[go: up one dir, main page]

JPS648676B2 - - Google Patents

Info

Publication number
JPS648676B2
JPS648676B2 JP8626982A JP8626982A JPS648676B2 JP S648676 B2 JPS648676 B2 JP S648676B2 JP 8626982 A JP8626982 A JP 8626982A JP 8626982 A JP8626982 A JP 8626982A JP S648676 B2 JPS648676 B2 JP S648676B2
Authority
JP
Japan
Prior art keywords
scintillation
detector
scintillation detector
present
detectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8626982A
Other languages
Japanese (ja)
Other versions
JPS58204088A (en
Inventor
Kazuto Yokota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP8626982A priority Critical patent/JPS58204088A/en
Publication of JPS58204088A publication Critical patent/JPS58204088A/en
Publication of JPS648676B2 publication Critical patent/JPS648676B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Luminescent Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] (産業上の利用分野) 本発明はX線CT(コンピユータトモグラフイ)
用やガンマカメラ用等の検出器に使用される高い
分解能を有するシンチレーシヨン検出器に関す
る。 (従来の技術) 従来よりX線CT等に用いられる放射線検出器
として、キセノンガスを使用したイオン化検出器
が知られているが、このイオン化検出器は、イオ
ン電流の残留効果が大きいため、運動する被写体
については検出が困難であり、また分解能が悪い
ため、細部の検出ができないという欠点があつ
た。このため無機化合物の螢光物質を粉状あるい
は単結晶状態で使用したシンチレーシヨン検出器
の使用が検討されている。 このシンチレーシヨン検出器は適切なシンチレ
ータ材料を選ぶとイオン化検出器に比べてシンチ
レーシヨンの残留効果が小さく、また充填密度が
大きいため検出器の容積を小さくできて分解能の
向上が期待でき、しかも振動や雑音に対して感応
しにくいという利点を有しているが、螢光物質を
粉状で使用する場合は散乱や乱反射により発光出
力が低下し、また単結晶状態で使用する場合は製
造が困難でコスト高になる欠点があつた。 また、螢光物質のうち汎用されている
Bi4Ge3O12、CdWO4では発光効率が低いため、X
線の照射量を多くする必要があるという欠点があ
つた。また多くの螢光物質では残光が多いという
難点もある。 (発明が解決しようとする問題点) 本発明者らはこのような欠点を解消するため鋭
意研究を進めたところ、特定の螢光物質を特定の
温度および圧力のもとにホツトプレスまたはホツ
トアイソスタテイクプレスすることにより、発光
効率が大きくかつ残光の小さいシンチレーシヨン
検出器を簡単に製造することができることを見出
した。 本発明はこのような知見に基づいてなされたも
ので、発光効率が大きく、残光(シンチレーシヨ
ンの残留効果)の小さいシンチレーシヨン検出器
を提供することを目的とする。 [発明の構成] (問題点を解決するための手段) 本発明のシンチレーシヨン検出器は、
Gd2O2S:Pr、(Y,Gd)O2S:Prおよび(Y,
Gd)O2S:(Tb,Pr)からなる化合物群から選
ばれた1種または2種以上の螢光物質を、1000〜
2000℃の温度で10〜10000Kg/cm2の圧力下でホツ
トプレスまたはホツトアイソスタテイクプレスに
より成形してなることを特徴とする。 本発明に使用する螢光物質としては、特にPr
でドープされたGd2O2S(Gd2O2S:Pr)およびこ
れとPrおよび/またはTbでドープされたY2O2S
との固溶体[(Y,Gd)O2S:Pr、(Y,Gd)
O2S:(Tb,Pr)]が適している。これらの物質
から得られるシンチレーシヨン検出器は発光効率
が大きく、かつ残光が小さく、これを放射線検出
器に使用した場合高い分解能を有し、高速スキヤ
ンが可能な放射線検出器を得ることができる。な
お、これらの螢光物質はできるだけ高純度のもの
を使用することが望ましい。なお、これらの螢光
物質のうち特に好ましいものは、Gd2O2S:Pr、
(Y,Gd)O2S:Prなどである。 (作用) 本発明においては、上述の螢光物質をヘリウ
ム、アルゴン等の不活性ガス雰囲気中で1000〜
2000℃の温度で10〜10000Kg/cm2の圧力下でホツ
トプレスまたはホツトアイソスタテイクプレスに
よりブロツク状に成形する。好ましいプレス条件
は、温度1600℃〜1800℃であり、圧力300〜3000
Kgf/cm2である。 このようにして製造されたシンチレーターを所
定の大きさおよび形状に機械加工することにより
性能の均一な多数個のシンチレーシヨン検出器を
得ることができる。 (実施例) 次に本発明の実施例について説明する。 実施例 第1表に示す螢光物質をヘリウム雰囲気下で温
度800〜1800℃、圧力300〜1000Kg/cm2の条件でホ
ツトアイソスタテイクプレスを行なつて、厚さ30
mmの焼結体を得た。これを適当な大きさに加工
し、それぞれホトダイオードにマウントしてシン
チレーシヨン検出器を製造した。 このようにして得られたシンチレーシヨン検出
器の発光出力(フオトダイオードの出力)および
残光は次表の通りであつた。
[Object of the invention] (Industrial application field) The present invention is an X-ray CT (computer tomography)
This invention relates to scintillation detectors with high resolution used for detectors such as cameras and gamma cameras. (Prior art) Ionization detectors using xenon gas have been known as radiation detectors used in X-ray CT, etc., but this ionization detector has a large residual effect of ion current, so However, it is difficult to detect objects that are close to the camera, and because the resolution is poor, it is difficult to detect fine details. For this reason, the use of scintillation detectors using inorganic fluorescent substances in powder or single crystal form is being considered. This scintillation detector has a smaller residual effect of scintillation than an ionization detector by selecting the appropriate scintillator material, and has a large packing density, so the detector volume can be reduced and resolution can be expected to be improved. However, when the fluorescent substance is used in powder form, the light emission output decreases due to scattering and diffused reflection, and when it is used in a single crystal form, it is difficult to manufacture. The drawback was that it was expensive. In addition, among the fluorescent materials, commonly used
Since the luminous efficiency of Bi 4 Ge 3 O 12 and CdWO 4 is low,
The drawback was that it required a large amount of radiation. Another problem with many fluorescent materials is that they produce a lot of afterglow. (Problems to be Solved by the Invention) The present inventors have carried out intensive research in order to eliminate these drawbacks, and have found that a specific fluorescent substance is hot pressed or hot isostatically heated at a specific temperature and pressure. It has been found that a scintillation detector with high luminous efficiency and low afterglow can be easily manufactured by take-pressing. The present invention was made based on such knowledge, and an object of the present invention is to provide a scintillation detector with high luminous efficiency and low afterglow (residual scintillation effect). [Configuration of the Invention] (Means for Solving the Problems) The scintillation detector of the present invention has the following features:
Gd 2 O 2 S: Pr, (Y, Gd) O 2 S: Pr and (Y,
Gd) O 2 S: One or more fluorescent substances selected from the compound group consisting of (Tb, Pr),
It is characterized by being formed by hot press or hot isostatic press at a temperature of 2000°C and a pressure of 10 to 10000 kg/cm 2 . As the fluorescent substance used in the present invention, Pr
Gd 2 O 2 S doped with (Gd 2 O 2 S:Pr) and Y 2 O 2 S doped with Pr and/or Tb
Solid solution with [(Y,Gd)O 2 S: Pr, (Y,Gd)
O 2 S: (Tb, Pr)] is suitable. Scintillation detectors obtained from these materials have high luminous efficiency and low afterglow, and when used in radiation detectors, it is possible to obtain radiation detectors that have high resolution and are capable of high-speed scanning. . Note that it is desirable to use these fluorescent substances with as high a purity as possible. Note that among these fluorescent substances, particularly preferable ones are Gd 2 O 2 S:Pr,
(Y,Gd) O2S :Pr, etc. (Function) In the present invention, the above-mentioned fluorescent substance is used in an atmosphere of an inert gas such as helium or argon to
It is molded into a block using a hot press or hot isostatic press at a temperature of 2000°C and a pressure of 10 to 10000 kg/cm 2 . Preferred press conditions are temperature 1600℃~1800℃ and pressure 300~3000℃.
Kgf/ cm2 . By machining the scintillator thus manufactured into a predetermined size and shape, a large number of scintillation detectors with uniform performance can be obtained. (Example) Next, an example of the present invention will be described. Example The fluorescent materials shown in Table 1 were hot isostatically pressed in a helium atmosphere at a temperature of 800 to 1,800°C and a pressure of 300 to 1,000 kg/cm 2 to a thickness of 30 kg.
A sintered body of mm was obtained. This was processed into an appropriate size and mounted on a photodiode to manufacture a scintillation detector. The light emission output (output of the photodiode) and afterglow of the scintillation detector thus obtained were as shown in the following table.

【表】 次に本発明のシンチレーシヨン検出器をX線
CTに使用した例について説明する。 図において回転X線源1は、ほぼ平担な扇形放
射線ビーム2を射出し、これが検体3を通過す
る。射出放射線ビーム2は検体3を通過した後シ
ンチレーシヨン検出器4に衝突する。なお、シン
チレーシヨン検出器4は通常モリブデン板等の遮
蔽体により分離されているが、本発明においては
検出器でのX線の吸収が大であるため特に必要で
はないという利点がある。 次にシンチレーシヨン検出器4により発光した
光をフオトダイオード(図示せず)により電気信
号に変換する。このようにして検体3の外周をス
キヤンして得られる多数の透通X線強度を示す電
気信号を高速コンピユータによつて合成すること
により、検体3の断面が得られる。 [発明の効果] 以上の実施例からも明らかなように本発明のシ
ンチレーシヨン検出器は、発光効率が大きいので
検出器を小さくすることができまた、残光が小さ
いので高い分解能が得られ、これを放射線検出器
に用いた場合、運動する被写体についての検出や
高速スキヤンが可能になる。
[Table] Next, the scintillation detector of the present invention was
An example of use in CT will be explained. In the figure, a rotating X-ray source 1 emits a substantially flat fan-shaped radiation beam 2 which passes through a specimen 3. After passing through the specimen 3, the exit radiation beam 2 impinges on a scintillation detector 4. The scintillation detector 4 is normally separated by a shield such as a molybdenum plate, but in the present invention there is an advantage that this is not particularly necessary since the detector absorbs a large amount of X-rays. Next, the light emitted by the scintillation detector 4 is converted into an electrical signal by a photodiode (not shown). By scanning the outer periphery of the specimen 3 in this manner and synthesizing the electric signals representing the transmitted X-ray intensities using a high-speed computer, a cross section of the specimen 3 is obtained. [Effects of the Invention] As is clear from the above examples, the scintillation detector of the present invention has high luminous efficiency, so the detector can be made small, and low afterglow, so high resolution can be obtained. When used in a radiation detector, it becomes possible to detect moving subjects and perform high-speed scanning.

【図面の簡単な説明】[Brief explanation of drawings]

図はX線CT装置に本発明のシンチレーシヨン
検出器を使用した例を示す概略断面図である。 1……回転X線源、2……放射線ビーム、3…
…検体、4……シンチレーシヨン検出器。
The figure is a schematic sectional view showing an example in which the scintillation detector of the present invention is used in an X-ray CT apparatus. 1... Rotating X-ray source, 2... Radiation beam, 3...
...Sample, 4...Scintillation detector.

Claims (1)

【特許請求の範囲】 1 Gd2O2S:Pr、(Y,Gd)O2S:Prおよび
(Y,Gd)O2S:(Tb,Pr)からなる化合物群か
ら選ばれた1種または2種以上の螢光物質をプレ
ス成形してなることを特徴とするシンチレーシヨ
ン検出器。 2 プレス成形は、温度1000〜2000℃、圧力10〜
10000Kg/cm2で行うホツトプレスまたはホツトア
イソスタテイツクプレスによる特許請求の範囲第
1項に記載のシンチレーシヨン検出器。
[Claims] 1. One species selected from the group of compounds consisting of Gd 2 O 2 S: Pr, (Y, Gd) O 2 S: Pr, and (Y, Gd) O 2 S: (Tb, Pr). Or a scintillation detector characterized by being formed by press-molding two or more types of fluorescent substances. 2 Press molding is performed at a temperature of 1000~2000℃ and a pressure of 10~
The scintillation detector according to claim 1, which is produced by hot pressing or hot isostatic pressing at 10,000 kg/cm 2 .
JP8626982A 1982-05-21 1982-05-21 Scintillation detector Granted JPS58204088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8626982A JPS58204088A (en) 1982-05-21 1982-05-21 Scintillation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8626982A JPS58204088A (en) 1982-05-21 1982-05-21 Scintillation detector

Publications (2)

Publication Number Publication Date
JPS58204088A JPS58204088A (en) 1983-11-28
JPS648676B2 true JPS648676B2 (en) 1989-02-14

Family

ID=13882095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8626982A Granted JPS58204088A (en) 1982-05-21 1982-05-21 Scintillation detector

Country Status (1)

Country Link
JP (1) JPS58204088A (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117082A (en) * 1984-07-03 1986-01-25 Toshiba Corp Radiation detector
JPS61127670A (en) * 1984-11-22 1986-06-14 日立金属株式会社 Manufacture of sintered body
US4752424A (en) * 1986-01-30 1988-06-21 Kabushiki Kaisha Toshiba Method of manufacturing a rare earth oxysulfide ceramic
JPS63113387A (en) * 1986-10-31 1988-05-18 Toshiba Corp Radiation detector
JP2696860B2 (en) * 1987-11-11 1998-01-14 株式会社日立製作所 Radiation detection element
JP2720159B2 (en) * 1988-01-27 1998-02-25 株式会社日立メディコ Multi-element radiation detector and manufacturing method thereof
JP3194828B2 (en) * 1993-12-27 2001-08-06 株式会社東芝 Sintered phosphor, method of manufacturing the same, radiation detector and X-ray tomography apparatus using the sintered phosphor
JP3454904B2 (en) * 1994-02-25 2003-10-06 株式会社東芝 Ceramic scintillator and X-ray detector
US6504156B1 (en) 1999-07-16 2003-01-07 Kabushiki Kaisha Toshiba Ceramic scintillator material and manufacturing method thereof, and radiation detector therewith and radiation inspection apparatus therewith
US7060982B2 (en) 2003-09-24 2006-06-13 Hokushin Corporation Fluoride single crystal for detecting radiation, scintillator and radiation detector using the single crystal, and method for detecting radiation
JP5498908B2 (en) 2010-09-29 2014-05-21 株式会社東芝 Solid scintillator material, solid scintillator, radiation detector and radiation inspection apparatus using the same
JP6105833B2 (en) * 2011-04-08 2017-03-29 株式会社東芝 X-ray detector and X-ray inspection apparatus
WO2013136804A1 (en) 2012-03-15 2013-09-19 株式会社 東芝 Solid scintillator, radiation detector and radiographic examination device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53129087A (en) * 1977-04-18 1978-11-10 Jeol Ltd Scintillation detector
US4242221A (en) * 1977-11-21 1980-12-30 General Electric Company Ceramic-like scintillators

Also Published As

Publication number Publication date
JPS58204088A (en) 1983-11-28

Similar Documents

Publication Publication Date Title
Lempicki et al. A new lutetia-based ceramic scintillator for X-ray imaging
US4242221A (en) Ceramic-like scintillators
JPS648676B2 (en)
CN1020584C (en) Scintillator excited by X-rays with polycrystalline structure and its preparation method
JP2002514772A (en) Multi-purpose multi-density multi-atomic number detector media
EP1666566B1 (en) Ceramic scintillator, and radiation detector and radiographic examination apparatus using same
US3889113A (en) Radioisotope-excited, energy-dispersive x-ray fluorescence apparatus
JP5575123B2 (en) Scintillator
JP2002082171A (en) Radiation detector and x-ray diagnostic equipment using the same
US2953702A (en) Ionisation chamber for radiation measurements
JP3741302B2 (en) Scintillator
JP2685867B2 (en) Method for manufacturing fluorescent ceramics
JP7302706B2 (en) Ceramic scintillators and radiation detectors
JP2989184B1 (en) Ceramic scintillator
JPH0516756B2 (en)
JP2989089B2 (en) Ceramic scintillator material
US4216124A (en) Material for the construction of exoelectron detectors
US20210139773A1 (en) Large area scintillator panels with doping
JPH04290985A (en) Neutron detector
JPH05279663A (en) Material for scintillator
US11300693B2 (en) Radiation detection material and radiation detection device
JPS593714B2 (en) Thermal fluorescence dosimeter element
JP2872536B2 (en) Manufacturing method of ceramic scintillator material
Sauli Applications of gaseous particle detectors in physics and medicine
Olde et al. Three‐Dimensional Scintillation Dosimeter