[go: up one dir, main page]

JPS6411818B2 - - Google Patents

Info

Publication number
JPS6411818B2
JPS6411818B2 JP12101280A JP12101280A JPS6411818B2 JP S6411818 B2 JPS6411818 B2 JP S6411818B2 JP 12101280 A JP12101280 A JP 12101280A JP 12101280 A JP12101280 A JP 12101280A JP S6411818 B2 JPS6411818 B2 JP S6411818B2
Authority
JP
Japan
Prior art keywords
engine
fuel
immediately
fuel cut
stopped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12101280A
Other languages
Japanese (ja)
Other versions
JPS5746032A (en
Inventor
Kazuyoshi Mizuno
Takehisa Yaegashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP12101280A priority Critical patent/JPS5746032A/en
Publication of JPS5746032A publication Critical patent/JPS5746032A/en
Publication of JPS6411818B2 publication Critical patent/JPS6411818B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、内燃機関の燃料カツト中止直後にお
ける燃料噴射量あるいは点火時期の制御方法に関
する。 [従来の技術] 従来の電子制御式燃料噴射装置の燃料カツト中
止直後の制御方法としては、燃料カツト中止直後
の燃料噴射量あるいは点火時期を、変速機が中立
位置にあるか否か、あるいは機関動力を車輪に伝
達するクラツチの接続非接続に関係なく、一定の
増量分だけ燃料噴射量を増大させる方法(特開昭
54−108127号公報)、や一定値だけ点火時期を遅
角させる方法(特開昭55−46057号公報)が知ら
れている。 [発明が解決しようとする問題点] しかし、従来の燃料カツト中止直後の制御方法
では、変速機の変速段が中立の時またはクラツチ
が非接続であつて、機関が車輌駆動軸と非係合状
態の場合(以下、レーシング時という)における
燃料カツト中止直後であるか、車輌走行中であつ
てクラツチが接続状態で変速機が中立以外の何れ
かの変速段にあつて、機関が車輌駆動軸と係合状
態にある場合(以下、機関減速状態という)にお
ける燃料カツト中止直後であるかに関係なく定量
的に燃料噴射量を増量補正したり点火時期を遅角
補正しているので、たとえば車輌減速時を基準と
して一律に補正するならばレーシング時の燃料カ
ツト中止直後において機関回転数の異常低下や機
関の回転停止が起こりやすいという問題点や、レ
ーシング時を基準として一律に補正するならば、
車輌走行中の減速時の燃料カツト中止直後におい
て、伝達トルクが急激に変化して車輌に衝撃を与
えるという問題点を有している。 本発明の目的は、レーシング時における燃料カ
ツト中止直後の機関の回転停止および自動車走行
中の減速時における燃料カツト中止直後の衝撃の
発生をともに有効に防止することができる制御方
法を提供することである。 [問題点を解決するための手段] 本発明の要旨とするところは、 変速機の中立時又は機関動力の車輌駆動軸への
伝達を断続するクラツチの非接続時であつて、機
関が車輌駆動軸と非係合状態である場合における
内燃機関の燃料カツト中止直後の燃料噴射増量補
正量あるいは点火進角値に対する遅角補正量(負
の値)を、変速機が中立以外の状態でかつクラツ
チの接続時であつて、機関が車輌駆動軸と係合状
態にある場合における燃料カツト中止直後の燃料
噴射増量補正量あるいは点火進角値に対する遅角
補正量(負の値)より大きく選定することを特徴
とする燃料カツト中止直後の制御方法にある。 [作用] 本発明においては、レーシング時の燃料カツト
中止直後の燃料噴射増量補正量あるいは遅角補正
量(負の値)を、機関減速状態における燃料カツ
ト中止直後の場合よりも大きく設定しているの
で、燃料噴射再開時には、機関減速状態での燃料
噴射再開時に比較して、燃料噴射量がより多くな
る、あるいは点火進角値はより進角側になる。し
たがつて、燃料カツト中止期間には急速に低下し
ていた機関回転数は速やかに上昇する。一方、機
関減速状態での燃料噴射再開時には、レーシング
時の燃料噴射再開時に比較して、燃料噴射量がよ
り少なくなる、あるいは点火進角値はより遅角側
になるので、機関出力軸トルクは一気に増大しな
い。 それ故、レーシング時の燃料カツト中止直後に
は機関のアイドリング状態は良好に保たれ、機関
減速状態での燃料カツト中止直後には車輌に衝撃
を与えることがない。 [実施例] 以下、図面を参照して本発明の実施例を説明す
る。 第1図は、本発明が適用される電子制御式燃料
噴射装置を概略的に示しており、エアクリーナ1
から吸い込まれた空気は、スロツトルボデー2に
設けられて運転室の加速ペダルに連動する絞り弁
3により流量を制御されてから、サージタンク
4、吸気管5および吸気弁6を介して機関本体7
の燃焼室8へ導かれる。燃焼室8は、ピストン9
の上面により区画され、燃焼室8の混合気は燃焼
後、排気弁10を介して排気管11へ導かれる。 燃料噴射弁15は、吸気ポート近傍に設けられ
燃料タンク16から燃料ポンプ17により燃料通
路18を介して圧送されてきた燃料を吸気系へ供
給する。上記燃料噴射弁15の開閉は、電子制御
部19からの電気信号により制御される。 次に、電子制御部19は、CPU(中央処理装
置)、ROM(リードオンメモリ)、RAM(ランダ
ムアクセスメモリ)を中心に形成された論理演算
回路、および入出力回路、D/Aコンバータ、
A/Dコンバータなどにより構成されている。上
記のROMには、機関の状態に応じて最適な燃料
噴射量や点火進角値を求めたり機関を良好な状態
に保つためのプログラムや点火進角値マツプな
ど、種々のデータが書き込まれている。また、上
記の入出力回路には、絞り弁3より上流に設けら
れて吸入空気量を測定するエアフローメータ2
3、デイストリビユータ24内に設けられてクラ
ンク軸の回転角度を検出するクランク角センサ2
5、機関本体7のウオタージヤケツト29に設け
られて機関冷却水温を検出する水温センサ26、
絞り弁3の全閉状態を検出するスロツトルスイツ
チ27、および変速機の出力軸の回転速度を検出
する車速センサ28が、上記D/Aコンバータ、
A/Dコンバータを介して接続されて各センサか
らの信号が入力される。 上記の構成を有する電子制御部19は、エアフ
ローメータ23からの流入空気量データとクラン
ク角センサ25からの機関回転数データとに基づ
いて基本噴射量を演算し、かつ水温センサ26か
らの機関冷却水温データにより増量補正したうえ
燃料噴射量を決定する。また、上記の各データに
基づいて基本点火進角値および補正点火進角値を
求め点火時期を決定するとともに点火コイル30
の一次側への通電タイミングを制御することによ
つて、デイストリビユータ24への高電圧印加時
期を定めて点火時期を制御する。 また、電子制御部19は、各センサからの入力
データに基づいて燃料カツトおよび燃料カツト中
止の制御を行う。すなわち、絞り弁3が全閉状態
で、かつ機関回転数が所定値以上に達するなどの
条件が成立した場合には燃料カツトを開始し、燃
[Industrial Field of Application] The present invention relates to a method for controlling fuel injection amount or ignition timing immediately after fuel cut-off of an internal combustion engine is stopped. [Prior Art] As a control method of a conventional electronically controlled fuel injection system immediately after fuel cut is stopped, the fuel injection amount or ignition timing immediately after fuel cut is stopped is determined by controlling whether the transmission is in a neutral position or not, or whether the engine is in a neutral position or not. A method of increasing the amount of fuel injection by a fixed amount regardless of whether the clutch that transmits power to the wheels is connected or disconnected (Japanese Patent Application Laid-Open No.
54-108127) and a method of retarding the ignition timing by a certain value (Japanese Patent Application Laid-Open No. 55-46057). [Problems to be Solved by the Invention] However, in the conventional control method immediately after stopping fuel cut, when the gear of the transmission is neutral or the clutch is disengaged, the engine is not engaged with the vehicle drive shaft. (hereinafter referred to as racing), immediately after fuel cut is stopped, or when the vehicle is running with the clutch engaged and the transmission in any gear other than neutral, the engine is not connected to the vehicle drive shaft. When the engine is engaged (hereinafter referred to as engine deceleration state), the fuel injection amount is quantitatively increased or the ignition timing is retarded, regardless of whether fuel cut has been stopped or not. If the correction is made uniformly based on the time of deceleration, there is a problem that an abnormal decrease in the engine rotation speed or the rotation of the engine is likely to occur immediately after the fuel cut is stopped during racing, and if the correction is made uniformly based on the time of racing,
Immediately after the fuel cut is stopped when the vehicle is decelerating while the vehicle is running, the transmitted torque suddenly changes, giving a shock to the vehicle. An object of the present invention is to provide a control method that can effectively prevent the rotation of an engine from stopping immediately after the fuel cut is stopped during racing, and the occurrence of an impact immediately after the fuel cut is stopped when the vehicle is decelerating while running. be. [Means for Solving the Problems] The gist of the present invention is to provide a system in which the engine is driving the vehicle when the transmission is in the neutral state or when the clutch that connects and disconnects the transmission of engine power to the vehicle drive shaft is disconnected. The fuel injection increase correction amount or the retardation correction amount (negative value) for the ignition advance value immediately after the internal combustion engine stops fuel cut when the transmission is in a state other than neutral and the clutch be selected to be larger than the fuel injection increase correction amount immediately after fuel cut is stopped or the retardation correction amount (negative value) for the ignition advance value when the engine is connected to the vehicle drive shaft and the engine is engaged with the vehicle drive shaft. A control method immediately after stopping fuel cut is characterized by: [Operation] In the present invention, the fuel injection increase correction amount or retardation correction amount (negative value) immediately after fuel cut is stopped during racing is set to be larger than that in the case immediately after fuel cut is stopped in an engine deceleration state. Therefore, when fuel injection is restarted, the fuel injection amount becomes larger or the ignition advance value becomes more advanced than when fuel injection is restarted in an engine deceleration state. Therefore, the engine speed, which had rapidly decreased during the fuel cut suspension period, quickly increases. On the other hand, when restarting fuel injection while the engine is decelerating, the fuel injection amount becomes smaller or the ignition advance value becomes more retarded than when restarting fuel injection during racing, so the engine output shaft torque It does not increase all at once. Therefore, the idling condition of the engine is kept good immediately after the fuel cut is stopped during racing, and no impact is given to the vehicle immediately after the fuel cut is stopped while the engine is decelerating. [Example] Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 schematically shows an electronically controlled fuel injection device to which the present invention is applied.
The flow rate of the air sucked in from the engine is controlled by a throttle valve 3 provided in the throttle body 2 and linked to an accelerator pedal in the driver's cab, and then passed through a surge tank 4, an intake pipe 5, and an intake valve 6 to the engine body 7.
is guided to the combustion chamber 8. The combustion chamber 8 has a piston 9
After combustion, the air-fuel mixture in the combustion chamber 8 is guided to an exhaust pipe 11 via an exhaust valve 10. The fuel injection valve 15 is provided near the intake port and supplies fuel, which is pressure-fed from the fuel tank 16 through the fuel passage 18 by the fuel pump 17, to the intake system. The opening and closing of the fuel injection valve 15 is controlled by electrical signals from an electronic control section 19. Next, the electronic control unit 19 includes a logic operation circuit formed mainly of a CPU (central processing unit), ROM (read-on memory), and RAM (random access memory), an input/output circuit, a D/A converter,
It is composed of an A/D converter and the like. The above ROM contains various data such as programs and ignition advance value maps to determine the optimal fuel injection amount and ignition advance value depending on the engine condition and to keep the engine in good condition. There is. The above input/output circuit also includes an air flow meter 2 installed upstream of the throttle valve 3 to measure the amount of intake air.
3. Crank angle sensor 2 provided in the distributor 24 to detect the rotation angle of the crankshaft
5. A water temperature sensor 26 installed in the water jacket 29 of the engine body 7 to detect the engine cooling water temperature;
A throttle switch 27 that detects the fully closed state of the throttle valve 3 and a vehicle speed sensor 28 that detects the rotational speed of the output shaft of the transmission are connected to the D/A converter,
They are connected via an A/D converter and signals from each sensor are input. The electronic control unit 19 having the above configuration calculates the basic injection amount based on the inflow air amount data from the air flow meter 23 and the engine rotation speed data from the crank angle sensor 25, and calculates the engine cooling amount from the water temperature sensor 26. The fuel injection amount is determined after increasing the amount based on the water temperature data. Also, based on the above data, the basic ignition advance value and the corrected ignition advance value are determined, and the ignition timing is determined.
By controlling the timing of energization to the primary side of the controller 24, the timing of applying high voltage to the distributor 24 is determined and the ignition timing is controlled. Further, the electronic control unit 19 controls fuel cut and fuel cut cancellation based on input data from each sensor. That is, when conditions such as the throttle valve 3 is fully closed and the engine speed reaches a predetermined value or higher are met, fuel cut is started and the fuel is cut off.

【表】 ただし、表においてNは中立、1は1速、2は
2速、3は3速、4は4速を表し、変速比は1速
から4速へ移行するに連れて減少し、変速機の最
小変速比は4速において達成される。 また、Q0〜Q4は、燃料噴射増量補正量を表し、
A0〜A4は点火進角値に対する遅角補正量(負の
値)を表す。 ここでまず、燃料増量補正量Q0〜Q4を上記表
のように設定する理由について説明する。 すなわち、機関減速状態での燃料カツト中止直
後には、吸気管内壁が乾燥しているので、噴射さ
れた燃料の一部が吸気管内壁に付着し燃焼室8に
送り込まれる燃料が減少して、燃焼室8内に吸入
される混合気を適切な空燃比に制御することがで
きない。そこで、従来より噴射燃料を増量するこ
とが考えられている。しかし、変速機の変速段に
関係なく同じ量だけ燃料を増量して噴射を実行す
ると、特に変速機が低速段にある時には、機関出
力軸トルクが一気に増大して車輌に衝撃を与えて
しまう。それ故、低速段ほど増量補正量を小さく
設定している。 一方、レーシング時での燃料カツト中止直後に
は、機関回転数が機関減速時に比して急速に低下
しつつあるので、アイドリング回転数に応じた通
常の燃料噴射量を機関に供給するだけでは機関回
転数の低下を迅速に回復できない。そこで、この
ような運転条件下では、機関減速状態の場合より
も燃料増量補正量(Q0)を大きい値に設定して
いる。 次に、点火進角値に対する遅角補正量A0〜A4
を、上記の表のように設定する理由について説明
する。 すなわち、機関減速時には、燃料噴射再開時に
一気に機関出力軸トルクが増大すると車輌に衝撃
を与えてしまう。そこで、従来より点火進角値を
遅角補正して機関出力軸トルクを抑えることが考
えられている。しかし、変速機の変速段に関係な
く一律に遅角補正すると低速段での衝撃を緩和す
ることは困難である。それ故、低速段ほど点火進
角値をより遅角させている。つまり、負の値であ
る遅角補正量を低速段ほど小さく設定している。 一方、レーシング時には、点火進角値をアイド
リング回転数に応じたものにすればよいので、機
関減速状態の場合に比して点火進角値はごく僅か
に遅角させるだけでよい。したがつて、負の値で
ある遅角補正量(A0)は、機関減速状態の場合
より大きく設定している。それ故、負の値である
遅角補正量は、表に示した関係(A1<A2<A3
A4≪A0)のようになつている。 次に、上記した電子制御式燃料噴射装置におい
て行われる燃料カツト中止直後の制御方法につい
て、図に基づいて説明する。第3図は、燃料カツ
ト中止直後の燃料噴射増量補正量の推移を示し、
横軸は時間tをt1は燃料カツト中止時刻を表し、
縦軸は燃料噴射増量補正量Qaを表す。 まず、レーシング時の場合は、燃料カツトを中
止した直後には、機関回転数が急速に落込みつつ
あるので、比較的多く増量してエンジンストール
を防止する必要がある。そこで燃料カツト中止直
後当初は、通常のアイドリング回転数などから決
定される基本噴射量Qbに増量補正分Q0を加えた
量の燃料を噴射し機関回転数の落込みを防止す
る。その後は、漸次燃料噴射量を減量しアイドリ
ング回転数に見合う基本噴射Qbまで低減させて、
機関を良好なアイドリング状態に保つ。この場
合、点火進角値は、アイドリング回転数に適合し
た進角値に設定すればよいので、僅かに遅角補正
すれば(A0)機関は良好な状態に保たれる。 次に、車輌が機関減速状態である場合、燃料カ
ツト中止直後当初には、流入空気量データなどか
ら決定される基本噴射量Q0に、変速機の変速段
に応じて選択された燃料噴射増量補正量Q1、Q2
Q3、Q4を加えた燃料を噴射して実際に燃焼室8
内に吸入される混合気を適切な空燃比に保つ。そ
の後は、漸次噴射量を通常の基本噴射量Qbまで
減じてゆく。こうして燃料カツト中止直後の混合
気が適正比に維持されスムーズに機関の燃焼が再
開される。同時に、点火進角値も変速機の変速段
に応じて遅角補正して機関出力軸トルクを抑える
ことによつて、駆動軸トルクとの滑らかな整合を
達成する。すなわち、燃料カツト中止直後当初
は、上記の表から変速段に応じて選択された遅角
補正量A1、A2、A3、A4で点火進角を補正して機
関出力軸トルクを抑え、その後は漸次点火進角値
を通常の点火進角値まで進角させ上記トルクを漸
増させていく。 たとえば、その点火進角値制御の一例を第4図
に示す。第4図に示すグラフの横軸は時間t、t1
は燃料カツト中止時刻を表し、縦軸は点火進角値
Aを表し縦軸上方ほど点火進角値が進角されるこ
とを示す。グラフの実線は、上記の点火進角値制
御による点火進角値の推移を示し、時刻t1の時点
での点火進角値が遅角補正された点火進角値であ
る。破線のグラフは、燃料カツト中止直後に特別
の点火進角値制御を行わない場合の点火進角値の
推移を示す。 燃料カツト中止直後当初は、機関出力軸トルク
が一気に増大しないように、変速機の変速段に応
じて、通常の機関回転数に対応した点火進角値を
遅角補正量A1、A2、A3、A4だけ補正して機関出
力軸トルクを抑え、その後、漸次、通常の機関回
転数に対応した点火進角値まで進角させ機関出力
軸トルクを漸増させる。こうして機関出力軸トル
クがスムーズに駆動軸に伝達され車輌に衝撃を与
えることはない。 以上詳述したように、本実施例の燃料カツト中
止直後の制御方法においては、レーシング時、車
輌減速状態のそれぞれに応じて、しかも車輌減速
状態の時には変速機の変速段位置に応じて、燃料
噴射量が適切に増量される。同時に、点火進角値
も適切に遅角補正されるので、レーシング時の燃
料カツト中止直後に発生する機関回転数の異常低
下や回転停止を防止することができ、かつ車輌減
速状態での燃料カツト中止直後には、変速機の変
速段に応じて機関トルクと駆動軸トルクとの整合
を滑らかに取ることができトルク不整合から起こ
る衝撃を防止するという優れた効果を奏する。 なお、上記の実施例では、同期燃料噴射量を制
御する方法であるが、この他に非同期燃料噴射に
よつて、燃料噴射量を増量補正することも可能で
ある。第2図は、電子制御部19から燃料噴射弁
15へ送られる噴射パルス信号を示し、横軸は時
間tを表しt1は、燃料カツト中止時刻を示す。非
同期燃料噴射パルス33は、機関のクランク軸の
回転に関係なく、時刻t1において発生するもの
で、機関のクランク軸の回転に同期して発生する
同期燃料噴射パルス34とは区別される。たとえ
ば、絞り弁3が開かれて燃料カツトが中止された
直後、直ちに非同期燃料噴射を行い燃料噴射量を
増量して燃焼室内の混合気を適正比に保つ。この
非同期燃料噴射による燃料噴射増量補正量は、上
記した実施例と同様である。 このように非同期燃料噴射によつても、上記し
た実施例と同様に機関回転数の異常低下や回転停
止を防止し、かつトルク不整合から起こる衝撃を
防止することができる。 [発明の効果] 上記したように、本発明の燃料カツト中止直後
の制御方法においては、機関が車輌の駆動軸と係
合しているか否かによつて、その状態に応じて燃
料噴射量が適切に増量補正されあるいは点火進角
値が適切に遅角補正されるので、レーシング時の
燃料カツト中止直後に発生する機関回転数の異常
低下や回転停止を防止することができるととも
に、車輌走行中の減速時の燃料カツト中止直後に
おいては機関トルクと駆動軸トルクとの整合を滑
らかに取ることによつてトルク不整合から起こる
衝撃を防止することができる。
[Table] However, in the table, N represents neutral, 1 represents 1st speed, 2 represents 2nd speed, 3 represents 3rd speed, and 4 represents 4th speed, and the gear ratio decreases as you move from 1st to 4th speed. The minimum transmission ratio of the transmission is achieved in fourth gear. In addition, Q 0 to Q 4 represent the fuel injection increase correction amount,
A 0 to A 4 represent retard angle correction amounts (negative values) for the ignition advance value. First, the reason why the fuel increase correction amounts Q 0 to Q 4 are set as shown in the table above will be explained. That is, immediately after fuel cut is stopped while the engine is decelerating, the inner wall of the intake pipe is dry, so some of the injected fuel adheres to the inner wall of the intake pipe, reducing the amount of fuel sent into the combustion chamber 8. The air-fuel mixture taken into the combustion chamber 8 cannot be controlled to an appropriate air-fuel ratio. Therefore, it has been considered to increase the amount of injected fuel than before. However, if the injection is performed by increasing the amount of fuel by the same amount regardless of the gear position of the transmission, the engine output shaft torque will suddenly increase and give a shock to the vehicle, especially when the transmission is in a low gear position. Therefore, the lower the gear, the smaller the increase correction amount is set. On the other hand, immediately after the fuel cut is stopped during racing, the engine speed is rapidly decreasing compared to when the engine is decelerating. Unable to quickly recover from a drop in rotational speed. Therefore, under such operating conditions, the fuel increase correction amount (Q 0 ) is set to a larger value than when the engine is in a decelerated state. Next, the retardation correction amount A 0 to A 4 for the ignition advance value
The reason for setting as shown in the table above will be explained. That is, when the engine is decelerated, if the engine output shaft torque suddenly increases when fuel injection is restarted, a shock will be given to the vehicle. Therefore, it has been conventionally considered to retard the ignition advance value to suppress the engine output shaft torque. However, if the retarding angle is corrected uniformly regardless of the gear position of the transmission, it is difficult to alleviate the shock at a low gear position. Therefore, the lower the gear, the more the ignition advance value is retarded. In other words, the retard angle correction amount, which is a negative value, is set to be smaller as the speed gear becomes lower. On the other hand, during racing, the ignition advance value only needs to be set in accordance with the idling speed, so the ignition advance value only needs to be retarded very slightly compared to when the engine is decelerating. Therefore, the retard angle correction amount (A 0 ), which is a negative value, is set larger than in the case of the engine deceleration state. Therefore, the retard angle correction amount, which is a negative value, has the relationship shown in the table (A 1 < A 2 < A 3 <
A 4 ≪A 0 ). Next, a control method performed in the above-mentioned electronically controlled fuel injection system immediately after fuel cut is stopped will be explained based on the drawings. Figure 3 shows the transition of the fuel injection increase correction amount immediately after the fuel cut is stopped,
The horizontal axis represents time t, t1 represents the fuel cut stop time,
The vertical axis represents the fuel injection increase correction amount Q a . First, in the case of racing, immediately after stopping fuel cut, the engine speed is rapidly decreasing, so it is necessary to increase the amount by a relatively large amount to prevent engine stall. Therefore, immediately after the fuel cut is stopped, fuel is injected in an amount obtained by adding the increase correction amount Q 0 to the basic injection amount Q b determined from the normal idling speed etc. to prevent the engine speed from dropping. After that, the fuel injection amount is gradually reduced to the basic injection Q b that corresponds to the idling speed.
Keep the engine in good idling condition. In this case, the ignition advance angle value may be set to an advance angle value that is suitable for the idling speed, so that the engine can be maintained in a good condition by slightly retarding the engine (A 0 ). Next, when the vehicle is in an engine deceleration state, immediately after the fuel cut is stopped, the basic injection amount Q 0 determined from the inflow air amount data, etc. is increased by the fuel injection amount increase selected according to the gear position of the transmission. Correction amount Q 1 , Q 2 ,
The fuel containing Q 3 and Q 4 is injected into the combustion chamber 8.
maintains the air-fuel mixture sucked into the engine at an appropriate air-fuel ratio. After that, the injection amount is gradually reduced to the normal basic injection amount Q b . In this way, the air-fuel mixture immediately after the fuel cut is stopped is maintained at an appropriate ratio, and combustion in the engine is restarted smoothly. At the same time, the ignition advance value is also retarded according to the gear position of the transmission to suppress the engine output shaft torque, thereby achieving smooth matching with the drive shaft torque. In other words, immediately after the fuel cut is stopped, the engine output shaft torque is suppressed by correcting the ignition advance angle using the retard angle correction amounts A 1 , A 2 , A 3 , and A 4 selected according to the gear position from the table above. Thereafter, the ignition advance value is gradually advanced to the normal ignition advance value to gradually increase the torque. For example, an example of the ignition advance value control is shown in FIG. The horizontal axis of the graph shown in Figure 4 is time t, t1
represents the fuel cut stop time, the vertical axis represents the ignition advance value A, and the higher the vertical axis is, the more advanced the ignition advance value is. The solid line in the graph shows the transition of the ignition advance value due to the above-mentioned ignition advance value control, and is the ignition advance value obtained by retarding the ignition advance value at time t1. The broken line graph shows the transition of the ignition advance value when no special ignition advance value control is performed immediately after the fuel cut is stopped. Immediately after fuel cut is stopped, in order to prevent the engine output shaft torque from suddenly increasing, the ignition advance value corresponding to the normal engine speed is changed to the retardation correction amount A 1 , A 2 , or The engine output shaft torque is suppressed by correcting A 3 and A 4 , and then the engine output shaft torque is gradually increased by gradually advancing the ignition angle to the ignition advance value corresponding to the normal engine speed. In this way, the engine output shaft torque is smoothly transmitted to the drive shaft and does not cause any shock to the vehicle. As described in detail above, in the control method immediately after the fuel cut is stopped according to the present embodiment, the fuel cut is controlled depending on the vehicle deceleration state during racing, and also according to the gear position of the transmission when the vehicle is in the vehicle deceleration state. The injection amount is increased appropriately. At the same time, the ignition advance value is also appropriately retarded, making it possible to prevent an abnormal drop in engine speed or engine rotation stop that occurs immediately after stopping fuel cut during racing, and to prevent fuel cut when the vehicle is decelerating. Immediately after stopping, the engine torque and the drive shaft torque can be smoothly matched in accordance with the gear position of the transmission, which has the excellent effect of preventing shocks caused by torque mismatch. In addition, in the above embodiment, the method is to control the synchronous fuel injection amount, but it is also possible to increase the fuel injection amount by using asynchronous fuel injection. FIG. 2 shows the injection pulse signal sent from the electronic control unit 19 to the fuel injection valve 15, the horizontal axis represents time t, and t1 represents the fuel cut stop time. The asynchronous fuel injection pulse 33 occurs at time t1 regardless of the rotation of the engine crankshaft, and is distinguished from the synchronous fuel injection pulse 34 that occurs in synchronization with the rotation of the engine crankshaft. For example, immediately after the throttle valve 3 is opened and fuel cut is stopped, asynchronous fuel injection is immediately performed to increase the fuel injection amount to maintain the mixture in the combustion chamber at an appropriate ratio. The fuel injection increase correction amount due to this asynchronous fuel injection is the same as in the above embodiment. In this way, even with asynchronous fuel injection, it is possible to prevent an abnormal decrease in the engine speed and stoppage of engine rotation, as well as to prevent shocks caused by torque mismatch, as in the above-described embodiments. [Effects of the Invention] As described above, in the control method immediately after fuel cut is stopped according to the present invention, the fuel injection amount is controlled depending on whether or not the engine is engaged with the drive shaft of the vehicle. Since the fuel amount is appropriately increased or the ignition advance value is appropriately retarded, it is possible to prevent the engine speed from abnormally decreasing or stopping, which occurs immediately after the fuel cut is stopped during racing, and also to prevent engine rotation while the vehicle is running. Immediately after the fuel cut is stopped during deceleration, by smoothly matching the engine torque and the drive shaft torque, it is possible to prevent shocks caused by torque mismatch.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明が適用される電子制御式燃料
噴射装置の概略構成図、第2図は、燃料カツト中
止直後に出力される非同期噴射パルス信号および
同期噴射パルス信号を示すタイミングチヤート、
第3図は燃料カツト中止直後の噴射燃料増量補正
量の時間的推移を示すグラフ、第4図は、燃料カ
ツト中止直後の遅角補正された点火進角値の時間
的推移を示すグラフである。 3……絞り弁、15……燃料噴射弁、19……
電子制御部、25……クランク角センサ、27…
…スロツトルスイツチ、28……車速センサ。
FIG. 1 is a schematic configuration diagram of an electronically controlled fuel injection device to which the present invention is applied, and FIG. 2 is a timing chart showing an asynchronous injection pulse signal and a synchronous injection pulse signal output immediately after fuel cut is stopped.
Fig. 3 is a graph showing the time course of the injected fuel increase correction amount immediately after the fuel cut is stopped, and Fig. 4 is a graph showing the time course of the retarded ignition advance value immediately after the fuel cut is stopped. . 3... Throttle valve, 15... Fuel injection valve, 19...
Electronic control section, 25... Crank angle sensor, 27...
...Throttle switch, 28...Vehicle speed sensor.

Claims (1)

【特許請求の範囲】 1 変速機の中立時又は機関動力の車輌駆動軸へ
の伝達を断続するクラツチの非接続時であつて、
機関が車輌駆動軸と非係合状態である場合におけ
る内燃機関の燃料カツト中止直後の燃料噴射増量
補正量あるいは点火進角値に対する遅角補正量
(負の値)を、変速機が中立以外の状態でかつク
ラツチの接続時であつて、機関が車輌駆動軸と係
合状態にある場合における燃料カツト中止直後の
燃料噴射増量補正量あるいは点火進角値に対する
遅角補正量(負の値)より大きく選定すること、 を特徴とする燃料カツト中止直後の制御方法。
[Scope of Claims] 1. When the transmission is in the neutral state or when the clutch that disconnects and disconnects the transmission of engine power to the vehicle drive shaft is not engaged,
When the engine is not engaged with the vehicle drive shaft, the fuel injection increase correction amount immediately after the fuel cut of the internal combustion engine is stopped or the retardation correction amount (negative value) for the ignition advance value is set when the transmission is other than neutral. from the fuel injection increase correction amount or retardation correction amount (negative value) for the ignition advance value immediately after fuel cut is stopped when the clutch is connected and the engine is engaged with the vehicle drive shaft. A control method immediately after fuel cut is stopped, characterized by: selecting a large size;
JP12101280A 1980-09-03 1980-09-03 Method of control right after stoppage of fuel cut-off Granted JPS5746032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12101280A JPS5746032A (en) 1980-09-03 1980-09-03 Method of control right after stoppage of fuel cut-off

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12101280A JPS5746032A (en) 1980-09-03 1980-09-03 Method of control right after stoppage of fuel cut-off

Publications (2)

Publication Number Publication Date
JPS5746032A JPS5746032A (en) 1982-03-16
JPS6411818B2 true JPS6411818B2 (en) 1989-02-27

Family

ID=14800610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12101280A Granted JPS5746032A (en) 1980-09-03 1980-09-03 Method of control right after stoppage of fuel cut-off

Country Status (1)

Country Link
JP (1) JPS5746032A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217736A (en) * 1982-06-09 1983-12-17 Honda Motor Co Ltd Fuel supply controlling method for internal-combustion engine
JPS5934427A (en) * 1982-08-20 1984-02-24 Honda Motor Co Ltd Fuel supply control method for internal-combustion engine
JPS5934428A (en) * 1982-08-20 1984-02-24 Honda Motor Co Ltd Fuel supply control method for internal-combustion engine
JPS6223548A (en) * 1985-07-22 1987-01-31 Mazda Motor Corp Fuel control device for fuel-injection engine
JPS62131940A (en) * 1985-12-03 1987-06-15 Mazda Motor Corp Air-fuel ratio control device for engine
JPS62240452A (en) * 1986-04-09 1987-10-21 Hitachi Ltd Fuel controller
JP5071349B2 (en) * 2008-10-28 2012-11-14 トヨタ自動車株式会社 Control device for vehicle with clutch mechanism

Also Published As

Publication number Publication date
JPS5746032A (en) 1982-03-16

Similar Documents

Publication Publication Date Title
US4924832A (en) System and method for controlling ignition timing for internal combustion engine
JPS6166839A (en) Overspeed limiting fuel-cut controller for internal-combustion engine
US7475677B2 (en) Method and device for controlling combustion of an internal-combustion engine, and vehicle
JPH0323345A (en) Acceleration slip control device for vehicle
JPS6411818B2 (en)
US4718016A (en) Method of and system for controlling idling speed in electronically controlled engine
JP5810927B2 (en) Vehicle control device
JP2009167889A (en) Control method of internal combustion engine
JPH0329976B2 (en)
JPH0475420B2 (en)
JPS6342098B2 (en)
JP2955687B2 (en) Engine fuel control device
JP7282448B2 (en) Control device for internal combustion engine
JP2023119266A (en) Vehicle control device
JPH0742876B2 (en) Electronic control unit for internal combustion engine
JPS6371534A (en) Controller for internal combustion engine
JPS611826A (en) Controller for mechanical supercharger in internal-combustion engine equipped with automatic transmission
JPS61136057A (en) Lockup mechanism control device for car
JPS593134A (en) Internal combustion engine idle speed control method
JP2697530B2 (en) Ignition control device for internal combustion engine with valve stop mechanism
JPS62168944A (en) Speed control device for internal combustion engine
JPS6329035A (en) Stall preventer of internal combustion engine for automobile
JPS58185947A (en) Fuel-injection controller for internal-combustion engine
JPH02308938A (en) Fuel control method for engine
JP2007309218A (en) Ignition timing control device for internal combustion engine