[go: up one dir, main page]

JPS649536B2 - - Google Patents

Info

Publication number
JPS649536B2
JPS649536B2 JP9981280A JP9981280A JPS649536B2 JP S649536 B2 JPS649536 B2 JP S649536B2 JP 9981280 A JP9981280 A JP 9981280A JP 9981280 A JP9981280 A JP 9981280A JP S649536 B2 JPS649536 B2 JP S649536B2
Authority
JP
Japan
Prior art keywords
temperature
hot water
temperature sensor
heating
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9981280A
Other languages
Japanese (ja)
Other versions
JPS5726330A (en
Inventor
Yoshuki Adachi
Nobuo Oonishi
Eiichi Ooizumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9981280A priority Critical patent/JPS5726330A/en
Publication of JPS5726330A publication Critical patent/JPS5726330A/en
Publication of JPS649536B2 publication Critical patent/JPS649536B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)

Description

【発明の詳細な説明】 本発明は、間接加熱式熱交換器を有する給湯暖
房機の改良された制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved control device for a hot water heater having an indirect heat exchanger.

従来、ガスの比例制御弁を用いた間接加熱式熱
交換器を有する給湯暖房機では、給湯水の温度制
御を暖房循環水の温度を制御することにより給湯
湯温を得るようにしていたため、任意の給湯湯温
を得ることができず、手動などで水との混合によ
つて所望の温度にしなければならなかつた。ま
た、暖房循環水の温度制御により給湯湯温のある
程度の制御はできるが、第1図に示したように、
給湯量を増やすと暖房循環水の温度Aが低下する
とともに間接加熱式の熱交換であるから給湯温度
Bも益々低下し、給湯性能としては好ましくなか
つた。さらに、給湯側の供給水の温度によつても
給湯温度の変化が著しく、従つて水との混合比も
その都度変化するもので使用勝手の悪いものであ
つた。
Conventionally, in hot water heaters equipped with indirect heat exchangers using gas proportional control valves, the temperature of the hot water supply was obtained by controlling the temperature of the heating circulation water, so it was not possible to control the temperature of the hot water supply arbitrarily. It was not possible to obtain the desired temperature for hot water supply, and the desired temperature had to be achieved manually by mixing with water. In addition, although the temperature of hot water can be controlled to some extent by controlling the temperature of circulating heating water, as shown in Figure 1,
When the amount of hot water supplied was increased, the temperature A of the circulating heating water decreased, and since heat exchange was performed by indirect heating, the hot water supply temperature B also further decreased, which was not desirable in terms of hot water supply performance. Furthermore, the temperature of the hot water supply varies significantly depending on the temperature of the water supplied to the hot water supply side, and therefore the mixing ratio with water also changes each time, making it inconvenient to use.

本発明は、上記従来例の欠点を解消するため
に、暖房循環水および給湯の各温度を検知する温
度センサをそれぞれ設け、暖房、給湯の各運転時
に温度センサを切替えて、それぞれ温度制御をす
るようにして、暖房の場合は勿論、給湯の場合も
安定した湯温を得るようにした給湯暖房機の制御
装置を提供するものである。以下、図面により実
施例を詳細に説明する。
In order to eliminate the drawbacks of the conventional example, the present invention provides temperature sensors for detecting the respective temperatures of heating circulating water and hot water supply, and controls the temperature by switching the temperature sensors during each operation of heating and hot water supply. In this way, the present invention provides a control device for a hot water supply/heater that can obtain a stable hot water temperature not only for space heating but also for hot water supply. Hereinafter, embodiments will be described in detail with reference to the drawings.

第2図は、本発明の1実施例を示したもので、
1は暖房循環水を加熱する熱交換器、2は給湯用
加熱コイル、3は温度循環ポンプ、4は補給水用
タンク、5は暖房用戻り管、6は暖房用往き管で
放熱器等が接続される。7は給湯用加熱コイル2
に水を供給するパイプ、8は給湯栓、9は熱交換
器1の出口付近に設けた、暖房循環水の温度を検
出する第1の温度センサ、10は給湯用加熱コイ
ル2の出口付近に設けた、給湯水の温度を検出す
る第2の温度センサ、11は第1または第2の温
度センサの検出温度に対応する信号を出力する温
度検出部、12は予め設定した温度に対応する信
号を出力する温度設定部、13は温度検出部11
の出力信号と温度設定部12の出力信号とを比較
して、その比較信号を発生する比較部、14は増
幅制御部、15は電磁弁、16は圧力調整器、1
7は比例式ガス制御弁、18はガスバーナであ
る。
FIG. 2 shows one embodiment of the present invention.
1 is a heat exchanger that heats circulating water for heating, 2 is a heating coil for hot water supply, 3 is a temperature circulation pump, 4 is a tank for makeup water, 5 is a return pipe for heating, and 6 is an outgoing pipe for heating that includes a radiator, etc. Connected. 7 is a heating coil 2 for hot water supply
8 is a hot water tap; 9 is a first temperature sensor installed near the outlet of the heat exchanger 1 to detect the temperature of the circulating heating water; 10 is near the outlet of the hot water heating coil 2; 11 is a temperature detection unit that outputs a signal corresponding to the detected temperature of the first or second temperature sensor; 12 is a signal corresponding to a preset temperature; 13 is a temperature detection unit 11 that outputs a temperature setting unit that outputs
14 is an amplification control section, 15 is a solenoid valve, 16 is a pressure regulator, 1
7 is a proportional gas control valve, and 18 is a gas burner.

次に、動作を説明する。まず、暖房運転の場合
は、暖房負荷に応じて温度設定部12に設定され
た温度に対応する信号と、温度センサ9で検知し
た温度に対応する信号とを比較部13で比較し、
その比較信号により比例制御弁17を制御してガ
スバーナ18の燃焼量を比例制御し、暖房循環水
の温度を制御する。また、給湯運転の場合は、給
水パイプ7の途中に設けた給湯フロースイツチに
より温度検出部11を温度センサ10に切替えて
接続し、温度設定部12に予め設定した給湯温度
に対応する信号と、温度センサ10の検出温度に
対応する信号とを比較し、この比較信号により比
例制御弁17を制御してガスバーナ18の燃焼量
を比例制御し、給湯温度を制御する。
Next, the operation will be explained. First, in the case of heating operation, the comparing unit 13 compares a signal corresponding to the temperature set in the temperature setting unit 12 according to the heating load and a signal corresponding to the temperature detected by the temperature sensor 9,
Based on the comparison signal, the proportional control valve 17 is controlled to proportionally control the combustion amount of the gas burner 18, thereby controlling the temperature of the heating circulating water. In addition, in the case of hot water supply operation, the temperature detecting section 11 is switched and connected to the temperature sensor 10 by a hot water supply flow switch provided in the middle of the water supply pipe 7, and a signal corresponding to the preset hot water temperature is sent to the temperature setting section 12. The temperature detected by the temperature sensor 10 is compared with a signal corresponding to the detected temperature, and the proportional control valve 17 is controlled based on this comparison signal to proportionally control the combustion amount of the gas burner 18, thereby controlling the hot water temperature.

第3図は、第1の温度センサ9と第2の温度セ
ンサ10の抵抗−温度特性を比較して示したもの
で、Cが温度センサ9の特性、Dが温度センサ1
0の特性である。温度センサ10のB定数および
熱時定数を温度センサ9のそれに比較し、ほぼ1/
1.5〜1/2に小さくして、特性Dに直線性を持たせ
るとともに、熱応答性を高めるようにしており、
これにより、比例制御弁17の温度に対する燃焼
量比例制御弁性の感度、応答性を高めることがで
きる。従つて、負荷に対応するバーナ18の燃焼
量制御特性および暖房温度と給湯温度との熱交換
効率が高まり、第4図に示したように、給湯量増
加に対する温度低下を少なくすることができる。
また、設定湯温を変化させたときでも給湯量増加
に対する温度低下は極めて小さい。
FIG. 3 shows a comparison of the resistance-temperature characteristics of the first temperature sensor 9 and the second temperature sensor 10, where C is the characteristic of the temperature sensor 9 and D is the characteristic of the temperature sensor 1.
It is a characteristic of 0. Comparing the B constant and thermal time constant of temperature sensor 10 with those of temperature sensor 9, it is found that the B constant and thermal time constant of temperature sensor 10 are approximately 1/1
It is made smaller to 1.5 to 1/2 to give linearity to characteristic D and improve thermal response.
Thereby, the sensitivity and responsiveness of the combustion amount proportional control valve performance to the temperature of the proportional control valve 17 can be increased. Therefore, the combustion amount control characteristic of the burner 18 corresponding to the load and the heat exchange efficiency between the heating temperature and the hot water supply temperature are improved, and as shown in FIG. 4, the temperature drop with respect to the increase in the hot water supply amount can be reduced.
Furthermore, even when the set hot water temperature is changed, the temperature drop with respect to an increase in the amount of hot water supplied is extremely small.

第5図は、温度センサが検出する温度と、この
検出温度に対して制御される燃焼量との関係を示
したもので、従来例の場合Eと本発明装置の場合
Fとを比較したものである。従来例の場合Eでは
温度センサ9による検出であるから感度が低く、
例えば検出温度tpに対して制御される燃焼量がIE
と極めて少ない。従つて、第1図に示したように
温度低下が大きくなる。特に、間接加熱で給湯温
度を得る場合はその影響が大きく、仮に暖房温度
を下げて給湯温度を低く設定したい場合、第5図
の左端の特性のように温度低下が更に大きくな
る。これは、第3図の抵抗−温度特性に於いて温
度センサ9が2次曲線となつているためである。
これを解消するために比較部13、増幅制御部1
4での回路ゲインを高めて対処する方法もある
が、温度センサ9の抵抗−温度特性が2次曲線で
あるため、低温側の温度低下を少なくした場合、
逆に高温側での温度−燃焼量特性の感度が高くな
りすぎ、温度変化に対する燃焼量変化が大きくな
つて比例制御弁17の発振やオン−オフ動作が発
生することがあり不具合であつた。
Figure 5 shows the relationship between the temperature detected by the temperature sensor and the combustion amount controlled with respect to this detected temperature, and compares E in the conventional case and F in the case of the device of the present invention. It is. In the case of the conventional example, E is detected by the temperature sensor 9, so the sensitivity is low;
For example, the combustion amount controlled for the detected temperature t p is I E
Very few. Therefore, as shown in FIG. 1, the temperature decrease becomes large. In particular, this effect is large when the hot water temperature is obtained by indirect heating, and if it is desired to set the hot water temperature low by lowering the heating temperature, the temperature drop will be even greater, as shown in the characteristic at the left end of FIG. 5. This is because the temperature sensor 9 has a quadratic curve in the resistance-temperature characteristic shown in FIG.
In order to solve this problem, the comparison section 13 and the amplification control section 1
There is a way to deal with this by increasing the circuit gain in step 4, but since the resistance-temperature characteristic of temperature sensor 9 is a quadratic curve, if the temperature drop on the low temperature side is reduced,
On the contrary, the sensitivity of the temperature-combustion amount characteristic on the high temperature side becomes too high, and the change in combustion amount with respect to temperature changes becomes large, which may cause oscillation or on-off operation of the proportional control valve 17, which is a problem.

しかし、本発明のように、温度センサ10を設
け、直線性のある抵抗−温度特性を持たせること
により、第5図に示したように、温度−燃焼量特
性の感度を高め、検出温度tpに対する燃焼量をIF
のように増加させることができるとともに、低温
設定時でも、ほとんど同一傾斜の温度−燃焼量特
性が得られ、従つて第4図に示したような温度低
下の極めて少ない給湯温度特性を得ることができ
る。
However, as shown in FIG. 5, by providing the temperature sensor 10 and providing linear resistance-temperature characteristics as in the present invention, the sensitivity of the temperature-combustion amount characteristic is increased, and the detected temperature t The combustion amount for p is I F
In addition, even when the temperature is set at a low temperature, a temperature-combustion rate characteristic with almost the same slope can be obtained. Therefore, it is possible to obtain a hot water supply temperature characteristic with an extremely small temperature drop as shown in Fig. 4. can.

第6図は、本発明による制御回路の具体例を示
したもので、9,10は第2図に示した温度セン
サ、19は商用電源、20は電源スイツチ、21
はトランスで2次側に低圧が得られる。22は運
転スイツチ、23は全波整流ブリツジダイオー
ド、24は平滑用コンデンサ、25は制限用抵抗
器、26は定電圧用ダイオードで定電圧電源を得
る。27,28,29は抵抗器で、温度設定部と
温度検出部のブリツジ辺の一部を構成する。30
は、給湯水路に設けられた水圧応動スイツチなど
の給湯フロースイツチで、b接点側に暖房用の温
度センサ9、a接点側に給湯用の温度センサ10
と温度調節用の可変抵抗器31を接続する。34
は比較増幅器、35はゲイン用抵抗器、36,3
7,39は抵抗器、38は駆動用トランジスタ、
40は比例制御弁17のコイル、41は逆電圧防
止用ダイオードである。
FIG. 6 shows a specific example of the control circuit according to the present invention, where 9 and 10 are the temperature sensors shown in FIG. 2, 19 is a commercial power source, 20 is a power switch, and 21
A transformer provides low pressure on the secondary side. 22 is an operation switch, 23 is a full-wave rectifying bridge diode, 24 is a smoothing capacitor, 25 is a limiting resistor, and 26 is a constant voltage diode to obtain a constant voltage power source. 27, 28, and 29 are resistors, which constitute part of the bridge side of the temperature setting section and the temperature detection section. 30
is a hot water supply flow switch such as a water pressure responsive switch installed in a hot water supply waterway, and has a temperature sensor 9 for heating on the B contact side and a temperature sensor 10 for hot water supply on the A contact side.
and a variable resistor 31 for temperature adjustment. 34
is a comparison amplifier, 35 is a gain resistor, 36,3
7 and 39 are resistors, 38 is a driving transistor,
40 is a coil of the proportional control valve 17, and 41 is a reverse voltage prevention diode.

上記回路構成で、第2図で示した温度検出部1
1、温度設定部12、比較部13、増幅制御部1
4等が含まれる。そして、暖房運転時、給湯運転
時に対応して給湯フロースイツチ30が自動的に
切り替わり、比較増幅器34の2つの入力レベル
が比較され、この比較信号により比例制御弁のコ
イル40に流れる電流を制御する。本発明は、こ
のように、暖房時、給湯時いずれの場合も回路ゲ
インは変らないが、温度センサ9および10がそ
れぞれ有する特性を利用して良好な給湯湯温特性
を得るようにしたものである。なお、給湯湯温を
変える場合は、温度センサ10に直列に接続され
た可変抵抗器31の抵抗値を調整すればよい。
With the above circuit configuration, the temperature detection section 1 shown in FIG.
1, temperature setting section 12, comparison section 13, amplification control section 1
4th prize is included. Then, the hot water supply flow switch 30 is automatically switched in response to heating operation and hot water supply operation, the two input levels of the comparison amplifier 34 are compared, and the current flowing through the coil 40 of the proportional control valve is controlled by this comparison signal. . In this way, the present invention is designed to obtain good hot water temperature characteristics by utilizing the characteristics of the temperature sensors 9 and 10, respectively, although the circuit gain does not change during either heating or hot water supply. be. In addition, when changing the hot water temperature, the resistance value of the variable resistor 31 connected in series to the temperature sensor 10 may be adjusted.

第7図は、給湯量を変化させた場合の給湯湯温
の変動の状態を従来例の場合Gと本発明装置の場
合Hについて比較したものである。本発明装置の
場合Hでは給湯湯温の変動が極めて小さいことが
わかる。
FIG. 7 compares the state of change in the temperature of hot water when the amount of hot water supplied is changed between G in the conventional example and H in the case of the apparatus of the present invention. It can be seen that in the case of H in the case of the apparatus of the present invention, the fluctuation in the hot water temperature is extremely small.

以上のとおりであるから、本発明は次のような
優れた効果を奏するものである。
As described above, the present invention has the following excellent effects.

(イ) 暖房循環水側と給湯水側とに別々に温度セン
サを設けたので、給湯量を変化させた場合、ま
たは暖房循環水の温度の変化した場合の給湯湯
温の著しい変化を防止することができるととも
に、給湯湯温を任意に設定して従来例のように
水を混合することなく所望の温度の給湯を容易
に得ることができるから使用勝手が一段と向上
する利点がある。
(b) Separate temperature sensors are installed on the heating circulating water side and the hot water supply side, which prevents significant changes in the hot water temperature when the amount of hot water supply changes or when the temperature of the heating circulating water changes. In addition, it is possible to arbitrarily set the hot water temperature and easily obtain hot water at a desired temperature without mixing water as in the conventional example, which has the advantage of further improving usability.

(ロ) 給湯湯温を第2の温度センサで直接検知して
いるので、湯温制御も安定して得られ、任意の
温度設定制御ができる。
(b) Since the hot water temperature is directly detected by the second temperature sensor, stable hot water temperature control can be obtained, and arbitrary temperature setting control is possible.

(ハ) 暖房、給湯が自動的に切り替えられ、しかも
給湯の際は給湯温度を直接検知して燃焼量を制
御するので応答が早く、湯温の安定するまでの
時間が短かくなる。
(c) Heating and hot water supply are automatically switched, and when hot water is being supplied, the hot water temperature is directly detected and the amount of combustion is controlled, so the response is quick and the time it takes for the hot water temperature to stabilize is shortened.

(ニ) 暖房時、給湯時とも同一制御装置で燃焼量を
制御するので安価になるなどの利点がある。
(d) Since the combustion amount is controlled by the same control device during both heating and hot water supply, there are advantages such as lower cost.

(ホ) 暖房循環水側と給湯水側とに温度特性の異な
る温度センサを設けたので、給湯量変化および
暖房負荷変化に応じて湯温変化の少ない制御が
出来る。
(e) Temperature sensors with different temperature characteristics are provided on the heating circulating water side and the hot water supply side, so it is possible to perform control with little change in hot water temperature in response to changes in the amount of hot water supplied and changes in the heating load.

(ヘ) 並列接続された第1および第2温度センサを
用いているので、給湯使用時に給湯フロースイ
ツチにより自動的にセンサ切替えをして暖房設
定温度に近い高温の給湯湯温から低温度まで任
意に湯温制御が出来るので水と混合する必要が
ない。
(f) Since the first and second temperature sensors are connected in parallel, the hot water supply flow switch automatically switches the sensors when hot water is being used, and the hot water temperature can be adjusted from a high temperature close to the heating set temperature to a low temperature. Since the temperature of the hot water can be controlled, there is no need to mix it with water.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来例の給湯量と湯温の関係を示す
図、第2図は、本発明の1実施例の構成を示すブ
ロツク図、第3図は、温度センサの特性図、第4
図は、本発明装置の給湯量と湯温の関係を示す
図、第5図は、検出温度とこれにより制御される
燃焼量との関係を示す図、第6図は、本発明の具
体例を示す回路図、第7図は、給湯量を変化させ
たときの湯温の変動状態を示す図である。 1……熱交換器、2……給湯加熱コイル、9…
…第1の温度センサ、10……第2の温度セン
サ、11……温度検出部、12……温度設定部、
13……比較部、14……増幅制御部、17……
比例式ガス制御弁、18……ガスバーナ、31…
…可変抵抗器、34……比較増幅器、40……比
例制御弁17のコイル。
FIG. 1 is a diagram showing the relationship between hot water supply amount and hot water temperature in a conventional example, FIG. 2 is a block diagram showing the configuration of an embodiment of the present invention, FIG. 3 is a characteristic diagram of a temperature sensor, and FIG.
Figure 5 shows the relationship between the hot water supply amount and hot water temperature of the device of the present invention, Figure 5 shows the relationship between the detected temperature and the amount of combustion controlled thereby, and Figure 6 shows a specific example of the present invention. FIG. 7 is a circuit diagram showing the fluctuation state of the hot water temperature when the amount of hot water supplied is changed. 1...Heat exchanger, 2...Hot water heating coil, 9...
...first temperature sensor, 10...second temperature sensor, 11...temperature detection section, 12...temperature setting section,
13... Comparison section, 14... Amplification control section, 17...
Proportional gas control valve, 18... Gas burner, 31...
... Variable resistor, 34 ... Comparison amplifier, 40 ... Coil of proportional control valve 17.

Claims (1)

【特許請求の範囲】[Claims] 1 暖房循環水の通路に給湯用加熱コイルを有す
る間接加熱式熱交換器を備えた給湯暖房機におい
て、暖房循環水の温度を検出するため暖房循環水
側に設けられた第1の温度センサ9と、この第1
の温度センサより抵抗−温度特性の温度変化が、
広範囲の給湯温度にわたり、ほぼ直線性を有し、
給湯湯温を検出するため給湯水出口側に設けられ
た第2の温度センサ10と、前記第1または第2
の温度センサの検出温度に対応する信号を出力す
る温度検出部11と、予め設定した温度に対応す
る信号を出力する温度設定部12と、前記温度検
出部と前記温度設定部の各出力信号を比較して比
較信号を出力する比較部13と、前記比較信号を
増幅する増幅制御部14と、該増幅制御部の出力
信号によりガスバーナへ供給するガス量を比例制
御する比例式ガス制御弁17とからなり、暖房時
は第1の温度センサ9に接続され、給湯時は給湯
水流により前記第1の温度センサ9から第2の温
度センサ10に切替えて湯温制御するように給湯
フロースイツチ30を設けたことを特徴とする給
湯暖房機の制御装置。
1. In a hot water heater equipped with an indirect heat exchanger having a heating coil for hot water supply in the heating circulating water passage, the first temperature sensor 9 is provided on the heating circulating water side to detect the temperature of the heating circulating water. And this first
The temperature change in the resistance-temperature characteristic is determined by the temperature sensor.
Almost linear over a wide range of hot water temperatures,
a second temperature sensor 10 provided on the hot water outlet side to detect the temperature of the hot water;
a temperature detection section 11 that outputs a signal corresponding to the temperature detected by the temperature sensor; a temperature setting section 12 that outputs a signal corresponding to a preset temperature; and a temperature detection section 12 that outputs a signal corresponding to the temperature detected by the temperature sensor; a comparison section 13 that compares and outputs a comparison signal; an amplification control section 14 that amplifies the comparison signal; and a proportional gas control valve 17 that proportionally controls the amount of gas supplied to the gas burner based on the output signal of the amplification control section. A water supply flow switch 30 is connected to the first temperature sensor 9 during heating, and switches from the first temperature sensor 9 to the second temperature sensor 10 according to the hot water flow to control the hot water temperature during hot water supply. A control device for a hot water heater, characterized in that:
JP9981280A 1980-07-23 1980-07-23 Controller for hot-water supply heating machine Granted JPS5726330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9981280A JPS5726330A (en) 1980-07-23 1980-07-23 Controller for hot-water supply heating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9981280A JPS5726330A (en) 1980-07-23 1980-07-23 Controller for hot-water supply heating machine

Publications (2)

Publication Number Publication Date
JPS5726330A JPS5726330A (en) 1982-02-12
JPS649536B2 true JPS649536B2 (en) 1989-02-17

Family

ID=14257260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9981280A Granted JPS5726330A (en) 1980-07-23 1980-07-23 Controller for hot-water supply heating machine

Country Status (1)

Country Link
JP (1) JPS5726330A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1188694B (en) * 1986-05-23 1988-01-20 Nuovo Pignone Ind Meccaniche & DOMESTIC WATER TEMPERATURE REGULATION SYSTEM IN GAS MIXED WALL-MOUNTED BOILERS

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2427097C3 (en) * 1974-06-05 1980-09-25 Cassella Ag, 6000 Frankfurt Lightfast, non-yellowing melamine-formaldehyde condensate

Also Published As

Publication number Publication date
JPS5726330A (en) 1982-02-12

Similar Documents

Publication Publication Date Title
CA1244112A (en) Means for setting the switching on and off periods of a burner of a hot water heating installation
JPS649536B2 (en)
JPS6157529B2 (en)
US4695052A (en) Hot water heating system using a heat consumption meter
JPH038457B2 (en)
GB2156963A (en) Gase-fired water heaters
US3358922A (en) Modulating valve
JPS6056967B2 (en) water heater
JPH0113017B2 (en)
JPH0240444Y2 (en)
JPS587245Y2 (en) Water temperature control device for water heater
JPH102609A (en) Hot-water supply apparatus
JPS6331708B2 (en)
JPS6314279Y2 (en)
JPH0123072Y2 (en)
JPH0332691B2 (en)
JPS5896920A (en) Control device for gas combustion quantity
JPS6229881Y2 (en)
JPH0345294B2 (en)
KR930003802Y1 (en) Automatic Refill Water Valve Control Circuit of Gas Boiler
JPH0311657Y2 (en)
JP3033298B2 (en) Water heater control device
JPS5814681B2 (en) temperature control device
JPH0416115Y2 (en)
JPH0338590Y2 (en)