of the present invention
As No. 3, any inorganic oxide including Al 2 O 3 and SiO 2 can be used. Also, the first and second
There are no particular restrictions on the use of the organic insulating layers 22 and 25, but from the viewpoint of ease of manufacture or improvement of high frequency characteristics, it is desirable to form them with an organic material having heat resistance of 300° C. or higher.
This will be explained below.

磁気デイスク、磁気ドラムを始めとする磁気記
録は、年々大容量化が進んでいる。一方、パーマ
ロイ膜の透磁率μと周波数特性とは、10MHzを越
えるとμが大幅に低下する関係にある。10MHz以
上の高周波領域でもμが低下しなければ、ビツト
密度を大きくでき記憶の大容量化が可能となる。
そこで、10MHz以上の高周波領域でもμが低下し
ない磁性膜について検討したところ、パーマロイ
層とSiO2,Al2O3のような非磁性絶縁層とを交互
に積層した多層構造の磁性膜は50〜100MHzまで
μが低下しないことがわかつた。
The capacity of magnetic recording devices such as magnetic disks and magnetic drums is increasing year by year. On the other hand, the permalloy film's magnetic permeability μ and frequency characteristics are in a relationship where μ decreases significantly when the frequency exceeds 10 MHz. If μ does not decrease even in the high frequency range of 10 MHz or higher, the bit density can be increased and storage capacity can be increased.
Therefore, we investigated magnetic films whose μ does not decrease even in the high frequency range of 10 MHz or higher, and found that a magnetic film with a multilayer structure in which permalloy layers and non-magnetic insulating layers such as SiO 2 and Al 2 O 3 are alternately laminated has a value of 50 to 50 MHz. It was found that μ did not decrease up to 100MHz.

次に、多層構造の磁性膜の形成法としては、蒸
着法或いはスパツタリング法により同一真空容器
中で連続的に磁性層と絶縁層とを交互に積層する
方法と、磁性層をめつき法で形成し絶縁層を蒸着
法或いはスパツタリング法で形成する方法の2通
りが考えられるが、後者の方法はめつき工程を含
むため製作工数が多くなり好ましくない。前者の
方法で多層構造でかつ磁性特性の優れた磁性膜を
形成する場合、堆積面の温度を少なくとも300〜
400℃にする必要があることがわかつた。従つて、
磁性膜として磁性体と絶縁体との多層構造を使用
する薄膜磁気ヘツドにおいては、第1及び第2の
有機絶縁層が300℃以上の耐熱性を有する必要が
ある。
Next, as methods for forming a multilayered magnetic film, there are two methods: a method in which magnetic layers and insulating layers are sequentially and alternately laminated in the same vacuum container using a vapor deposition method or a sputtering method, and a method in which a magnetic layer is formed by a plating method. Two methods can be considered: forming the insulating layer by a vapor deposition method or a sputtering method, but the latter method is not preferred because it involves a plating step and increases the number of manufacturing steps. When forming a magnetic film with a multilayer structure and excellent magnetic properties using the former method, the temperature of the deposition surface should be at least 300°C.
I found out that it needed to be heated to 400℃. Therefore,
In a thin film magnetic head that uses a multilayer structure of a magnetic material and an insulating material as a magnetic film, the first and second organic insulating layers must have heat resistance of 300° C. or more.

第3図は薄膜磁気ヘツドの第1及び第2の有機
絶縁層として使用し得る代表的な有機材料の耐熱
温度の調査結果を示すもので、曲線Aはノボラツ
ク系樹脂(ホトレジスト)、曲線Bはポリイミド
系樹脂、曲線Cはラダーシリコン系樹脂の特性を
示している。この結果から、ノボラツク系樹脂は
多層構造の磁性膜を採用した磁気ヘツドには使用
できないが、ポリイミド系樹脂及びラダーシリコ
ン系樹脂は使用できることがわかつた。
Figure 3 shows the results of a survey of the heat resistance temperatures of typical organic materials that can be used as the first and second organic insulating layers of thin-film magnetic heads. Curve A is novolac resin (photoresist), curve B is Polyimide resin, curve C shows the characteristics of ladder silicone resin. From this result, it was found that novolak resin cannot be used in a magnetic head employing a multilayered magnetic film, but polyimide resin and ladder silicon resin can be used.

次に本発明薄膜磁気ヘツドの製法を第4図によ
り説明する。
Next, a method for manufacturing the thin film magnetic head of the present invention will be explained with reference to FIG.

まず、表面にAl2O3膜411を有する基板41
を準備し(a)、基板41のAl2O3膜411上に磁性
体と絶縁体との多層構造を有する磁性膜をスパツ
タリングにより形成し、所定形状に成形して下部
磁性膜42を得る(b)。この場合、マスクを使用し
てスパツタリングを行なえば、スパツタリングで
即所定形状の磁性膜が得られる。次に、下部磁性
膜42上の所定個所にポリイミド系樹脂からなる
第1の有機絶縁層43を形成し(c)、その上に
Al2O3からなる無機絶縁層44を形成する(d)。こ
の層は第1の有機絶縁層43を全面を被覆すると
共に磁気ギヤツプを形成する側の下部磁性膜42
上に延長して形成される。無機絶縁層44の第1
の有機絶縁層43に対応する個所上に複数個のコ
イル導体45を形成し(e)、それをポリイミド系樹
脂からなる第2の有機絶縁層46で被覆する(f)。
次に第2の有機絶縁層46、無機絶縁層44の露
出個所及び下部磁性膜42の漏出個所上に多層構
造の磁性膜ををスパツタリングで形成し、それを
成形して上部磁性膜47を形成する(g)。しかる後
(g)のG−G′線で切断研摩して薄膜磁気ヘツドを
得る。
First, a substrate 41 having an Al 2 O 3 film 411 on the surface
(a), a magnetic film having a multilayer structure of a magnetic material and an insulator is formed on the Al 2 O 3 film 411 of the substrate 41 by sputtering, and is formed into a predetermined shape to obtain the lower magnetic film 42 ( b). In this case, if sputtering is performed using a mask, a magnetic film having a predetermined shape can be immediately obtained by sputtering. Next, a first organic insulating layer 43 made of polyimide resin is formed at a predetermined location on the lower magnetic film 42 (c), and then
An inorganic insulating layer 44 made of Al 2 O 3 is formed (d). This layer covers the entire surface of the first organic insulating layer 43 and also covers the lower magnetic film 42 on the side forming the magnetic gap.
It is formed by extending upward. The first inorganic insulating layer 44
A plurality of coil conductors 45 are formed on locations corresponding to the organic insulating layer 43 (e), and then covered with a second organic insulating layer 46 made of polyimide resin (f).
Next, a multilayered magnetic film is formed by sputtering on the exposed parts of the second organic insulating layer 46, the inorganic insulating layer 44, and the leaked parts of the lower magnetic film 42, and then molded to form the upper magnetic film 47. do(g) After that
A thin film magnetic head is obtained by cutting and polishing along line GG' in (g).

このような方法で薄膜磁気ヘツドを製造する場
合、磁気ギヤツプの深さを磁気ギヤツプでの損失
が大きくならないように1μm以内にする必要があ
る。それを実現するためには、第1の有機絶縁層
の厚さを、それをエツチング成形する際の精度誤
差が1μm以下となるような範囲にしなければなら
ない。第5図はポリイミド系樹脂の厚さとパター
ン精度との関係を調べた結果で、1μm以内の精度
を得るためにはポリイミド系樹脂の厚さは4μm以
下にすればよいことがわかる。この結果は他の有
機材料でも略同じであつた。
When manufacturing a thin film magnetic head using such a method, the depth of the magnetic gap must be 1 μm or less to prevent large losses in the magnetic gap. In order to achieve this, the thickness of the first organic insulating layer must be within a range where the accuracy error when etching it is 1 μm or less. Figure 5 shows the results of investigating the relationship between the thickness of polyimide resin and pattern accuracy, and it can be seen that in order to obtain accuracy within 1 μm, the thickness of polyimide resin should be 4 μm or less. This result was almost the same for other organic materials.

以上は本発明を代表的な実施例について説明し
たが、本発明はこれらに限定されず種々の変形が
可能である。例えば、コイル導体を二層以上の積
層構造にすること、第2の有機絶縁層上にも無機
絶縁層を形成すること、等が考えられる。
Although the present invention has been described above with respect to typical embodiments, the present invention is not limited to these and various modifications are possible. For example, it is possible to form the coil conductor into a laminated structure of two or more layers, to form an inorganic insulating layer also on the second organic insulating layer, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の薄膜磁気ヘツドを示す概略断面
図、第2図は本発明の薄膜磁気ヘツドを示す概略
断面図、第3図は本発明薄膜磁気ヘツドに使用し
得る有機材料の耐熱特性を示す図、第4図は本発
明薄膜磁気ヘツドの製造工程図、第5図はポリイ
ミド系樹脂膜の膜厚とパターン精度との関係を示
す特性図である。 21……下部磁性膜、22……第1の有機絶縁
層、23……無機絶縁層、24……コイル導体、
25……第2の有機絶縁層、26……上部磁性
膜。
FIG. 1 is a schematic sectional view showing a conventional thin film magnetic head, FIG. 2 is a schematic sectional view showing a thin film magnetic head of the present invention, and FIG. 3 shows the heat resistance characteristics of organic materials that can be used in the thin film magnetic head of the present invention. 4 is a manufacturing process diagram of the thin film magnetic head of the present invention, and FIG. 5 is a characteristic diagram showing the relationship between the film thickness and pattern accuracy of the polyimide resin film. 21... Lower magnetic film, 22... First organic insulating layer, 23... Inorganic insulating layer, 24... Coil conductor,
25... Second organic insulating layer, 26... Upper magnetic film.

Claims (1)

【特許請求の範囲】 1 下部磁性膜とその上に積層された上部磁性膜
とによつて形成された一端に磁気ギヤツプを有す
る開ループ状の磁気回路と、上部磁性膜と下部磁
性膜との間を通つて磁気回路と交差するコイル導
体と、下部磁性膜とコイル導体との間に介在した
第1の有機絶縁層と、第1の有機絶縁層とコイル
導体間にあつて第1の有機絶縁層を被覆すると共
に磁気ギヤツプまで延びその厚さで磁気ギヤツプ
の間隔を決定している無機絶縁層と、コイル導体
及び無機絶縁層と上部磁性膜との間に介在した第
2の有機絶縁層とを具備することを特徴とする薄
膜磁気ヘツド。 2 特許請求の範囲第1項において、上部磁性膜
及び下部磁性膜が磁性体層と絶縁物層との多層構
造を有し、第1の有機絶縁層及び第2の有機絶縁
層が300℃以上の耐熱性を有し、かつ第1の有機
絶縁層が4μm以下の厚さを有することを特徴とす
る薄膜磁気ヘツド。
[Scope of Claims] 1. An open-loop magnetic circuit having a magnetic gap at one end formed by a lower magnetic film and an upper magnetic film laminated thereon; a first organic insulating layer interposed between the lower magnetic film and the coil conductor; a first organic insulating layer interposed between the first organic insulating layer and the coil conductor; an inorganic insulating layer that covers the insulating layer and extends to the magnetic gap and determines the distance between the magnetic gaps with its thickness; and a second organic insulating layer that is interposed between the coil conductor, the inorganic insulating layer, and the upper magnetic film. A thin film magnetic head comprising: 2. In claim 1, the upper magnetic film and the lower magnetic film have a multilayer structure of a magnetic layer and an insulating layer, and the first organic insulating layer and the second organic insulating layer have a temperature of 300°C or higher. What is claimed is: 1. A thin film magnetic head having a heat resistance of 4 μm or less, and a first organic insulating layer having a thickness of 4 μm or less.
JP13852781A 1981-09-04 1981-09-04 Thin film magnetic head Granted JPS5841409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13852781A JPS5841409A (en) 1981-09-04 1981-09-04 Thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13852781A JPS5841409A (en) 1981-09-04 1981-09-04 Thin film magnetic head

Publications (2)

Publication Number Publication Date
JPS5841409A JPS5841409A (en) 1983-03-10
JPS649648B2 true JPS649648B2 (en) 1989-02-20

Family

ID=15224231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13852781A Granted JPS5841409A (en) 1981-09-04 1981-09-04 Thin film magnetic head

Country Status (1)

Country Link
JP (1) JPS5841409A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104717A (en) * 1982-12-08 1984-06-16 Comput Basic Mach Technol Res Assoc Thin film magnetic head and its production

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5758216A (en) * 1980-09-24 1982-04-07 Fujitsu Ltd Thin film magnetic head

Also Published As

Publication number Publication date
JPS5841409A (en) 1983-03-10

Similar Documents

Publication Publication Date Title
US4652954A (en) Method for making a thin film magnetic head
US6032353A (en) Magnetic head with low stack height and self-aligned pole tips
US5649351A (en) Method of making thin film magnetic write head
US4195323A (en) Thin film magnetic recording heads
US4516180A (en) Thin film magnetic head
US4321641A (en) Thin film magnetic recording heads
US4489484A (en) Method of making thin film magnetic recording heads
JP3415432B2 (en) Thin film magnetic head and method of manufacturing the same
US7086138B2 (en) Method of forming a feature having a high aspect ratio
JPH0223924B2 (en)
JPS6260723B2 (en)
US5681426A (en) Diamond-like carbon wet etchant stop for formation of magnetic transducers
JPS58100212A (en) Thin-film magnetic head
JPS649648B2 (en)
US20050007697A1 (en) Magnetic transducer with pedestal pole piece structure
US20020048117A1 (en) Magnetic recording head with dielectric layer
JPS6254810A (en) Thin film magnetic head
JP2707758B2 (en) Method for manufacturing thin-film magnetic head
JP2649209B2 (en) Method for manufacturing thin-film magnetic head
JPS5880117A (en) Production of thin film magnetic head
JPS6045922A (en) Magneto-resistance effect type magnetic head
JPS6124007A (en) Thin film magnetic head
JP2575616B2 (en) Thin film magnetic head
JPS60258715A (en) Manufacturing method of thin film magnetic head
JP2701373B2 (en) Method for manufacturing thin-film magnetic head