[go: up one dir, main page]

JPS6412414B2 - - Google Patents

Info

Publication number
JPS6412414B2
JPS6412414B2 JP54074129A JP7412979A JPS6412414B2 JP S6412414 B2 JPS6412414 B2 JP S6412414B2 JP 54074129 A JP54074129 A JP 54074129A JP 7412979 A JP7412979 A JP 7412979A JP S6412414 B2 JPS6412414 B2 JP S6412414B2
Authority
JP
Japan
Prior art keywords
circuit
latch
signal
phase
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54074129A
Other languages
Japanese (ja)
Other versions
JPS55166331A (en
Inventor
Ichiro Takase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP7412979A priority Critical patent/JPS55166331A/en
Publication of JPS55166331A publication Critical patent/JPS55166331A/en
Publication of JPS6412414B2 publication Critical patent/JPS6412414B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • H03K5/131Digitally controlled

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Pulse Circuits (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

デイジタル回路で装置を実現する場合、装置の
基本動作速度を規定するクロツク信号は必要不可
欠なものである。またそのクロツク信号も回路の
遅延などに合わせてさまざまな位相のものが要求
される。このような複数の位相のクロツク信号を
生成する方法としてアナログ遅延回路を用いて実
現する方法と、極めて高速なマスタクロツクを内
部に有し、そのマスタクロツクの周期単位でデイ
ジタル的にクロツク信号の位相をずらせたものを
生成して複数の位相のクロツクを生成する方法と
がある。本発明はこのうちデイジタル処理により
さまざまな位相のクロツク信号を生成するデイジ
タル位相可変回路に関するものである。 従来知られている位相可変回路は取り出す移相
量を必要な位相の状態数だけ用意しておき切替え
て使用する方法がある。しかし位相の状態数が多
くなると回路が大型化する欠点があつた。 本発明の目的はこれらの欠点を除き安定に位相
を変化できる回路を提供することにある。 本発明によると、入力信号がラツチパルスの論
理レベル「1」でそのまま出力され、論理レベル
「1」から「0」に変化するところでサンプルし、
論理レベルが「0」の状態でホールドされるよう
なラツチ回路を複数個含み初段に入力した信号が
最終段から出力されるような縦続接続回路と、入
力信号に対して2n倍となる信号を計数する複数段
の2進計数回路と、該計数回路の各段出力をそれ
ぞれ制御回路を介してラツチパルスとして前記縦
続接続回路に供給する手段とを備え、前記制御回
路においてラツチパルスの通過を制御信号で制御
するようにした位相可変回路が得られる。 以下図面を用いて詳しく説明する。 第1図は従来の位相可変回路の構成を示すブロ
ツク図である。入力端子101に入つたクロツク
信号は、位相θなる遅延を与える縦続接続された
遅延回路102〜108に入り、各遅延回路の出
力に得られる8通りの位相をスイツチ109で切
替え出力端子110に所望の移相量を取り出す。
このように従来の位相可変回路は必要な位相の状
態数だけ遅延回路を用意しておかなければならず
状態数の増加が回路の大型化となる欠点があつ
た。 第2図は本発明によるデイジタル位相可変回路
の実施例を示す構成図であり、第3図イ〜トは第
2図の動作を説明するための波形図である。本実
施例は第1図で説明した8通りの位相の状態数を
切替える位相切替えを3つの制御線を制御するこ
とで行なつたものである。なお計数回路は4段の
同期式カウンタ、ラツチ回路は3つ縦続接続した
ものである。 本実施例ではカウンタ202の最終段出力、す
なわちマスタ・クロツク信号を1/16分周したもの
が第1図の端子101から入力されるクロツク信
号に相当するものであるものとして説明する。 入力端子201に入つた高速のマスタ・クロツ
ク信号は、4段の同期式カウンタ202に入り各
段出力に1/2・1/4・1/8・1/16分周されたパルス
を発生する。 ここでクロツク信号を入力とするラツチ回路2
03は、マスタ・クロツク信号を1/8分周したラ
ツチパルスロにより90度の遅延を与えられる(波
形図ハ)。ラツチ回路204の出力信号ハはマス
タ・クロツク信号を1/4分周したラツチパルスニ
により45度の遅延を与えられる(波形図ホ)。ラ
ツチ回路205の出力信号ホはマスタ・クロツク
信号を1/2分周したラツチパルスヘにより22.5゜の
遅延(波形図ト)を与えられ出力端子210に出
力される。 以上の動作は、入力端子209の3つの制御線
CONT.1〜CONT.3の論理レベルが全て「0」状
態でカウンタ各段の出力は論理和回路(OR回
路)206〜208を全通過の状態である。な
お、各ラツチ回路はラツチパルスの論理レベルが
「1」のとき、入力信号をそのまま出力する機能
を持つているので入力端子209の3つの制御線
を制御信号で制御することで8通りの位相の状態
数をとることができる。制御信号の論理レベルが
全て「0」のとき位相を0度とすると、制御信号
によつて次表のような位相変化が得られる。
When implementing a device using a digital circuit, a clock signal that defines the basic operating speed of the device is essential. Furthermore, the clock signals are required to have various phases depending on the delay of the circuit. There are two methods for generating clock signals with multiple phases: one is to use an analog delay circuit, the other is to have an extremely high-speed master clock internally, and digitally shift the phase of the clock signal in units of cycles of the master clock. There is a method of generating clocks with multiple phases by generating a clock with multiple phases. The present invention relates to a digital phase variable circuit that generates clock signals of various phases through digital processing. In the conventionally known phase variable circuit, there is a method in which the amount of phase shift to be taken out is prepared as many as the necessary number of phase states and is used by switching. However, as the number of phase states increases, the circuit becomes larger. An object of the present invention is to eliminate these drawbacks and provide a circuit that can stably change the phase. According to the present invention, the input signal is output as it is at the logic level "1" of the latch pulse, and is sampled when the logic level changes from "1" to "0".
A cascade circuit that includes multiple latch circuits whose logic level is held at "0" and a signal input to the first stage is output from the final stage, and a signal that is 2 n times the input signal. a plurality of stages of binary counting circuits for counting, and means for supplying the outputs of each stage of the counting circuits as latch pulses to the cascade circuit via respective control circuits, and in the control circuit, passage of the latch pulses is controlled by a control signal. A variable phase circuit controlled by This will be explained in detail below using the drawings. FIG. 1 is a block diagram showing the configuration of a conventional phase variable circuit. A clock signal input to input terminal 101 enters cascade-connected delay circuits 102 to 108 that provide a delay of phase θ, and a switch 109 switches between eight different phases obtained at the output of each delay circuit to output the desired signal to output terminal 110. Take out the amount of phase shift.
As described above, the conventional phase variable circuit has the drawback that it is necessary to prepare delay circuits for the required number of phase states, and an increase in the number of states results in an increase in the size of the circuit. FIG. 2 is a block diagram showing an embodiment of the digital phase variable circuit according to the present invention, and FIGS. 3A to 3E are waveform diagrams for explaining the operation of FIG. 2. In this embodiment, the phase switching for switching the number of the eight phase states explained in FIG. 1 is performed by controlling three control lines. The counting circuit is a four-stage synchronous counter, and the latch circuits are three cascaded. In this embodiment, the final stage output of the counter 202, that is, the master clock signal divided by 1/16, will be described as corresponding to the clock signal input from the terminal 101 in FIG. A high-speed master clock signal that enters the input terminal 201 enters a four-stage synchronous counter 202 and generates pulses divided by 1/2, 1/4, 1/8, and 1/16 at the output of each stage. . Here, latch circuit 2 which receives the clock signal as input
03 is given a 90 degree delay by a latch pulse pulse which is obtained by dividing the master clock signal by 1/8 (waveform diagram c). The output signal C of the latch circuit 204 is delayed by 45 degrees by the latch pulse N, which is obtained by dividing the master clock signal by 1/4 (waveform diagram H). The output signal H of the latch circuit 205 is delayed by 22.5 degrees (as shown in the waveform diagram) by a latch pulse obtained by dividing the master clock signal by 1/2, and is outputted to the output terminal 210. The above operation is performed using the three control lines of the input terminal 209.
The logic levels of CONT.1 to CONT.3 are all in the "0" state, and the outputs of each stage of the counter are all passing through the logical sum circuits (OR circuits) 206 to 208. Note that each latch circuit has a function of outputting the input signal as is when the logic level of the latch pulse is "1", so by controlling the three control lines of the input terminal 209 with control signals, eight different phases can be output. It can take the number of states. If the phase is set to 0 degrees when the logic levels of the control signals are all "0", the phase changes as shown in the following table are obtained by the control signals.

【表】 〓 〓内は論理レベル
第2図の実施例は最高157.5度の移相量をとり
得るが1/16分周されたパルス信号の極性を制御信
号で切替えることのできる回路に通すことで、16
通りの位相の状態数と最高337.5度の移相量をと
ることができる。 本実施例では位相の調節をクロツク信号に対し
て行なうとして説明したが、他の周期信号に対し
ても同様にできることは明らかである。 第2図におけるラツチ回路203の入力を一般
的なデジタル信号にすれば、その信号に対する遅
延回路を容易に実現できる。 以上説明したように本発明によれば、m個
(m:整数)の制御線を制御信号で制御すること
で2m通りの位相状態をとることができる。
[Table] 〓 〓 indicates the logic level The embodiment shown in Figure 2 can have a phase shift of up to 157.5 degrees, but the polarity of the pulse signal divided by 1/16 can be switched by a control signal. So, 16
It can take the same number of phase states and a maximum phase shift of 337.5 degrees. Although the present embodiment has been described in which the phase adjustment is performed on a clock signal, it is clear that the same adjustment can be performed on other periodic signals as well. If the input of the latch circuit 203 in FIG. 2 is a general digital signal, a delay circuit for that signal can be easily realized. As explained above, according to the present invention, 2 m different phase states can be achieved by controlling m (m: integer) control lines with control signals.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の位相可変回路を示す構成図、第
2図は本発明によるデイジタル位相可変回路の実
施例を示す構成図、第3図は第2図の動作を説明
するための波形図である。 図において、101,201,209は入力端
子、102〜108は遅延回路、109はスイツ
チ、202はカウンタ、203〜205はラツチ
回路、206〜208は論理和回路、110,2
10は出力端子である。
Fig. 1 is a block diagram showing a conventional phase variable circuit, Fig. 2 is a block diagram showing an embodiment of a digital phase variable circuit according to the present invention, and Fig. 3 is a waveform diagram for explaining the operation of Fig. 2. be. In the figure, 101, 201, 209 are input terminals, 102-108 are delay circuits, 109 is a switch, 202 is a counter, 203-205 are latch circuits, 206-208 are OR circuits, 110, 2
10 is an output terminal.

Claims (1)

【特許請求の範囲】[Claims] 1 入力信号がラツチパルスの論理レベル「1」
でそのまま出力され、論理レベルが「1」から
「0」に変化するところでサンプルし、論理レベ
ルが「0」の状態でホールドされるようなラツチ
回路を複数個含み、初段に入力信号を加えて最終
段から出力信号を得るような前記ラツチ回路の縦
続接続回路と、入力信号の周波数の2n(n:整数)
倍の周波数のクロツク信号を計数する複数段(m
段)の2進計数回路と、該計数器のm個の各段出
力をそれぞれm個の制御回路を介してラツチパル
スとして前記縦続接続回路の各段に供給する手段
とを備え、前記m個のそれぞれの制御回路におい
てラツチパルスの通過をm本の制御信号で制御す
ることによつて位相制御を行ない位相を可変とし
たことを特徴とするデイジタル位相可変回路。
1 Input signal is latch pulse logic level “1”
It includes multiple latch circuits that output the signal as is, sample it when the logic level changes from "1" to "0", and hold the logic level at "0", and add the input signal to the first stage. A cascade circuit of the latch circuits that obtains the output signal from the final stage, and 2 n (n: integer) of the frequency of the input signal.
Multiple stages (m
and means for supplying the output of each of the m stages of the counter as a latch pulse to each stage of the cascaded circuit via m control circuits, respectively. A digital phase variable circuit characterized in that phase control is performed by controlling the passage of latch pulses using m control signals in each control circuit, thereby making the phase variable.
JP7412979A 1979-06-12 1979-06-12 Digital phase variable circuit Granted JPS55166331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7412979A JPS55166331A (en) 1979-06-12 1979-06-12 Digital phase variable circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7412979A JPS55166331A (en) 1979-06-12 1979-06-12 Digital phase variable circuit

Publications (2)

Publication Number Publication Date
JPS55166331A JPS55166331A (en) 1980-12-25
JPS6412414B2 true JPS6412414B2 (en) 1989-02-28

Family

ID=13538265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7412979A Granted JPS55166331A (en) 1979-06-12 1979-06-12 Digital phase variable circuit

Country Status (1)

Country Link
JP (1) JPS55166331A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6081147A (en) 1994-09-29 2000-06-27 Fujitsu Limited Timing controller and controlled delay circuit for controlling timing or delay time of a signal by changing phase thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5050851A (en) * 1973-09-04 1975-05-07
JPS5428559A (en) * 1977-08-08 1979-03-03 Nec Corp Signal delay device
DE3038369A1 (en) * 1979-10-11 1981-04-23 James K. Phoenix Ariz. Gaylord IGNITION SYSTEM FOR A COMBUSTION ENGINE

Also Published As

Publication number Publication date
JPS55166331A (en) 1980-12-25

Similar Documents

Publication Publication Date Title
JP3169794B2 (en) Delay clock generation circuit
JP2853894B2 (en) Frequency divider and pulse signal generator
JP2745869B2 (en) Variable clock divider
CA1177967A (en) Serial-to-parallel converter
EP0106499B1 (en) Shift register delay circuit
WO1982002464A1 (en) Programmable clock rate generator
JPS6412414B2 (en)
US3992612A (en) Rate multiplier
JPS6130450B2 (en)
JP2659186B2 (en) Digital variable frequency divider
EP0095796B1 (en) Dynamic two-phase circuit arrangement
JPS55143825A (en) Digital phase shifter
JP3435751B2 (en) Divider
JPS6315517A (en) Clock generating circuit
JPH04239819A (en) Synchronous counter
SU1387178A1 (en) Random process generator
SU839068A1 (en) Repetition rate scaler with n and n+1 countdown ratio
SU1471309A2 (en) Variable frequency divider
JP2682889B2 (en) Variable frequency divider
JPS62110323A (en) Frequency-digital conversion circuit
JPH0288985A (en) False signal generator
JPH0795047A (en) Frequency divider circuit
JP2641964B2 (en) Divider
JPS61285523A (en) Clock switching circuit
JPH0277914A (en) Multi-phase clock generating circuit