[go: up one dir, main page]

JPS645178B2 - - Google Patents

Info

Publication number
JPS645178B2
JPS645178B2 JP55173792A JP17379280A JPS645178B2 JP S645178 B2 JPS645178 B2 JP S645178B2 JP 55173792 A JP55173792 A JP 55173792A JP 17379280 A JP17379280 A JP 17379280A JP S645178 B2 JPS645178 B2 JP S645178B2
Authority
JP
Japan
Prior art keywords
speed
pump
hydraulically operated
engine
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55173792A
Other languages
Japanese (ja)
Other versions
JPS5797942A (en
Inventor
Masao Nishikawa
Torao Hatsutori
Takashi Aoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP55173792A priority Critical patent/JPS5797942A/en
Publication of JPS5797942A publication Critical patent/JPS5797942A/en
Publication of JPS645178B2 publication Critical patent/JPS645178B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H61/0025Supply of control fluid; Pumps therefore
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)
  • Arrangement Of Transmissions (AREA)
  • Gear-Shifting Mechanisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はその変速操作に油圧を用いた車両用の
油圧作動式変速機の油圧源に関し、更に詳しく
は、その油圧源の駆動馬力の低減に関する。近年
油圧作動式変速機の自動車に於ける普及は著しく
それにつれて様々な形式のものが提案されてき
た。例えばトリクコンバーターと補助変速機を組
合わせこの補助変速機を油圧で切換動作させる様
に構成しこの切換操作を手動又は自動で動く切換
弁を介して行わせる最も一般的なものからCVT
と総称される連続無段変速機等が既に提案されて
いる。これらの油圧作動式変速機に共通している
ことは、その変速操作を油圧を介して行つている
ということであり、車速やスロツトル開度をたと
え電気的に検出している様なものに於いても、ギ
ヤの切換や速度比の変更等は油圧を介して行うの
が普通である。 従つてこうした油圧作動式変速機は、専用の油
圧源をもち、エンジンに出力軸から直接又はギヤ
を介して、増速又は減速してこの油圧源を駆動し
ていた。 ところがこうした駆動方法だとポンプの容量は
低速回転時に充分な油量を供給する様に設計され
る為に、その高速回転時には、余剰の油をリリー
フ弁を介して捨てており油圧作動式変速機付の車
が一般に燃費が悪く、動力性能も悪いと言われる
ことの一因をなしていた。もとよりこうした不都
合に対し先行技術の中には、この油圧源を可変容
量ポンプに構成し、吐出圧力をフイードバツクす
ることで余剰吐出流量の発生を極力低く押えるも
のも見られるが、ポンプの回転速度自体は依然と
してエンジンの出力軸回転数と共に比例して回わ
るので、高速回転時の機械的摺動損失は何ら改善
されえず、構造が複雑になる割には省エネルギー
としての効果は少かつた。 そのため例えば特開昭52−61669号公報或は実
開昭55−112082号公報に開示されているように油
圧作動式変速機の入力軸回転速度には無関係な一
定速度で駆動されるよう制御される油圧作動式変
速機用の油圧源を提供するようにしたものは公知
である。 更に又従来からのポンプの駆動方法は油圧作動
式変速機の入力軸で直接回わすかある変速比をも
つギヤで回わすかのいずれかであり、前者の場合
は後述する様な理由で、ポンプの外径が大きくな
り周速も速くなるからそれだけフリクシヨントル
クも大きくなり結果的にロス馬力が大きいし、又
後者の方法に依るときは、ポンプの外径は小さく
できるけれども変速ギヤ部での伝達損失が新たに
加わることで、思つた程の効果が得られないし、
システムが大型化する欠点もある。 又どちらの駆動方法をとるにせよ、ポンプの設
置場所には大きな制約があり最近の様にエンジン
ルーム内が狭くなつてくるとこのポンプ設置場所
の制約は自動車の設計上の障害の一つに数えられ
る。例えば横置きFF車の設計ではトランスミツ
シヨンの軸方向の長さは、決められた車幅の中に
収める為できる丈短くしたいが入力軸で直接回わ
すポンプ形式ではどうしてもポンプユニツトの分
だけ軸方向の長さ、スペースが喰われてしまう。 そのため例えば特開昭52−61669号公報或は実
開昭55−112082号公報に開示されているように設
置場所の制約が少く且つ機械ロスを最少に設計し
うる油圧作動式変速機用の油圧源を提供するよう
にしたものも公知である。 更に又油温やケーシングの温度で代表される油
圧作動式変速機自体の温度は外界温度とか使用状
態に応じ−30℃位から+160℃位迄大きく変動す
る。温度変化は作動油の粘性性状を大きくかえる
ことになり例えば高温では制御弁の各部隙間から
のリーク損失が大きくこの損失に打勝つて必要な
制御油圧を保持しなければいけないので、ポンプ
容量を充分大きなものに設計するが、通常の使用
温度、わけても始動直后の冷間時には、全く不要
の量の吐出量を生み出し、リリーフ弁で熱にかえ
て捨てているわけである。又油温が低い程ポンプ
の体積効率は良くなり、もれと体積効率の2つの
相乗効果から、油温が低い程小容量のポンプで良
いことが判る。 そのため油温に依つて吐出流量のかわる可変吐
出量の油圧作動式変速機用油圧源を提供するよう
にしたものも知られている。 更に又従来からの油圧作動式変速機の油圧源は
車両が止つていてもそのライン圧を保持するのに
充分な供給油量を発生していたからこの面でのロ
ス馬力が大きかつた。ライン圧は一般に車両の運
転条件に応じて調圧されているが本来車が止つて
いる時等はライン圧の低下は起きても何ら問題は
ないわけで、スタートの時にライン圧が回復して
くれて充分なクラツチ結合力を出してくれれば良
い。これはたとえば、市街地走行中でも減速する
為にスロツトルを戻した時には、エンジンブレー
キのトルクに見合うだけのクラツチ係合力を出せ
ば良いので、ライン圧をエンジンによる駆動時に
要求される高い圧に保つ必要はなく、多少低下し
ても良い。エンジンブレーキトルクはエンジンの
出力トルクに比べて充分に低いことからこのこと
は明瞭に理解できよう。 そのため例えば実開昭55−112082号公報に記載
されているようにトランスミツシヨンの伝達トル
ク、更に望ましくはスロツトル開度に応じて供給
油量のかわる可変吐出量の油圧作動式変速機用油
圧源を提供するようにしたものも知られている。 本発明の目的はスロツトルが閉じており且つ車
が静止若しくは極く低速で惰行している時は、吐
出流量を更に一段と落して、エネルギーロスを低
減することのできる可変吐出量の油圧作動式変速
機用油圧源を提供するにある。 更に又本発明の目的は高速ギヤが噛合つている
場合で且つスロツトルが閉じている時には吐出流
量を低くしてエネルギーロスを低減することので
きる可変吐出量の油圧作動式変速機用油圧源を提
供することにある。 このスロツトルを閉じている場合にポンプのロ
スを救うことは、どうせエンジンブレーキという
ことで運動のエネルギーを熱エネルギーにかえる
のだから無意味なのではないかというかも知れな
いが、ポンプでロスを生じることは油温の不必要
な上昇を招いてシステムのリーク損失を増やすも
のであり且つオイルに剪断がかかるのでオイル寿
命を著しく縮めることになり好ましくない。更に
又この減速中にポンプの消費すべきエネルギーを
節絡し何かに貯えておくことができれば、総合的
な燃費の向上が図れるわけである。 本発明の目的は減速時に車の運転エネルギーの
一部を回収して貯え次の巡航若しくは加速時に引
き出してポンプを駆動しうるエネルギー節約型の
油圧作動式変速機用油圧源システムを提供するこ
とにある。 更に又エンジンを始動する際にはバツテリーの
エネルギーをセルモーターで回転エネルギーに換
えるわけだが寒い朝などはエンジン、変速機の摺
動抵抗も大きく、又ポンプ部の粘性抵抗も増え、
バツテリー自体も低温時の放電特性が極めてわる
くなる。従つてこの様な場合はむしろ油圧作動式
変速機の油圧源は完全に止めておきバツテリーの
負担を少しでも減らす方が始動性が良くなる。 本発明の目的はセルモーターの使用中は油圧源
を止めておける油圧作動式変速機付車両の始動シ
ステムを提供することにある。 つぎに図面に基き本発明の構成を説明する。 第1図は最も一般的なトルクコンバーター付の
自動変速機の断面図であり、エンジンのクランク
軸1の出力はトルクコンバーター2のポンプ3を
回わしその出力トルクを流体的に増大して、ター
ビン4へ伝える。このトルク増幅による反力はス
テータ5を介してケーシング6へ伝えるが、その
為にステータシヤフト8がトルクコンバーターの
出力軸9の外側にこれと同芯に配置される。この
出力軸9は図の右方にある補助変速機(図示しな
い)の入力軸になるものである。ポンプ3の右端
は、セレーシヨン10を介してポンプ駆動軸11
と係合しておりギヤポンプのギヤ12,13を駆
動する。 この様な構成でポンプを駆動する場合には、ポ
ンプギヤ12の外径は軸9、ステータシヤフト
8、駆動軸11の為に小さく設計することはでき
ず、ギヤ側面とケーシング間の摺動摩擦抵抗も
やゝ大き目になる等の不都合があつた。 この様にエンジンの出力軸と機械的に係合して
駆動されるポンプの駆動馬力はエンジン回転数に
対し、第2図の実線に示す様にゆるい右上りの曲
線を示す。 このグラフでいえばエンジンのアイドリングの
位置で既に充分なポンプ吐出圧をだしておりこの
ときの駆動馬力W0が本来必要な所要馬力とも言
うべきで、それ以上の回転速度で示す駆動馬力の
増加分は単純なエネルギーロスである。ところが
このW0も、もう少し詰めて考えてみるとこのポ
ンプの容量は、高温時に於ける各制御部弁での洩
れ損失を基に決めているので、普通の使用条件下
での油温をもとに決めるならば、より小さな容量
のポンプを同じ速さで回わすか又は、同じ容量の
ポンプをもつと低速で回わすかのいずれかが可能
な筈だからこうした使用条件下ではこの所要馬力
も更に小さく設定することができる。 従つてこの所要馬力W0も定数ではなく油温と
ともに増大する変数であることがわかる。 第二図の実線は通常のポンプ吐出圧に対する駆
動馬力であるがトルクコンバータを含む自動変速
機では、トルクコンバータがトルクの変換動作を
行つているときはその変換率に応じて例えばステ
ータの反力に応じて、ラインを高める手法が用い
られており、最大のライン圧に見合うだけのポン
プ吐出圧が常に要求される。こうしないと大きな
トルク増幅が行われている時に補助変速機のギヤ
係合の為の摩擦結合手段がこの伝達トルクに負け
て滑りそれが長時間にわたる場合には摩擦面での
破損につながるからである。この様に吐出圧が自
動制御をうけて高められた場合のポンプ駆動馬力
は第2図の点線の様に増大し、この場合も各部か
らのもれを補うだけの吐出量を送り出すのに必要
な駆動馬力W0′が存在し、それ以上の駆動馬力は
ロス馬力である。 勿論この所要馬力W0′も定数ではなく油温によ
る変数である。混雑した市街地を走行する場合に
は頻般に加減速をくり返しその都度この点線に沿
つたロス馬力を発生させていたから燃費も悪かつ
たし、油温の上昇ももひどくポンプの容量も肥大
化するといつた悪循環をくり返していた。この例
の様にトルクコンバータをもつた自動変速機にあ
つては、市街地での加速の度にトルクコンバータ
が滑りその分だけポンプが高速で回わされるの
で、事態は一層悪い方へ行つていた。第3図は本
発明の一実施例を示すもので、同図では話しを簡
単にする為に、補助変速機のギヤの噛合いの切換
はその切換弁の動作を手動で行う形式の油圧作動
式変速機を例にとり、その油圧源の制御システム
を示してある。 先づ油圧システムはオイルタンク14内のオイ
ルをフイルタ15を通して吸い込み加圧して送り
出すオイルポンプ16と、この吐出圧をトルクコ
ンバータのステータシヤフトに連結されるレバ1
7を介して、ステータ反力に応じたライン圧に調
圧するレギユレータ弁18とこのライン圧を低速
クラツチC1、中速クラツチC2又は高速クラツチ
C3へ選択的に導く手動弁19と、 エンジンと補助変速機との間にあつてトルクの
増幅作用をするトルクコンバータ2と、 トルクコンバータ内の油圧を一定にするチエツ
ク弁20と、 補助変速機各部への潤滑の為の圧送圧を決める
第二のチエツク弁21と、 前進後進のギヤの切換を行うためのサーボピス
トン22 とから成り立つている。 各クラツチC1,C2,C3が作動状態に入るとト
ランスミツシヨン内のギヤの噛合いがそれぞれ低
速・中速・高速状態になるものとする。 オイルポンプ16はバツテリー23の電気エネ
ルギーで回転する電動モータ24で直接又は減速
ギヤを介して駆動される。勿論バツテリーの電気
エネルギーは、エンジン出力軸で回わされる発電
機25から電圧調整器26を介してバツテリー2
3へ貯えられたものである。 バツテリー23とモータ24間にはイグニツシ
ヨンスウイツチと連動する第一スウイツチ27、
スタータ駆動回路28を制御するスタータスイツ
チ29の開放時に閉じる第二スウイツチ30、及
び各種信号でモータ24の回転速度を制御する速
度制御手段31とが直列に介在する。かかる速度
制御手段31としては、ワイパーモータの速度制
御システムがポピユラーであり、他に電流チヨツ
パーシステム等がある。 速度制御手段31へ届けられる信号としては、
オイルタンク内の温度検出素子32の発する温度
信号33,33′と、手動弁19がN(中立)又は
P(パーキング)位置にいることを示すポジシヨ
ンスウイツチ34,34′の発するポジシヨン信
号35と、高速ギヤの噛合い状態を検出する油圧
スウイツチ36の発する高速ギヤ信号37及びス
ロツトルペダル38がアイドリング位置にいるこ
とを示すストロークスウイツチ39の発するアイ
ドル信号40との信号の2つが揃つたことを検知
する第一のアンド回路素子41の発する高速惰行
信号42と、車速が予めきめられた基準低速度値
より低くなつたことを検出するスピードメータ4
3内の検出子の発する低速信号44及び前記アイ
ドル信号40の2つが揃つたことを検知する第二
のアンド回路素子45の発する低速惰行信号46
とが用意されている。図中スロツトルペダル38
は、車体に対しピボツト点47で回転自在に支持
されておりペダルを踏んで鎖線の様に変位させる
とワイヤー48等が引つぱられ公知の手法でエン
ジンのスロツトルバルブを開くものとする。 又低速信号44は例えば車速が10Km/H以下に
なると発せられこの様な信号の発生を行わせる機
構としては例えば現行法規の100Km/Hアラーム
スウイツチ等が公知である。 第4図は他の実施例を示すもので、手動弁19
の変速位置のNとPとで出す信号をN位置にある
ときのモータ24の回転速度はある低速で回るよ
うにする一方P位置にあるときはモータ24を完
全に静止するように構成して始動操作をP位置で
行わせることによりセルモータスタート時の電気
負荷を少くし又第2のアンド回路素子45で検出
する低速信号44はローギヤの噛合を検出する油
圧スイツチ49の発する信号とすると共に第2ス
イツチ30はエンジン回転数例えば500rpmを上
回つたとき閉じるスイツチとしたもので、そのよ
うな検出機構としてはタコメータ50に組込んだ
前述の車速スイツチと同じものか或は遠心力でオ
ンオフするスイツチをカムシヤフト等に設置した
もの等色々の形式のものが考えられる。トルクコ
ンバータのトルク比(ステータ反力)に応ずるよ
うなレギユレータ弁18で調整されるライン圧が
通常の値(例えば7.5Kg/cm2)を越えると、油圧
系の各部からの漏油量が圧力上昇に附随して増大
する為にそれまでと同じ回転数でポンプを駆動し
た場合には結果的に圧力が高くならないことが起
きる。これに対処するように、ライン圧の圧力セ
ンサ51は高圧信号52を速度制御手段31に与
えて、ライン圧がある設定値を越えて高められる
場合には漏油量を補償して所望のライン圧を保持
できるようモータ24の回転速度を速くさせる。 次にその作用を説明するに第3図に於いて、エ
ンジンをかける為にセルモータを回してエンジン
をかけた後スタータスイツチ29をoffにすると
スイツチ30がonするのでモータ24は回転可
能になる。他方第4図ではエンジンがかかりアイ
ドル回転数(例えばNe=600rpm)以上で回わり
はじめると第一、第二スウイツチ27,30は共
に閉じモータ24は回転可能になる。 このときもしエンジンがかからなければ、スウ
イツチ30は開いたまゝなのでモータ24へは電
流が流れない。しかし暖機後の再始動時の如くエ
ンジンが既に暖まつており、且つバツテリー23
も完全充電されている場合にはセルモータの力だ
けで第2スイツチ30が閉じる回転数(500rpm)
を越える回転数がえられることがあり、この時に
はエンジンの自力回転以前にスウイツチ30が閉
じてモータ24が回転し始めることがあつても、
それは、目的に照らしてみて何らの不都合も生じ
ない。 さてこの始動の際は、手動弁19は必らずN又
はPの位置におり(これは自動変速技術の上では
公知の事実である)信号35が入つてくるので、
速度制御手段31はモータ24を低速の第一速度
で回わしポンプ16を軽く駆動するので、トルク
コンバータ2へは油が送られこの内部を油で充満
する。 この時のモータ回転数は極めて低く、駆動馬力
は最少に押えられる。尚この第一速度は0であつ
ても実用上大きな問題とはならない。 次に発進する為に手動弁19を左へ動かし
“1”の位置へもつてくると、ポンプ圧はサーボ
ピストン22を経て第一クラツチC1へ送られる。 この時は末だ車速は0であるからスロツトルペ
ダルが実線のアイドル位置にあれば、信号35に
代つて信号46が速度制御手段31を支配するこ
とになり、モータ24を前述の第一速度か又は車
両にクリープ特性を与えること或は圧油制御回路
内の多数のバルブ等のクリアバランスを介する圧
油の漏れを補償すること或は車両の発進時の応答
性を良くする等の要求に応じてこれより速い第二
速度で駆動する。 さてこの状態でスロツトルペダル38を踏みこ
むと信号46は消えモータ24はポンプ吐出圧を
充分にとれるように設定した場合には第二速度
で、又は充分な吐出圧が得られない時には第二速
度より速い第三速度で駆動されクラツチC1を充
分な結合力に保持するだけのポンプ吐出圧を確保
しかくて車は発進する。 車速が10Km/Hを超えた後はスロツトルペダル
38を戻して惰行しても最早信号46は消滅たま
まであり、ポンプの回転速度は変わらない。車速
が上つてきて中速ギヤを選択すべく手動弁19を
“2”位置に動かすとポンプの圧力はサーボピス
トン22を介してクラツチC2へ導かれ中速ギヤ
の噛合いは完了する。このギヤの噛合中はスロツ
トルペダルの操作と、モータ24の回転速度との
間の相関は断たれる。 この目的は下り板でエンジンブレーキを効かせ
る為に3速から2速へシフトダウンした時にその
変速シヨツクに対し2rdクラツチC2が滑りを起し
こわれてしまうのを防ぐ為である。 更に車速が上つて手動弁19を“3”の位置へ
動かしたとすると、ポンプ吐出圧はクラツチC3
へ導かれ3速(TOP)ギアの噛合いが完了する。
この状態ではスロツトルペダル38を戻してアイ
ドル位置へ保持すると信号42が速度制御手段3
1を支配し、モータ24を低速で駆動して電気エ
ネルギーを節約し、エンジンブレーキとなつて熱
の形で透げる車の運動エネルギーの一部をバツテ
リー23へ回収する。 この時は開違いなくエンジン(即ち発電機)は
タイヤから車の慣性力で駆動されており、放電量
を上回わる充電量が入つてくれば、バツテリーに
充電容量が残つている限りエネルギーは電気エネ
ルギーとして回収できるからである。 勿論モータ24の回転数が一段落ちることで、
吐出圧はエンジンブレーキ時のトルクを伝達する
に要する値を割込むことが起きるかも知れない
が、前述の様にエンジンブレーキトルクはエンジ
ンの出力(駆動)トルクよりも一段と小さいの
で、クラツチC3はほとんど滑らず、損傷をうけ
ることはまずない。或いは又中途半端なクラツチ
C3の滑りが起きなければ良いのだからスロツト
ルを閉じた時は積極的にモータ24を停止させて
エネルギーの節約を最大にするのも良い。このと
きはクラツチC3は急速に解放されて空転し、エ
ンジンブレーキは全く効かないがもともと油圧作
動式変速機のトツプの伝達比ではエンジンブレー
キがトルクコンバータやオーバドライブ比等の故
に非常に弱いので実害はない。 以上の制御とは別に信号33,33′も速度制
御手段31を支配しておりタンク内の油温度が上
つてくると温度が一つの基準値を超える毎にモー
タ24の回転速度を一段あげて速く回わし、各部
からの洩れ損失を補正する。尚温度上昇につれて
連続的に変化する信号33″に応じて回転速度を
連続的に上昇させてもよいことはもちろんであ
る。(第4図) 本実施例では手動3段式の油圧作動式変速機を
例にとつたが、自動切換機能をもつ3〜4段式の
自動変速機の場合等は内蔵するバルブの本数も極
めて多くこれからの洩れは高温時には深刻であ
る。そしてこれらの洩れに対処しうる容量のポン
プを回わせば、たちまち4〜5馬力は喰われてし
まうので動力性能、燃費共に悪かつた。これが更
にトルクコンバーター型の自動変速機では発進の
度ごとにトルクコンバータが滑りエンジンが吹く
ので、ポンプロスは大きかつた。本発明に依る時
は動力性能、燃費共に秀れた、自動変速機をつく
ることができる。 このように本発明によるときはエンジンのスロ
ツトル開度に応じてオイルポンプの供給油量を可
変吐出量とするポンプ駆動の電動モータは、その
回転速度をエンジンのスロツトル開度が閉じてい
る時は低く設定するか又は停止させる様に制御し
たからオイルポンプの無用な油圧の発生を防止で
き、エネルギーのロスを最小にできると共に更に
変速比又は車速を考慮することで、より一層エネ
ルギーロスを低下させるべき領域を明確に区別で
き運転性の向上も計れる等の効果を有する。
The present invention relates to a hydraulic power source for a hydraulically operated transmission for a vehicle that uses hydraulic pressure for its gear shifting operation, and more particularly to reducing the driving horsepower of the hydraulic power source. In recent years, hydraulically operated transmissions have become extremely popular in automobiles, and various types of transmissions have been proposed. For example, the most common type is CVT, which combines a tricycle converter and an auxiliary transmission, and configures the auxiliary transmission to be switched by hydraulic pressure, and this switching operation is performed via a switching valve that operates manually or automatically.
Continuously variable transmissions, collectively referred to as , have already been proposed. What these hydraulically operated transmissions have in common is that their gear shifting operations are performed via hydraulic pressure, and even if vehicle speed and throttle opening are detected electrically, However, gear switching and speed ratio changes are usually performed via hydraulic pressure. Therefore, such a hydraulically operated transmission has a dedicated hydraulic power source, and drives this hydraulic power source by increasing or decelerating the engine directly from the output shaft or via a gear. However, with this drive method, the pump capacity is designed to supply a sufficient amount of oil during low-speed rotation, so during high-speed rotation, excess oil is discarded via a relief valve, and the hydraulically operated transmission is This was one of the reasons why cars with this engine were generally said to have poor fuel efficiency and poor power performance. Of course, in order to deal with these inconveniences, some prior art has constructed this hydraulic power source as a variable displacement pump and fed back the discharge pressure to keep the generation of surplus discharge flow as low as possible, but the rotational speed of the pump itself still rotates in proportion to the engine's output shaft rotation speed, so the mechanical sliding loss during high-speed rotation could not be improved at all, and the energy saving effect was small even though the structure was complex. Therefore, for example, as disclosed in Japanese Unexamined Patent Publication No. 52-61669 or Japanese Utility Model Application No. 55-112082, the hydraulically operated transmission is controlled to be driven at a constant speed independent of the input shaft rotational speed. It is known to provide a hydraulic power source for a hydraulically operated transmission. Furthermore, the conventional method of driving a pump is to either directly rotate it with the input shaft of a hydraulically operated transmission or to rotate it with a gear having a certain speed ratio. As the outer diameter of the pump becomes larger and the circumferential speed becomes faster, the friction torque also increases, resulting in a large loss of horsepower.Also, when using the latter method, although the outer diameter of the pump can be made smaller, the speed change gear section Due to the addition of transmission loss, the expected effect cannot be obtained,
There is also the drawback that the system becomes larger. Also, no matter which drive method is used, there are major restrictions on where the pump can be installed, and as engine compartments become smaller these days, this restriction on where the pump can be installed becomes one of the obstacles in the design of automobiles. It can be counted. For example, when designing a horizontally mounted FF vehicle, it is desirable to shorten the axial length of the transmission in order to fit it within the specified vehicle width, but with a pump type that is directly rotated by the input shaft, the axial length of the transmission is unavoidable due to the length of the pump unit. The length and space in the direction are taken up. Therefore, for example, as disclosed in Japanese Unexamined Patent Publication No. 52-61669 or Japanese Utility Model Application No. 55-112082, hydraulic pressure for hydraulically operated transmissions that have fewer restrictions on installation location and can be designed to minimize mechanical loss. Also known are those adapted to provide a source. Furthermore, the temperature of the hydraulically operated transmission itself, represented by oil temperature and casing temperature, varies greatly from about -30°C to about +160°C depending on the outside temperature and usage conditions. Temperature changes greatly change the viscosity of the hydraulic oil. For example, at high temperatures, leakage loss from gaps in various parts of the control valve is large, and it is necessary to overcome this loss and maintain the necessary control oil pressure, so make sure the pump capacity is sufficient. Although it is designed to be large, at normal operating temperatures, especially when it is cold immediately after startup, it produces a completely unnecessary amount of discharge, which is discarded by the relief valve instead of being turned into heat. Also, the lower the oil temperature, the better the volumetric efficiency of the pump, and from the synergistic effect of leakage and volumetric efficiency, it can be seen that the lower the oil temperature, the smaller the pump capacity. For this reason, it is also known to provide a hydraulic power source for a hydraulically operated transmission with a variable discharge amount that changes depending on the oil temperature. Furthermore, since the hydraulic power source of conventional hydraulically operated transmissions generates enough supply oil to maintain the line pressure even when the vehicle is stopped, there is a large horsepower loss in this respect. Line pressure is generally regulated according to the vehicle's operating conditions, but when the car is stopped, there is no problem even if the line pressure drops, but the line pressure recovers when starting. It would be good if it could provide sufficient clutch coupling force. For example, when the throttle is returned to decelerate while driving around town, the clutch engagement force is sufficient to match the torque of the engine brake, so there is no need to maintain the line pressure at the high pressure required when the engine is driving the vehicle. It may be lowered to some extent. This can be clearly understood since the engine braking torque is sufficiently lower than the engine output torque. Therefore, for example, as described in Japanese Utility Model Application Publication No. 55-112082, a hydraulic power source for a hydraulically operated transmission has a variable discharge amount that changes the amount of oil supplied depending on the transmission torque of the transmission, and more preferably, the throttle opening. There are also known devices that provide the following. The object of the present invention is to provide a variable displacement hydraulically operated transmission capable of reducing energy loss by further reducing the discharge flow when the throttle is closed and the vehicle is stationary or coasting at a very low speed. Provides hydraulic power source for machines. A further object of the present invention is to provide a hydraulic power source for a hydraulically operated transmission with a variable discharge amount that can reduce energy loss by lowering the discharge flow when a high-speed gear is engaged and the throttle is closed. It's about doing. It may be said that it is meaningless to save the pump's loss when the throttle is closed since the engine brake converts kinetic energy into thermal energy, but saving the pump's loss when the throttle is closed may be meaningless. This is undesirable because it causes an unnecessary rise in oil temperature and increases leakage loss in the system, and it also applies shear to the oil, significantly shortening the oil life. Furthermore, if the energy that should be consumed by the pump during deceleration can be saved somewhere, the overall fuel efficiency can be improved. SUMMARY OF THE INVENTION An object of the present invention is to provide an energy-saving hydraulic power source system for a hydraulically operated transmission that can recover and store a portion of the driving energy of a vehicle during deceleration and draw it out during next cruising or acceleration to drive a pump. be. Furthermore, when starting the engine, battery energy is converted into rotational energy by the starter motor, but on cold mornings, the sliding resistance of the engine and transmission is large, and the viscous resistance of the pump section also increases.
The battery itself also has extremely poor discharge characteristics at low temperatures. Therefore, in such a case, it is better to completely stop the hydraulic power source of the hydraulically operated transmission to reduce the load on the battery as much as possible to improve starting performance. SUMMARY OF THE INVENTION An object of the present invention is to provide a starting system for a vehicle with a hydraulically actuated transmission that allows the hydraulic power source to be turned off while the starter motor is in use. Next, the configuration of the present invention will be explained based on the drawings. Figure 1 is a cross-sectional view of the most common automatic transmission equipped with a torque converter.The output of the engine's crankshaft 1 is transferred to the turbine by turning the pump 3 of the torque converter 2 and fluidly increasing the output torque. Tell 4. The reaction force due to this torque amplification is transmitted to the casing 6 via the stator 5, and for this purpose, a stator shaft 8 is arranged outside and coaxially with the output shaft 9 of the torque converter. This output shaft 9 becomes the input shaft of an auxiliary transmission (not shown) on the right side of the figure. The right end of the pump 3 is connected to a pump drive shaft 11 via a serration 10.
and drives gears 12 and 13 of the gear pump. When driving a pump with such a configuration, the outer diameter of the pump gear 12 cannot be designed to be small because of the shaft 9, stator shaft 8, and drive shaft 11, and the sliding friction resistance between the side surface of the gear and the casing also increases. There were some inconveniences such as the size of the product. The driving horsepower of the pump, which is driven by being mechanically engaged with the output shaft of the engine, shows a gentle upward-sloping curve to the right, as shown by the solid line in FIG. 2, with respect to the engine rotational speed. In this graph, sufficient pump discharge pressure is already being produced when the engine is idling, and the drive horsepower W 0 at this time can be said to be the originally required horsepower, and the increase in drive horsepower shown at higher rotational speeds. minute is a simple energy loss. However, if we take a closer look at this W 0 , the capacity of this pump is determined based on the leakage loss in each control valve at high temperatures, so the oil temperature under normal usage conditions is also determined. If you decide to do so, it should be possible to either run a pump with a smaller capacity at the same speed, or a pump with the same capacity to run at a slower speed, so under these usage conditions, the required horsepower will also be It can be set even smaller. Therefore, it can be seen that this required horsepower W 0 is also not a constant but a variable that increases with oil temperature. The solid line in Figure 2 shows the drive horsepower relative to the normal pump discharge pressure, but in automatic transmissions that include a torque converter, when the torque converter is converting torque, the reaction force of the stator is Depending on the situation, a method of increasing the line is used, and a pump discharge pressure corresponding to the maximum line pressure is always required. If this is not done, the friction coupling means for engaging the gears of the auxiliary transmission will lose the transmission torque and slip when a large torque amplification is being performed, and if this continues for a long time, it will lead to damage on the friction surface. be. When the discharge pressure is increased under automatic control in this way, the pump drive horsepower increases as shown by the dotted line in Figure 2, and in this case, it is also necessary to deliver a discharge amount sufficient to compensate for leakage from each part. There is a driving horsepower W 0 ′, and any driving horsepower beyond that is loss horsepower. Of course, this required horsepower W 0 ' is also not a constant but a variable depending on the oil temperature. When driving in a crowded city area, the engine frequently accelerates and decelerates, generating a loss of horsepower along the dotted line each time, resulting in poor fuel efficiency, and the oil temperature rises so badly that the pump capacity increases. The vicious cycle continued over and over again. In the case of an automatic transmission with a torque converter like in this example, the torque converter slips every time you accelerate in the city, causing the pump to run at a higher speed, making the situation even worse. was. FIG. 3 shows an embodiment of the present invention. In the figure, for the sake of simplicity, the gear meshing of the auxiliary transmission is switched by hydraulic operation in which the switching valve is operated manually. Taking a type transmission as an example, the control system for its hydraulic power source is shown. First, the hydraulic system includes an oil pump 16 that sucks oil in an oil tank 14 through a filter 15, pressurizes it, and sends it out, and a lever 1 that connects this discharge pressure to the stator shaft of the torque converter.
7, the regulator valve 18 regulates the line pressure according to the stator reaction force, and this line pressure is connected to the low-speed clutch C1 , medium-speed clutch C2 , or high-speed clutch.
A manual valve 19 that selectively leads to C3 , a torque converter 2 that is located between the engine and the auxiliary transmission and acts to amplify the torque, a check valve 20 that keeps the oil pressure in the torque converter constant, and an auxiliary transmission. It consists of a second check valve 21 that determines the pressure to be sent to lubricate each part of the machine, and a servo piston 22 that switches forward and reverse gears. It is assumed that when each clutch C 1 , C 2 , C 3 enters the operating state, the meshing of the gears in the transmission becomes low speed, medium speed, and high speed, respectively. The oil pump 16 is driven by an electric motor 24 which is rotated by electric energy from a battery 23, either directly or via a reduction gear. Of course, the electrical energy of the battery is supplied to the battery 2 via a voltage regulator 26 from a generator 25 that is rotated by the engine output shaft.
It was stored in 3. A first switch 27 interlocked with the ignition switch is connected between the battery 23 and the motor 24.
A second switch 30 that controls the starter drive circuit 28 and closes when the starter switch 29 is opened, and a speed control means 31 that controls the rotational speed of the motor 24 using various signals are interposed in series. As such speed control means 31, a wiper motor speed control system is popular, and other examples include a current chopper system and the like. The signal delivered to the speed control means 31 is as follows:
Temperature signals 33, 33' generated by the temperature detection element 32 in the oil tank, and position signals 35 generated by position switches 34, 34' indicating that the manual valve 19 is in the N (neutral) or P (parking) position. The high-speed gear signal 37 generated by the hydraulic switch 36, which detects the meshing state of the high-speed gear, and the idle signal 40 generated by the stroke switch 39, which indicates that the throttle pedal 38 is in the idling position, are aligned. A high-speed coasting signal 42 issued by a first AND circuit element 41 that detects and a speedometer 4 that detects that the vehicle speed has become lower than a predetermined reference low speed value.
A low-speed coasting signal 46 is generated by a second AND circuit element 45 that detects that the low-speed signal 44 generated by the detector in 3 and the idle signal 40 are aligned.
and are available. Throttle pedal 38 in the diagram
is rotatably supported on the vehicle body at a pivot point 47, and when the pedal is depressed and displaced as shown by the chain line, wires 48 and the like are pulled to open the engine throttle valve in a known manner. The low speed signal 44 is issued, for example, when the vehicle speed becomes less than 10 km/h, and a known mechanism for generating such a signal is, for example, a 100 km/h alarm switch under current regulations. FIG. 4 shows another embodiment, in which the manual valve 19
The signals generated at the N and P shift positions are configured such that the motor 24 rotates at a certain low speed when it is in the N position, while the motor 24 is completely stationary when it is in the P position. By performing the starting operation at the P position, the electrical load at the time of starting the starter motor is reduced, and the low speed signal 44 detected by the second AND circuit element 45 is the signal generated by the hydraulic switch 49 that detects the engagement of the low gear, and 2 switch 30 is a switch that closes when the engine speed exceeds, for example, 500 rpm; such a detection mechanism may be the same as the aforementioned vehicle speed switch incorporated in the tachometer 50, or a switch that is turned on and off by centrifugal force. Various types of devices are possible, such as those installed on a camshaft or the like. If the line pressure adjusted by the regulator valve 18, which corresponds to the torque ratio (stator reaction force) of the torque converter, exceeds a normal value (for example, 7.5 kg/cm 2 ), the amount of oil leaking from each part of the hydraulic system will increase the pressure. Since the pressure increases as the pressure rises, if the pump is driven at the same rotation speed as before, the pressure may not increase as a result. To cope with this, the line pressure pressure sensor 51 provides a high pressure signal 52 to the speed control means 31 to compensate for oil leakage and adjust the desired line pressure when the line pressure is increased above a certain set value. The rotational speed of the motor 24 is increased so that the pressure can be maintained. Next, to explain its operation, in FIG. 3, the starter motor is turned to start the engine, and after the engine is started, the starter switch 29 is turned off, and the switch 30 is turned on, so that the motor 24 can rotate. On the other hand, in FIG. 4, when the engine starts to rotate at an idle speed (for example, Ne=600 rpm) or higher, both the first and second switches 27 and 30 are closed, and the motor 24 becomes rotatable. If the engine does not start at this time, the switch 30 remains open and no current flows to the motor 24. However, as when restarting after warming up, the engine is already warmed up and the battery is 23.
When the battery is fully charged, the rotation speed (500 rpm) at which the second switch 30 closes only by the power of the starter motor
Even if the switch 30 closes and the motor 24 starts rotating before the engine rotates on its own,
It does not cause any inconvenience in light of the purpose. Now, during this startup, the manual valve 19 is always in the N or P position (this is a well-known fact in automatic transmission technology), and the signal 35 is received, so
Since the speed control means 31 drives the motor 24 at a low first speed to lightly drive the rotation pump 16, oil is sent to the torque converter 2 and the inside thereof is filled with oil. At this time, the motor rotation speed is extremely low, and the driving horsepower is kept to a minimum. Note that even if this first speed is 0, it does not pose a big problem in practice. Next, when the manual valve 19 is moved to the left and brought to the "1" position for starting, the pump pressure is sent to the first clutch C1 via the servo piston 22. At this time, the vehicle speed is 0, so if the throttle pedal is at the idle position indicated by the solid line, the signal 46 will control the speed control means 31 instead of the signal 35, and the motor 24 will be controlled at the above-mentioned first speed or In response to requests such as providing creep characteristics to a vehicle, compensating for pressure oil leakage through the clear balance of many valves in a pressure oil control circuit, or improving responsiveness when starting a vehicle. Drive at a second speed faster than this. Now, when the throttle pedal 38 is depressed in this state, the signal 46 disappears and the motor 24 operates at the second speed if the setting is such that sufficient pump discharge pressure can be obtained, or at the second speed if sufficient discharge pressure cannot be obtained. Driven at a fast third speed, the pump discharge pressure is sufficient to maintain clutch C1 with sufficient coupling force, and the vehicle starts moving. After the vehicle speed exceeds 10 km/h, even if the throttle pedal 38 is released and the vehicle coasts, the signal 46 will no longer be present and the rotational speed of the pump will not change. When the vehicle speed increases and the manual valve 19 is moved to the "2" position to select the medium speed gear, the pressure of the pump is guided to the clutch C2 via the servo piston 22 and the meshing of the medium speed gear is completed. While the gears are engaged, the correlation between the operation of the throttle pedal and the rotational speed of the motor 24 is broken. The purpose of this is to prevent the 2nd clutch C2 from slipping against the gear shift shock when downshifting from 3rd gear to 2nd gear to apply engine braking on the downhill plate. Assuming that the vehicle speed further increases and the manual valve 19 is moved to the "3" position, the pump discharge pressure will be reduced to the clutch C 3
The meshing of the 3rd gear (TOP) gear is completed.
In this state, when the throttle pedal 38 is returned and held at the idle position, the signal 42 is transmitted to the speed control means 3.
1, the motor 24 is driven at low speed to save electrical energy, and part of the kinetic energy of the vehicle, which acts as an engine brake and is transmitted in the form of heat, is recovered to the battery 23. At this time, the engine (that is, the generator) is undoubtedly driven by the inertia of the car from the tires, and if the amount of charge that exceeds the amount of discharge comes in, as long as there is charge capacity left in the battery, the energy will be reduced. This is because it can be recovered as electrical energy. Of course, by lowering the rotation speed of the motor 24 by one step,
The discharge pressure may fall below the value required to transmit torque during engine braking, but as mentioned above, engine braking torque is much smaller than engine output (driving) torque, so clutch C 3 It hardly slips and is unlikely to cause damage. Or another half-hearted clutch
As long as C 3 does not slip, it is a good idea to proactively stop the motor 24 when the throttle is closed to maximize energy savings. At this time, clutch C3 is rapidly released and idles, and the engine brake has no effect at all, but the engine brake is originally very weak in the top transmission ratio of a hydraulically operated transmission due to the torque converter and overdrive ratio. There is no actual harm. In addition to the above control, signals 33 and 33' also control the speed control means 31, and when the oil temperature in the tank rises, the rotation speed of the motor 24 is increased by one step each time the temperature exceeds one reference value. Rotate quickly to compensate for leakage loss from each part. Of course, the rotational speed may be increased continuously in response to the signal 33'' which changes continuously as the temperature rises. (Figure 4) In this embodiment, a manual three-stage hydraulically operated transmission is used. For example, in the case of a 3- to 4-speed automatic transmission with an automatic switching function, there are an extremely large number of built-in valves, and future leaks are serious at high temperatures.These leaks must be dealt with. If you run a pump that has a capacity that can handle 4 to 5 horsepower, it will quickly eat up 4 to 5 horsepower, resulting in poor power performance and fuel efficiency.This is compounded by the fact that with a torque converter-type automatic transmission, the torque converter slips every time the engine is started. , so the pump loss was large. According to the present invention, it is possible to create an automatic transmission with excellent power performance and fuel efficiency. In this way, according to the present invention, the pump loss is large depending on the throttle opening of the engine. The electric motor that drives the pump, which has a variable discharge amount for the amount of oil supplied to the oil pump, is controlled so that its rotational speed is set low or stopped when the engine throttle opening is closed, making the oil pump unnecessary. It is possible to prevent the generation of excessive hydraulic pressure, minimize energy loss, and by considering the gear ratio or vehicle speed, it is possible to clearly distinguish areas where energy loss should be further reduced and improve drivability. has.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の自動変速機用ポンプの一例を示
す截断面図、第2図はこの従来型油圧源の駆動馬
力(ロス馬力)の特性曲線、第3図は本発明の一
実施例を示す系統線図、第4図は本発明の他の実
施例を示す系統線図である。 16……オイルポンプ、24……電動モータ。
Fig. 1 is a cross-sectional view showing an example of a conventional automatic transmission pump, Fig. 2 is a characteristic curve of driving horsepower (loss horsepower) of this conventional hydraulic power source, and Fig. 3 is a diagram showing an example of the present invention. FIG. 4 is a system diagram showing another embodiment of the present invention. 16... Oil pump, 24... Electric motor.

Claims (1)

【特許請求の範囲】 1 油圧作動式変速機の制御用のオイルポンプを
電動モータで駆動すると共に該電動モータの回転
速度をエンジンのスロツトル開度に応じて可変に
制御する車両用の油圧作動式変速機において、前
記電動モータの回転速度をエンジンのスロツトル
開度が閉じている時は低く設定するか又は停止さ
せる様に制御することを特徴とする車両用の油圧
作動式変速機。 2 前記電動モータの回転速度を、当該油圧作動
式変速機の変速比が高速側にある時、低速に制御
することを特徴とする特許請求の範囲第1項記載
の車両用の油圧作動式変速機。 3 前記電動モータの回転速度を、当該油圧作動
式変速機の変速比が低速側にある時、低速に制御
することを特徴とする特許請求の範囲第1項記載
の車両用の油圧作動式変速機。 4 前記電動モータの回転速度を、当該油圧作動
式変速機の変速比が中速状態にあるときは前記ス
ロツトル開度には無関係になる様制御することを
特徴とする特許請求の範囲第1項記載の車両用の
油圧作動式変速機。 5 前記電動モータの回転速度を、車速が所期値
よりも低い時は、停止又は低く設定したことを特
徴とする特許請求の範囲第1項記載の車両用の油
圧作動式変速機。
[Scope of Claims] 1. A hydraulically operated transmission for a vehicle in which an oil pump for controlling a hydraulically operated transmission is driven by an electric motor, and the rotational speed of the electric motor is variably controlled in accordance with the throttle opening of the engine. A hydraulically operated transmission for a vehicle, characterized in that the rotational speed of the electric motor is controlled to be set low or stopped when the throttle opening of the engine is closed. 2. The hydraulically operated transmission for a vehicle according to claim 1, wherein the rotational speed of the electric motor is controlled to a low speed when the gear ratio of the hydraulically operated transmission is on the high speed side. Machine. 3. The hydraulically operated transmission for a vehicle according to claim 1, wherein the rotational speed of the electric motor is controlled to a low speed when the gear ratio of the hydraulically operated transmission is on the low speed side. Machine. 4. Claim 1, characterized in that the rotational speed of the electric motor is controlled so as to be independent of the throttle opening when the gear ratio of the hydraulically operated transmission is in a medium speed state. Hydraulically operated transmission for the vehicle described. 5. The hydraulically operated transmission for a vehicle according to claim 1, wherein the rotational speed of the electric motor is stopped or set to a low rotational speed when the vehicle speed is lower than a predetermined value.
JP55173792A 1980-12-11 1980-12-11 Change gear operated by oil pressure for car Granted JPS5797942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55173792A JPS5797942A (en) 1980-12-11 1980-12-11 Change gear operated by oil pressure for car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55173792A JPS5797942A (en) 1980-12-11 1980-12-11 Change gear operated by oil pressure for car

Publications (2)

Publication Number Publication Date
JPS5797942A JPS5797942A (en) 1982-06-17
JPS645178B2 true JPS645178B2 (en) 1989-01-30

Family

ID=15967233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55173792A Granted JPS5797942A (en) 1980-12-11 1980-12-11 Change gear operated by oil pressure for car

Country Status (1)

Country Link
JP (1) JPS5797942A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6881165B2 (en) 2001-02-07 2005-04-19 Toyota Jidosha Kabushiki Kaisha Hydraulic control apparatus of vehicle and control method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201960A (en) * 1985-02-28 1986-09-06 Aisin Warner Ltd Hydraulic pump driving apparatus for automatic transmission
JPH02236052A (en) * 1989-03-03 1990-09-18 Mazda Motor Corp Line pressure control device of hydraulically actuated transmission
JPH11189073A (en) 1997-12-25 1999-07-13 Nissan Motor Co Ltd Fluid pressure control device for hybrid vehicle
JP3648411B2 (en) * 1999-09-24 2005-05-18 株式会社日立製作所 Electric hydraulic pump control apparatus and method for automatic transmission
JP3912235B2 (en) 2002-09-10 2007-05-09 トヨタ自動車株式会社 Vehicle hydraulic control device
JP4412346B2 (en) 2007-04-20 2010-02-10 トヨタ自動車株式会社 Drive control apparatus for hybrid vehicle
JP6706884B2 (en) * 2015-03-19 2020-06-10 日産自動車株式会社 Vehicle oil pump drive controller

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5125543A (en) * 1974-08-28 1976-03-02 Kogyo Gijutsuin FUENOORUKEIGOMUROKABOSHIZAI
JPS5261669A (en) * 1975-11-15 1977-05-21 Toyota Motor Corp Hydraulic pressure feeding device for fluid type automatic transmissio n

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6881165B2 (en) 2001-02-07 2005-04-19 Toyota Jidosha Kabushiki Kaisha Hydraulic control apparatus of vehicle and control method

Also Published As

Publication number Publication date
JPS5797942A (en) 1982-06-17

Similar Documents

Publication Publication Date Title
US4407398A (en) Drive unit
JP3514142B2 (en) Vehicle control device
US7089095B2 (en) Control device for a hybrid vehicle
US4411171A (en) Vehicle drive
JP3381613B2 (en) Drive control device for hybrid vehicle
CN1275790C (en) Power driving system
JPH04278841A (en) automobile drive system
US4495836A (en) Automotive vehicle power drive system
GB2469864A (en) Hybrid vehicle and control method
JP4207376B2 (en) Vehicle hydraulic control device
US8630778B2 (en) Controlling a throttle for fuel cut acquisition
JPH0118420Y2 (en)
JP3453132B2 (en) Power transmission control device for vehicles
JP2002536226A (en) Drive for at least one accessory unit of a motor vehicle and method of operating the drive
JP3642166B2 (en) Hydraulic control device for automatic engine stop and start vehicle
JP3716659B2 (en) Vehicle travel control device
JP3343679B2 (en) Control device for vehicle power transmission
JP3454167B2 (en) Control device for hybrid vehicle
JPH10339182A (en) Combined veicle driving apparatus of internal combustion engine and electric motor and control method thereof
JPS645178B2 (en)
US6443277B1 (en) Clutch valving circuit for automatic transmission
JP2014095352A (en) Vehicle control device
JPH10339185A (en) Combined veicle driving apparatus of internal combustion engine and electric motor and control method thereof
JP7273575B2 (en) vehicle controller
JP5652044B2 (en) Vehicle control system