JPS6411274B2 - - Google Patents
Info
- Publication number
- JPS6411274B2 JPS6411274B2 JP56211084A JP21108481A JPS6411274B2 JP S6411274 B2 JPS6411274 B2 JP S6411274B2 JP 56211084 A JP56211084 A JP 56211084A JP 21108481 A JP21108481 A JP 21108481A JP S6411274 B2 JPS6411274 B2 JP S6411274B2
- Authority
- JP
- Japan
- Prior art keywords
- heating
- raw material
- superheated steam
- outlet
- heating device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000010438 heat treatment Methods 0.000 claims description 206
- 239000002994 raw material Substances 0.000 claims description 116
- 238000011144 upstream manufacturing Methods 0.000 claims description 9
- 239000012530 fluid Substances 0.000 claims description 8
- 239000011236 particulate material Substances 0.000 claims 2
- 239000000047 product Substances 0.000 description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- 241000209140 Triticum Species 0.000 description 11
- 235000021307 Triticum Nutrition 0.000 description 11
- 238000000034 method Methods 0.000 description 11
- 235000019621 digestibility Nutrition 0.000 description 9
- 235000010469 Glycine max Nutrition 0.000 description 8
- 244000068988 Glycine max Species 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 230000008961 swelling Effects 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- 235000013343 vitamin Nutrition 0.000 description 5
- 239000011782 vitamin Substances 0.000 description 5
- 229940088594 vitamin Drugs 0.000 description 5
- 229930003231 vitamin Natural products 0.000 description 5
- 235000020985 whole grains Nutrition 0.000 description 5
- 235000021329 brown rice Nutrition 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000004925 denaturation Methods 0.000 description 4
- 230000036425 denaturation Effects 0.000 description 4
- 235000013305 food Nutrition 0.000 description 4
- 239000008187 granular material Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 235000013555 soy sauce Nutrition 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 240000008042 Zea mays Species 0.000 description 3
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 3
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 3
- 235000005822 corn Nutrition 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 235000015170 shellfish Nutrition 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000007696 Kjeldahl method Methods 0.000 description 2
- 239000002537 cosmetic Substances 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 238000003505 heat denaturation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000014075 nitrogen utilization Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- 240000006439 Aspergillus oryzae Species 0.000 description 1
- 235000002247 Aspergillus oryzae Nutrition 0.000 description 1
- 235000019733 Fish meal Nutrition 0.000 description 1
- 240000005979 Hordeum vulgare Species 0.000 description 1
- 235000007340 Hordeum vulgare Nutrition 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 244000203593 Piper nigrum Species 0.000 description 1
- 235000008184 Piper nigrum Nutrition 0.000 description 1
- 241000269851 Sarda sarda Species 0.000 description 1
- 235000019764 Soybean Meal Nutrition 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 235000013614 black pepper Nutrition 0.000 description 1
- 235000012813 breadcrumbs Nutrition 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 235000019503 curry powder Nutrition 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000007515 enzymatic degradation Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000004467 fishmeal Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 235000008935 nutritious Nutrition 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 239000012254 powdered material Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001007 puffing effect Effects 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000004455 soybean meal Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 235000019155 vitamin A Nutrition 0.000 description 1
- 239000011719 vitamin A Substances 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
Landscapes
- Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
- Grain Derivatives (AREA)
- Formation And Processing Of Food Products (AREA)
- Apparatus For Disinfection Or Sterilisation (AREA)
Description
本発明は穀物、食品、化粧品等の粉粒物質原料
を過熱蒸気、高温空気等の加熱媒体で以つて加圧
加熱処理し、これら粉粒物質の加熱殺菌、加熱変
性等を行うようにした粉粒物質の加熱処理装置に
関する。
本出願人は、先に原料を流動化させながら加熱
処理する「膨化食品の製造装置(特公昭45−
26695号)」、或は原料を気流に乗せて加熱処理す
る「気流加熱方式に依る膨化食品製造方法及び装
置(特公昭46−34747号)」を出願して特許を得
た。
しかし、上記装置は何れも一段式であるため、
加熱媒体の出口温度、即ち加熱媒体と原料とに分
離した直後における加熱媒体の温度を或る温度以
上に設定すると、混合比(=原料重量/加熱媒体
重量)、或は原料の比熱にもよるが、即ち原料重
量が大きく混合比が大きい場合、又は原料の比熱
が大きい場合には、大量の原料を冷えた状態から
加熱しなければならないので、加熱媒体の温度を
高くしなければならないが、一般的に加熱媒体の
入口温度、即ち加熱媒体が原料と接触する直前に
おける加熱媒体の温度を高く設定せざるを得なく
なる。
一例として前記気流加熱方式で小麦を処理する
場合について述べるに、蒸気圧力6.5atg加熱媒
体の出口温度を220℃、混合比を1.0に設定する
と、本加熱系内の最高温度である加熱媒体の入口
温度は330℃以上にも設定する必要がある。斯る
場合、熱変性に敏感な原料を処理するには好都合
とは言えず、又加熱媒体の温度が高過ぎると、原
料水分が蒸発して減少し、製品の膨化度(=製品
の体積/原料の体積)も低下し不都合である。尚
例えば小麦を加熱処理し、これを醤油原料として
用いる場合、膨化度が高い程窒素利用率が高く好
ましい結果が得られる。さらに装置的にも構成部
材特にシール材の耐熱性の点から加熱媒体は低温
の方が好ましい。
又本出願人は、前記発明の改良方法として過熱
蒸気、次いで飽和蒸気により順次原料を加熱処理
する「殻類の膨化処理法(特公昭55−42814号)」
を出願して特許を得た。
しかし、上記方法にて処理した製品は水分を多
量に保存せしめる点に関して難点があつた。
そこで本発明者は上述した現況に鑑み、鋭意研
究の結果、前記装置(特公昭45−26695号、特公
昭46−34747号のもの)を各々単独、或は適宜組
み合わせて多段式の加熱系に構成し、該装置の最
終段で使用する加熱媒体の温度を最高にして順次
前段装置での使用加熱媒体の温度が低くなるよう
に設定して原料を加熱処理すれば、最終段装置の
出口における加熱媒体の温度を例え従来方法と同
程度の温度に設定しても、本願加熱系内における
加熱媒体の最高温度を従来方法による場合に比し
より低く設定することができるという知見を得て
本発明を成したものである。
即ち、本発明は粉状、或は粒状物質を加圧下に
おいて加熱媒体で加圧加熱処理し、次いでより高
温の加熱媒体で少くとも1回加圧加熱処理した
後、低圧下に放出することを特徴とする。
そして本発明は特に蛋白質の過変性が生じ易い
脱脂大豆、ビタミン類の破壊の虞れのある玄米、
或は野菜等の如き熱変性に敏感な原料処理及び小
麦、トウモロキシ等の殻類で特に膨化度が要求さ
れる原料処理に好適である。
以下本発明を詳述する。
本発明に用いられる粉粒物質原料としては特に
限定されることはなく、大豆、脱脂大豆、大豆ミ
ール、小麦、大麦、米、玄米、とうもろこし等の
殻類及びこれらの粉粒化物、魚粉、野菜等の細
片、パン粉、デンプン、コシヨー、ブラツクペパ
ー、カレー粉等の食品原料、或は薬品又は薬品原
料及びその増量材、更には飼料や化粧品原料等が
挙げられ、又必要に応じて通常の手段により加水
された前記夫々の原料が用いられる。
上記原料を加熱処理するに際して利用できる加
熱媒体としては、高温空気、高温ガス等が考えら
れるが、原料の酸化防止、或は取扱いの便等の見
地から特に過熱水蒸気が好ましい。
又加熱処理の条件としては、まず原料の殺菌処
理を目的とする場合は、比較的低圧が好ましく、
過熱水蒸気処理の場合で圧力4atg以下、温度260
℃以下で3秒乃至5分間、好ましくは圧力0.5乃
至3.5atg、温度240℃以下で5秒乃至1分間加熱
処理する。
一方、原料の変性処理を目的とする場合は、原
料として特に殻類が取り扱われる場合が多いが、
過熱水蒸気の場合で圧力2〜10atg、温度310℃
以下で3秒乃至5分間、好ましくは圧力4乃至
8atg、温度290℃以下で5秒乃至1分間加熱処理
する。
本発明において使用する加熱手段は、気流式加
熱手段、流動式加熱手段で、気流式加熱手段は高
温高圧の加熱媒体、例えば過熱水蒸気を加熱パイ
プに通気し、該パイプに原料を投入して所謂気流
輸送をしながら短時間滞留させて加熱し、次いで
サイクロン等で捕集して低圧下に放出させる加熱
処理装置である。一方、流動式加熱手段は原料を
密閉容器内の多数の孔を有する多孔板上に均等な
層を形成するように供給し、該層に下方より加熱
媒体、例えば過熱水蒸気、高温空気等を通気して
流動化し、一定時間滞留後、低圧下へ放出させる
加熱処理方法である。
以下添付図面に基づいて本発明の実施例を詳述
する。
まず第1図に原料を最初は気流式加熱手段で、
次いで流動式加熱手段で処理するために加熱処理
装置の模式図を示す。
図中1は気流式加熱装置で、これは原料を装置
1内へ供給する投入バルブ2と、加熱媒体として
の過熱水蒸気が通気される加熱パイプ3と、過熱
水蒸気と原料とに分離するサイクロン4とから構
成され、加熱パイプ3の上流部3aは投入バルブ
2のガス出口2aと、下流部3bはサイクロン4
のガス入口4aと夫々連通している。
前記投入バルブ2としては本出願人による「粉
粒体の搬送供給装置」(特公昭52−9917号、以下
気流式バルブと称す。)が好適であるが、或は本
出願人による「強制排出装置を有する移送装置」
(特公昭48−8927号、以下強制排出式バルブと称
す。)も利用でき、更には通常のロータリーバル
ブも使用できる。第1図においては、投入バルブ
2としては気流式バルブを用いた。尚投入バルブ
2に強制排出式バルブを用いた場合は、第2図に
示す如く該バルブを加熱パイプ3へ逆T字状に設
置すればよい。
又図中5は原料を保有しておく原料ホツパであ
り、6は流動式加熱装置であつて、これは前記サ
イクロン4で分離された原料を該装置6へ誘導す
る中間バルブ7と、原料を流動させながら加熱処
理する加熱缶8と、加熱処理された原料を低圧部
へ放出させる排出バルブ9とから構成される。
上記加熱缶8は上部に原料投入口10及び過熱
蒸気出口11、下部に原料排出口12及び過熱水
蒸気入口13を夫々備え、前記中間バルブ7は原
料投入口10に、排出バルブ9は原料排出口12
に夫々設置されている。尚これらバルブ7,9は
前記強制排出式バルブが好適である。
又加熱缶8の内部には第3図に示す如く多数の
通気孔14……を有し、原料が積層される多孔板
15を水平に設置し、該多孔板15の一部には落
口20を前記原料排出口12に臨ませて設けてい
る。
一方、16は投入された原料を多孔板15上に
おいて移送する原料移送装置で、加熱缶8の中心
部に垂直に設けられた軸17及び該軸17に放射
状に設けられた平板状の垂直壁18から成り、こ
れ16は軸17を中心として回転自在に構成され
ている。
又19は加熱缶8の内周に設けられている内壁
で、これは原料の保温を効果的にする装置であ
り、これの下部は多孔板15の円周部と固定され
一体化されている。そして前記垂直壁18の外周
面18a及び下端面18bは内壁19及び多孔板
15と夫々略々摺接する如く構成されている。
21は不図示のモータに連結されて原料移送装
置16を駆動するプーリ、或は歯車等の動力伝達
装置であり、22は原料を原料排出口12へ誘導
するシユートである。
又23は過熱水蒸気を系内で循環せしめるため
の送風機であり、24は温度が低下した蒸気を再
加熱するための過熱器である。
更に25は過熱水蒸気補充パイプで、これは排
出バルブ12より系外へ原料の排出に伴い放出さ
れる蒸気を補充するもので、不図示のボイラに連
通し、上記過熱器24で所定の温度まで加熱され
た過熱水蒸気を系内に導入する。
次に以上述べた各機器間の連結について説明す
る。
加熱缶8の過熱水蒸気出口11は循環パイプ2
6及び投入バルブ2を介して加熱パイプ3の上流
部3aと連通連結され、又サイクロン4の原料排
出口4bは原料投入口10と中間バルブ7を介し
て連通連結されている。
一方、サイクロン4のガス出口4cは循環パイ
プ27を介して送風機23の吸引口と、送風機2
3の吐出口は循環パイプ28を介して蒸気入口1
3と夫々連通連結され、循環パイプ28は加熱器
24を通り、該パイプ28中を流通する過熱水蒸
気を加温するよう構成されている。
以下に本加熱処理装置の作用について述べる。
まず、ボイラで発生した飽和水蒸気は過熱器2
4で加熱されて過熱水蒸気となり、過熱水蒸気補
充パイプ25を通つて系内へ導入される。この過
熱水蒸気は送風機23の作用により循環パイプ2
8、加熱缶8、循環パイプ26、投入バルブ2、
加熱パイプ3、サイクロン4、循環パイプ27、
送風機23の順で系内を循環する。
一方、原料ホツパ5内の原料は投入バルブ2を
介してまず最初に加熱パイプ3に導入され、ここ
で加熱処理される。この加熱パイプ3において使
用される過熱水蒸気は後述する加熱缶8で一度使
用されたものであり、従つてこれは加熱缶8で使
用された場合より低温になつている。
気流式加熱装置1で第1段目の加熱処理をされ
た原料はサイクロン4に導入され、該サイクロン
4において過熱水蒸気と分離された後、中間バル
ブ7を通り加熱缶8に投入される。投入された原
料は、多孔板15を通して通気される過熱水蒸気
により流動化して加熱処理されつつ原料移送装置
16の作用で順次原料排出口12の方へ移送され
る。
流動式加熱装置6で使用される過熱水蒸気は過
熱器24で加熱された直後のものを用いるため、
前記気流式加熱装置1における過熱水蒸気より高
温になつている。
流動式加熱装置6は第2段目の加熱処理をされ
た原料は、排出バルブ9を通つてより低圧下、例
えば大気圧下へ放出され、製品として回収され
る。
尚本実施例において、気流式加熱装置1による
処理は、流動式加熱装置6における処理よりも低
温の過熱水蒸気が使用されるが、加熱パイプ3に
おいて処理する原料によつてはこの加熱水蒸気が
飽和水蒸気に変化しても何ら差し支えない。
次に第4図に別実施例を示す。
本実施例は上記第一実施例とは逆にまず第1段
目に流動式加熱装置6を、第2段目に気流式加熱
装置1を夫々配置し、原料を加熱処理する例であ
る。
従つて、加熱缶8の原料投入口10に強制排出
式投入バルブ30を、原料排出口12には気流式
中間バルブ31を夫々設置し、又サイクロン4の
ガス出口4cと加熱缶8の蒸気入口13とを、加
熱缶8の蒸気出口11と送風機23の吸引口とを
夫々連通連結している。
一方、送風機23の吐出口と加熱パイプ3の上
流部3aとを循環パイプ33及び中間バルブ31
を介して連通連結し、循環パイプ33は過熱器2
4を通り、該パイプ33を流通している過熱水蒸
気を加温する。そして加熱直後の過熱水蒸気が第
2段目である気流式加熱装置1に供給されるよう
構成されている。
次に第5図の実施例は第1段、第2段とも気流
式加熱装置を配置した例で、第1段の気流式加熱
装置1aにおける投入バルブ40及び第2段の気
流式加熱装置1bにおける投入バルブ41として
気流式バルブを用い、又第2段の加熱装置1bの
排出バルブ42として強制排出式バルブを用いて
いる。そして第2段気流式加熱装置1bにおける
サイクロン44のガス出口44bと加熱パイプ3
の上流部3aを投入バルブ40を介して連通し、
又第1段気流式加熱装置1aにおけるサイクロン
43のガス出口43bと送風機23の吸引口と
を、送風機23の吐出口と加熱パイプ3dの上流
部3eとを中間バルブ41を介して夫々連通し、
本実施例装置を構成する。
次に第6図の実施例は気流式加熱装置を3段配
設した例で、以下同様な構成で何段でも実施でき
る。本実施例においては、まず加熱器24で加熱
した直後の過熱水蒸気を最終段の気流式加熱装置
1cへ導き、以下順次前段へ送気して該過熱水蒸
気を繰り返し使用し、第1段の気流式加熱装置1
aで最も低い過熱水蒸気を用いるよう構成してい
る。
最終段以外に気流式加熱装置が配置されている
第5図及び第6図の実施例において、第1図の実
施例と同様に原料の種類によつては最終段以外の
加熱パイプにおいて、過熱水蒸気が飽和蒸気に変
化してもよく、又飽和水蒸気の状態で加熱パイプ
に導入されても加熱処理は可能である。
次に第7図、第8図は流動式加熱装置を夫々2
段、3段配設した実施例を示すが、これらの実施
例においては、バルブは全て強制排出式バルブが
使用されている。
尚前記第1図及び第4図に示す実施例におい
て、第3段目、或はそれ以上の段に気流式加熱装
置又は流動式加熱装置を適宜選択して用いてもよ
い。
次に第9図乃至第15図に他の流動式加熱装置
の実施例を示す。
まず第9図に示す装置は、第1図に示す実施例
における垂直壁18を固定させ、該壁18の下端
と多孔板15の上面との間に隙間91を設けたも
のである。尚この場合放射状に設けられた垂直壁
18の上方及び下方は開放され、垂直壁18の上
方で原料投入口10に連通する投入部92と、垂
直壁18の下方で原料排出口12に連通する排出
部93とは隔壁94によつて分割されている。
而して原料投入口10から加熱缶8へ投入され
投入部92に入つた原料は、過熱水蒸気入口13
から導入され、多孔板15、隙間91及び垂直壁
間95を介して過熱水蒸気出口11から排出され
る蒸気により垂直壁間95にて流動しつつ加熱処
理される。そして原料は自重によつて下降し、隙
間91を通過して順次原料排出口12へ導かれ、
加熱缶8外へ排出される。
一方、第12図に示す装置は、第9図に示す装
置において多孔板15を可動式とし、原料排出口
12を加熱缶8の側部に設けたものである。尚図
中121は多孔板15を回転駆動するためのモー
タである。
又第14図に示す装置は、第9図に示す装置に
おいて軸17の下部に放射状に設けられ、隙間9
1内を回転する回転翼141を設置したものであ
る。この装置においては、原料は回転翼141に
より強制的に原料排出口12へと導かれる。
更に第15図に示す装置は流動式加熱装置の更
に他の実施例を示し、多孔板151をバネ159
を介して加熱缶158に固定し、該多孔板151
をモータ152等によつて振動され、原料投入口
153より投入された原料を振動により原料排出
口154へと移送させながら、且つ加熱媒体で流
動させつつ加熱処理するものである。尚加熱媒体
は加熱媒体入口155から導入され、加熱媒体出
口156から外部へ排出される。
本実施例において、多孔板151は水平であつ
ても原料は原料排出口154へ移送されるが、第
15図に示す如く原料排出口154の方が低くな
るように傾斜して設置すれば、原料の移送は効果
的に行われる。
ここで本発明による加熱処理方法が製品の消化
率、α化度、ビタミンの残存等について、或は醤
油の製造に用いた場合に如何に有効であるかを従
来法、即ち気流式加熱処理方法(特公昭46−
34747号)及び流動式加熱処理方法(特公昭45−
26695号)との比較において実験例により以下に
示す。
実験例 1
まず小麦を加熱処理した場合についての実験結
果を第1表に示す。
第1表の結果より、従来のものは本発明より可
成り高温の過熱水蒸気を必要とし、過度の加熱に
起因して原料は過変性して麹菌酵素によつて分解
され難くなり、消化率、α化度、或は窒素溶解利
用率が本発明のそれらより低く、又膨化度も低
い。
これに対して、本発明方法により処理された小
麦は、蛋白質の過変性もなく、又未変成蛋白質を
残さず、適度の加熱による消化率、α化度、窒素
溶解利用率等に優れたものである。
The present invention is a powder in which granular raw materials such as grains, foods, cosmetics, etc. are subjected to pressure heat treatment using a heating medium such as superheated steam or high-temperature air, and these granular materials are subjected to heat sterilization, heat denaturation, etc. The present invention relates to a heat treatment device for granular materials. The present applicant has developed a ``Puffed Food Manufacturing Apparatus'' (Special Publication No. 45-1973), which heat-processes raw materials while fluidizing them.
26695), or ``Method and Apparatus for Manufacturing Puffed Foods Using Air Stream Heating System'' (Japanese Patent Publication No. 34747, 1983), in which raw materials are heat-treated by being placed in an air stream. However, since all of the above devices are single-stage,
If the outlet temperature of the heating medium, that is, the temperature of the heating medium immediately after separation into the heating medium and the raw material, is set above a certain temperature, the temperature will change depending on the mixing ratio (=raw material weight/heating medium weight) or the specific heat of the raw material. However, when the weight of the raw materials is large and the mixing ratio is large, or when the specific heat of the raw materials is large, a large amount of raw materials must be heated from a cold state, so the temperature of the heating medium must be raised. Generally, the inlet temperature of the heating medium, that is, the temperature of the heating medium immediately before it comes into contact with the raw material, must be set high. As an example, when wheat is processed using the air current heating method, if the steam pressure is 6.5 atg, the heating medium outlet temperature is set to 220°C, and the mixing ratio is set to 1.0, the heating medium inlet has the highest temperature in the main heating system. The temperature must also be set at 330°C or higher. In such a case, it is not convenient to treat raw materials that are sensitive to thermal denaturation, and if the temperature of the heating medium is too high, the moisture content of the raw material will evaporate and decrease, resulting in a decrease in the swelling degree of the product (=product volume/ The volume of the raw material also decreases, which is inconvenient. For example, when wheat is heat-treated and used as a raw material for soy sauce, the higher the swelling degree is, the higher the nitrogen utilization rate is, and a preferable result can be obtained. Furthermore, from the viewpoint of the heat resistance of the structural members, especially the sealing material, it is preferable that the heating medium be at a low temperature. Additionally, the present applicant has proposed, as an improved method of the above-mentioned invention, a method for puffing shellfish (Japanese Patent Publication No. 55-42814), in which raw materials are sequentially heat-treated with superheated steam and then with saturated steam.
I applied for and obtained a patent. However, the products treated by the above method have a drawback in that they retain a large amount of moisture. Therefore, in view of the above-mentioned current situation, the inventor of the present invention, as a result of intensive research, developed a multi-stage heating system by using the above-mentioned devices (Japanese Patent Publication No. 45-26695 and Japanese Patent Publication No. 46-34747) individually or in appropriate combinations. If the raw material is heat-treated by setting the temperature of the heating medium used in the final stage of the apparatus to the maximum and successively lowering the temperature of the heating medium used in the previous stage apparatus, the temperature at the outlet of the final stage apparatus is This book has been developed based on the knowledge that even if the temperature of the heating medium is set to the same level as in the conventional method, the maximum temperature of the heating medium in the heating system of the present application can be set lower than in the case of the conventional method. It is an invention. That is, the present invention involves subjecting powdered or granular materials to pressure and heat treatment with a heating medium under pressure, then pressure and heat treatment at least once with a higher temperature heating medium, and then releasing the material under low pressure. Features. The present invention particularly focuses on defatted soybeans, which are prone to protein hyperdenaturation, and brown rice, which is likely to have vitamins destroyed.
It is also suitable for processing raw materials sensitive to thermal denaturation such as vegetables, and for processing raw materials that require a particularly high degree of swelling, such as shells such as wheat and corn. The present invention will be explained in detail below. The granular material raw materials used in the present invention are not particularly limited, and include soybeans, defatted soybeans, soybean meal, wheat, barley, rice, brown rice, shellfish such as corn, and granulated products thereof, fishmeal, and vegetables. Food raw materials such as bread crumbs, starch, koshiyo, black pepper, curry powder, medicines or pharmaceutical raw materials and their fillers, as well as feed and cosmetic raw materials. Each of the above-mentioned raw materials added with water by means is used. As the heating medium that can be used to heat-treat the raw material, high-temperature air, high-temperature gas, etc. can be considered, but superheated steam is particularly preferred from the viewpoint of preventing oxidation of the raw material or convenience of handling. As for the heat treatment conditions, if the purpose is to sterilize the raw materials, relatively low pressure is preferable;
In the case of superheated steam treatment, the pressure is 4atg or less and the temperature is 260℃.
Heat treatment is carried out at a temperature of 3 seconds to 5 minutes at a temperature of 240 degrees centigrade or less, preferably a pressure of 0.5 to 3.5 atg, and a temperature of 240 degrees centigrade or less for 5 seconds to 1 minute. On the other hand, when the purpose is to modify raw materials, shellfish are often used as raw materials.
In the case of superheated steam, the pressure is 2 to 10atg and the temperature is 310℃.
for 3 seconds to 5 minutes, preferably at a pressure of 4 to 5 minutes.
8atg and heat treatment at a temperature of 290°C or less for 5 seconds to 1 minute. The heating means used in the present invention is an air-flow heating means or a fluid-flow heating means, and the air-flow heating means passes a high-temperature, high-pressure heating medium, such as superheated steam, through a heating pipe, and feeds raw materials into the pipe. This is a heat treatment device that heats the material by retaining it for a short time while transporting airflow, then collects it with a cyclone or the like and releases it under low pressure. On the other hand, fluidized heating means supplies raw materials to form an even layer on a perforated plate with many holes in a closed container, and a heating medium such as superheated steam, high-temperature air, etc. is passed through the layer from below. This is a heat treatment method in which the material is fluidized, retained for a certain period of time, and then released under low pressure. Embodiments of the present invention will be described in detail below based on the accompanying drawings. First of all, as shown in Figure 1, raw materials are initially heated using airflow heating means.
Next, a schematic diagram of a heat treatment apparatus for treatment with fluid heating means is shown. 1 in the figure is an airflow heating device, which includes an input valve 2 that supplies raw materials into the device 1, a heating pipe 3 through which superheated steam as a heating medium is vented, and a cyclone 4 that separates superheated steam and raw materials. The upstream part 3a of the heating pipe 3 is the gas outlet 2a of the injection valve 2, and the downstream part 3b is the cyclone 4.
The gas inlets 4a are in communication with each other. As the input valve 2, it is preferable to use the "Powder conveyance and supply device" (Japanese Patent Publication No. 52-9917, hereinafter referred to as an air flow valve) by the present applicant, or the "forced discharge valve" by the present applicant. ``transfer device with a device''
(Special Publication No. 48-8927, hereinafter referred to as forced discharge valve) can also be used, and furthermore, a normal rotary valve can also be used. In FIG. 1, a pneumatic valve is used as the input valve 2. If a forced discharge type valve is used as the input valve 2, the valve may be installed in the heating pipe 3 in an inverted T-shape as shown in FIG. Further, in the figure, 5 is a raw material hopper for holding the raw material, and 6 is a fluidized heating device, which includes an intermediate valve 7 for guiding the raw material separated by the cyclone 4 to the device 6, and an intermediate valve 7 for guiding the raw material separated by the cyclone 4 to the device 6; It is composed of a heating can 8 that heats the raw material while flowing it, and a discharge valve 9 that discharges the heat-treated raw material to a low pressure section. The heating can 8 has a raw material inlet 10 and a superheated steam outlet 11 at the upper part, and a raw material outlet 12 and a superheated steam inlet 13 at the lower part, the intermediate valve 7 is connected to the raw material input port 10, and the discharge valve 9 is connected to the raw material outlet. 12
are installed respectively. It should be noted that these valves 7 and 9 are preferably the forced discharge type valves described above. Also, inside the heating can 8, as shown in FIG. 3, there are many ventilation holes 14..., and a perforated plate 15 on which raw materials are stacked is installed horizontally, and a part of the perforated plate 15 has a droplet. 20 is provided facing the raw material discharge port 12. On the other hand, 16 is a raw material transfer device that transfers the input raw material on a perforated plate 15, and includes a shaft 17 provided perpendicularly to the center of the heating can 8 and a flat plate-shaped vertical wall provided radially around the shaft 17. 18, and this 16 is configured to be rotatable around a shaft 17. Further, reference numeral 19 denotes an inner wall provided on the inner periphery of the heating can 8, which is a device for effectively keeping the raw material warm, and the lower part of this is fixed and integrated with the circumferential part of the perforated plate 15. . The outer circumferential surface 18a and lower end surface 18b of the vertical wall 18 are constructed so as to be in approximately sliding contact with the inner wall 19 and the perforated plate 15, respectively. 21 is a power transmission device such as a pulley or a gear that is connected to a motor (not shown) to drive the raw material transfer device 16, and 22 is a chute that guides the raw material to the raw material discharge port 12. Further, 23 is a blower for circulating superheated steam within the system, and 24 is a superheater for reheating the steam whose temperature has decreased. Furthermore, 25 is a superheated steam replenishment pipe, which replenishes the steam released from the discharge valve 12 when the raw material is discharged outside the system, and is connected to a boiler (not shown), and is heated to a predetermined temperature in the superheater 24. Heated superheated steam is introduced into the system. Next, the connection between the devices described above will be explained. The superheated steam outlet 11 of the heating can 8 is connected to the circulation pipe 2
6 and the upstream portion 3a of the heating pipe 3 through the input valve 2, and the raw material outlet 4b of the cyclone 4 is connected to the raw material input port 10 through the intermediate valve 7. On the other hand, the gas outlet 4c of the cyclone 4 is connected to the suction port of the blower 23 via the circulation pipe 27 and to the blower 2
The discharge port 3 is connected to the steam inlet 1 via the circulation pipe 28.
3, and the circulation pipe 28 is configured to pass through the heater 24 and heat the superheated steam flowing through the pipe 28. The operation of this heat treatment apparatus will be described below. First, the saturated steam generated in the boiler is transferred to the superheater 2.
4 to become superheated steam, which is introduced into the system through the superheated steam replenishment pipe 25. This superheated steam is transferred to the circulation pipe 2 by the action of the blower 23.
8, heating can 8, circulation pipe 26, input valve 2,
heating pipe 3, cyclone 4, circulation pipe 27,
It circulates through the system in the order of the blower 23. On the other hand, the raw material in the raw material hopper 5 is first introduced into the heating pipe 3 via the input valve 2 and is heated there. The superheated steam used in this heating pipe 3 has been used once in a heating can 8, which will be described later, and therefore has a lower temperature than when it was used in the heating can 8. The raw material subjected to the first stage heat treatment in the airflow heating device 1 is introduced into a cyclone 4, where it is separated from superheated steam, and then passed through an intermediate valve 7 and charged into a heating can 8. The input raw material is fluidized by superheated steam vented through the perforated plate 15 and is heated and then sequentially transferred to the raw material discharge port 12 by the action of the raw material transfer device 16 . Since the superheated steam used in the fluidized heating device 6 is immediately heated in the superheater 24,
The temperature is higher than that of the superheated steam in the airflow heating device 1. In the fluidized heating device 6, the raw material subjected to the second stage heat treatment is discharged through the discharge valve 9 to a lower pressure, for example, atmospheric pressure, and is recovered as a product. In this embodiment, superheated steam at a lower temperature is used in the treatment by the airflow heating device 1 than in the treatment in the fluidized heating device 6, but depending on the raw material to be treated in the heating pipe 3, this heated steam may be saturated. There is no problem even if it turns into water vapor. Next, FIG. 4 shows another embodiment. In this embodiment, contrary to the first embodiment, the fluid heating device 6 is placed in the first stage and the air current heating device 1 is placed in the second stage, and the raw material is heat-treated. Therefore, a forced discharge type input valve 30 is installed at the raw material input port 10 of the heating can 8, an airflow type intermediate valve 31 is installed at the raw material discharge port 12, and a gas outlet 4c of the cyclone 4 and a steam inlet of the heating can 8 are installed. 13 are connected to communicate with the steam outlet 11 of the heating can 8 and the suction port of the blower 23, respectively. On the other hand, the circulation pipe 33 and the intermediate valve 31 connect the outlet of the blower 23 and the upstream part 3a of the heating pipe 3
The circulation pipe 33 is connected to the superheater 2 through the
4 and is flowing through the pipe 33. The superheated steam immediately after heating is then supplied to the second stage airflow type heating device 1. Next, the embodiment shown in FIG. 5 is an example in which airflow heating devices are arranged in both the first stage and the second stage, and the input valve 40 in the first stage airflow heating device 1a and the second stage airflow heating device 1b An airflow type valve is used as the input valve 41 in , and a forced discharge type valve is used as the discharge valve 42 of the second stage heating device 1b. The gas outlet 44b of the cyclone 44 and the heating pipe 3 in the second stage airflow heating device 1b
communicates with the upstream portion 3a of the
Further, the gas outlet 43b of the cyclone 43 and the suction port of the blower 23 in the first stage airflow heating device 1a are communicated with the discharge port of the blower 23 and the upstream portion 3e of the heating pipe 3d through the intermediate valve 41, respectively.
The device of this embodiment is constructed. Next, the embodiment shown in FIG. 6 is an example in which airflow heating devices are arranged in three stages, and the following embodiments can be implemented in any number of stages with the same configuration. In this embodiment, the superheated steam immediately after being heated by the heater 24 is first guided to the final stage airflow heating device 1c, and then the superheated steam is repeatedly used by sequentially sending air to the previous stages, and the first stage airflow type heating device 1
It is configured to use the lowest superheated steam in a. In the embodiments shown in FIGS. 5 and 6, in which the airflow heating device is arranged in a stage other than the final stage, depending on the type of raw material, as in the embodiment shown in FIG. The steam may be changed into saturated steam, and even if it is introduced into the heating pipe in the saturated steam state, heat treatment is possible. Next, Figures 7 and 8 show two flow-type heating devices, respectively.
In these embodiments, forced discharge type valves are used as all valves. In the embodiments shown in FIGS. 1 and 4, an airflow type heating device or a fluid type heating device may be selected and used as appropriate for the third stage or higher stages. Next, FIGS. 9 to 15 show embodiments of other flow type heating devices. First, in the apparatus shown in FIG. 9, the vertical wall 18 in the embodiment shown in FIG. 1 is fixed, and a gap 91 is provided between the lower end of the wall 18 and the upper surface of the perforated plate 15. In this case, the upper and lower sides of the vertical walls 18 provided radially are open, and the input section 92 communicates with the raw material input port 10 above the vertical wall 18 and the raw material discharge port 12 below the vertical wall 18. It is separated from the discharge section 93 by a partition wall 94. The raw material inputted into the heating can 8 from the raw material input port 10 and entered into the input part 92 is transferred to the superheated steam inlet 13.
The superheated steam is introduced from the perforated plate 15, the gap 91, and the space between the vertical walls 95, and is heated by the steam discharged from the superheated steam outlet 11 while flowing between the vertical walls 95. The raw material then descends under its own weight, passes through the gap 91, and is sequentially guided to the raw material outlet 12.
It is discharged outside the heating can 8. On the other hand, the apparatus shown in FIG. 12 is the same as the apparatus shown in FIG. 9, except that the perforated plate 15 is movable and the raw material outlet 12 is provided on the side of the heating can 8. In the figure, 121 is a motor for rotating the perforated plate 15. The device shown in FIG. 14 is provided radially below the shaft 17 in the device shown in FIG.
A rotary blade 141 that rotates inside the rotary blade 1 is installed. In this device, the raw material is forcibly guided to the raw material discharge port 12 by rotary blades 141 . Furthermore, the apparatus shown in FIG.
The perforated plate 151 is fixed to the heating can 158 through
is vibrated by a motor 152 or the like, and the raw material inputted from the raw material input port 153 is heat-treated while being transferred to the raw material discharge port 154 by vibration and being fluidized by a heating medium. Note that the heating medium is introduced from the heating medium inlet 155 and discharged to the outside from the heating medium outlet 156. In this embodiment, the raw material is transferred to the raw material outlet 154 even if the perforated plate 151 is horizontal, but if it is installed at an angle so that the raw material outlet 154 is lower as shown in FIG. Transfer of raw materials is carried out effectively. Here, we will examine how effective the heat treatment method according to the present invention is in terms of product digestibility, degree of gelatinization, residual vitamins, etc., and how effective it is when used in the production of soy sauce. (Tokuko Showa 46-
34747) and fluidized heat treatment method (Special Publication No. 1974-
An experimental example is shown below in comparison with No. 26695). Experimental Example 1 First, Table 1 shows the experimental results when wheat was heat-treated. From the results in Table 1, the conventional method requires superheated steam at a considerably higher temperature than the present invention, and due to excessive heating, the raw material is overdenatured and becomes difficult to be decomposed by the koji mold enzyme, resulting in a lower digestibility. The degree of gelatinization or nitrogen dissolution utilization rate is lower than those of the present invention, and the degree of swelling is also lower. In contrast, the wheat processed by the method of the present invention does not have excessive denaturation of protein, does not leave any undenatured protein, and has excellent digestibility, degree of gelatinization, nitrogen dissolution utilization rate, etc. by moderate heating. It is.
【表】
尚第1表中の消化率の測定は次の操作で成され
る。即ち、加熱処理後の変性小麦を低温で減圧乾
燥した後粉砕し、この粉末1gを振盪式試験管に
採り、0.5モルのリン酸緩衝液(PH7.2)10ml、酵
素液20ml及びトリオール1mlを添付して密栓す
る。この試験管をゆるやかに振盪しながら37℃で
7日間保つて酵素分解させる。次いで分離液に蒸
留水を加えて全容積を100mlとし、遠心分離によ
つて液相と固相とに分ける。液相部30mlに1.2モ
ルのトリクロル酢酸15mlを加え、沈殿(未分解蛋
白質)を濾別し、濾液5mlを採つてケルダール法
により窒素含量を測定する。別に前記粉末試料を
加えないで、同様に処理して盲試験を行い、前者
の値から後者の値を差し引いた値をAとする。一
方粉末試料1g中の窒素含量をケルダール法で測
定してその値をBとし、次式により消化率を算出
する。
消化率(%)=A×30/B×100
又α化度の測定は以下による。
即ち、調製試料を150ml容三角フラスコ2本に
500mgずつ採取し、各々に水40mlを加えてよく撹
拌する。そして一方を測定区として測定用緩衝液
を加え、他方を完全α化して2N・NaOH5mlを加
え、次に1M酢酸16mlを加える。
次に恒温槽中で両検液に酵素5mlを加えて反応
させ、60分後、2N・NaOHmlを加えて反応を停
止する。その後反応物を100mlメスフラスコに洗
い込め定容とし、濾紙で濾過する。濾液8mlにつ
いてSOMOGYI変法により生成糖を定量する。
結果は次式によりパーセントで表わされる。
α化度(%)=測定区の糖量/完全α化区の糖量×
100
更に窒素溶解利用率とは、醫油醸造用原料の大
豆及び小麦に含有されている蛋白質等の全窒素に
対する熟成諸味液汁中に溶解している全窒素量の
割合を言う。
実験例 2
次に玄米(全粒)を加熱処理した場合、該原料
に含有されているビタミンの残存率等についての
結果を第2表に示す。[Table] The digestibility shown in Table 1 is measured by the following procedure. That is, denatured wheat after heat treatment is dried under reduced pressure at low temperature and then ground, 1 g of this powder is placed in a shaking test tube, and 10 ml of 0.5 molar phosphate buffer (PH7.2), 20 ml of enzyme solution, and 1 ml of triol are added. Attach and seal. The test tube was kept at 37°C for 7 days with gentle shaking to allow enzymatic degradation. Next, distilled water is added to the separated liquid to bring the total volume to 100 ml, and the liquid phase is separated into a liquid phase and a solid phase by centrifugation. Add 15 ml of 1.2 mol trichloroacetic acid to 30 ml of the liquid phase, filter off the precipitate (undegraded protein), take 5 ml of the filtrate, and measure the nitrogen content by the Kjeldahl method. A blind test is conducted in the same manner without adding the powder sample, and the value obtained by subtracting the latter value from the former value is defined as A. On the other hand, the nitrogen content in 1 g of the powder sample is measured by the Kjeldahl method, the value is designated as B, and the digestibility is calculated using the following formula. Digestibility (%) = A x 30 / B x 100 The degree of gelatinization is measured as follows. That is, put the prepared sample into two 150ml Erlenmeyer flasks.
Collect 500 mg each, add 40 ml of water to each, and stir well. Then, use one as a measurement area and add the measurement buffer, completely gelatinize the other, add 5ml of 2N NaOH, and then add 16ml of 1M acetic acid. Next, add 5 ml of enzyme to both test solutions in a constant temperature bath and let them react.After 60 minutes, add 2N NaOH ml to stop the reaction. Thereafter, the reaction product was washed into a 100 ml volumetric flask to make a constant volume, and filtered through a filter paper. The amount of sugar produced in 8 ml of the filtrate is determined by the modified SOMOGYI method. The results are expressed in percentages according to the following formula: Degree of gelatinization (%) = Sugar amount in measurement area / Sugar amount in complete gelatinization area x
100 Further, the nitrogen dissolution utilization rate refers to the ratio of the total amount of nitrogen dissolved in the aged moromi liquid to the total nitrogen contained in the proteins, etc. contained in the soybean and wheat raw materials for brewing soybean oil. Experimental Example 2 Next, when brown rice (whole grains) was heat-treated, Table 2 shows the results regarding the residual rate of vitamins contained in the raw material.
【表】
前記実験例1で述べた如く本発明においては、
従来法より低温の過熱水蒸気で原料を処理するこ
とができるため、第2表より明らかな如く原料に
含有されているビタミンは破壊され難く、製品に
おいてその残存率が高く、栄養豊富な製品を得る
ことができる。
又α化度、膨化度についても本発明は従来以上
の結果が得られる。
以上述べた如く本発明は複数回に分けて原料を
順次加熱処理するため、加熱媒体の最高温度を下
げることができる。
従つて、本発明は熱変性に敏感な原料に対する
加熱処理に対して有効であり、又微細な粒子の酸
化防止及び均一な加熱ができ、更に原料に含有さ
れている水分の飛散が防止できるため、膨化度が
高くなり、例えば醤油原料に用いられる脱脂大
豆、或は小麦について言えば、窒素利用率が向上
する等の利点がある。
加うるに、使用機器の耐熱負担が軽減され、特
に投入及び排出バルブのパツキン類の寿命を増加
させたり、装置全体として熱損失を減少させるこ
とができる。或は原料の処理条件によつては送風
機の圧縮熱だけで熱負荷を補うことができ、又加
熱媒体の温度が低い方が効率が高い等の利点が得
られる。
以下に本発明の実施例を定量的に考察する。尚
以下実施例1乃至実施例6は加熱変性に関する例
を示す。
実施例 1
小麦(水分11.2%w/w、全粒)を200Kg/h
の割合で6.5atgの過熱水蒸気が通過されている
気流式加熱装置に投入して加熱処理した後、流動
式加熱装置に供給して更に加熱処理する。次いで
原料を大気中に放出して消化率95.8%、α化度78
%、膨化度2.7倍、水分7.1%の製品を得た。
上記夫々の加熱装置における過熱水蒸気の入口
及び出口の温度は、気流式加熱装置で夫々200℃、
170℃であり、流動式加熱装置で夫々260℃、200
℃であつた。過熱水蒸気の循環量は4750Kg/h、
補充量は450Kg/hであり、又加熱処理時間は18
秒であつた。
実施例 2
とうもろこし(水分10.5%w/w、全粒)を
1500Kg/hの割合で7.0atgの過熱水蒸気が通気
されている気流式加熱装置に投入加熱処理した
後、流動式加熱装置に供給して更に加熱処理す
る。次いで原料を大気中に放出し、α化度81%、
膨化度5.6倍、水分5.8%の製品を得た。
上記夫々の加熱装置における過熱水蒸気の入口
及び出口での温度は、気流式加熱装置で夫々220
℃、175℃であり、流動式加熱装置で夫々280℃、
220℃であつた。又過熱水蒸気の循環量は5100
Kg/h、補充量は480Kg/hであり、加熱処理時
間は20秒であつた。
実施例 3
本実施例は前記実施例1、2とは異なり、気流
式加熱装置を3段設置した装置により原料を処理
した場合の結果を示す。
まず脱脂大豆(水分11.5%w/w、粒度16乃至
24メツシユ)3300Kg/hの割合で6.5atgの過熱
水蒸気が通気されている第1気流式加熱装置に投
入した。以下順次第2及び第3気流式加熱装置で
加熱処理し、その後大気中に放出して消化率95.2
%、水分7.8%の変性脱脂大豆を得た。
上記夫々の加熱装置における過熱水蒸気の入口
及び出口での温度は、第1気流式加熱装置で夫々
190℃、168℃、第2気流式加熱装置で夫々210℃、
190℃、第3気流式加熱装置で夫々220℃、210℃
であつた。又過熱水蒸気の循環量は7800Kg/h、
補充量は450Kg/hであり、加熱処理時間は約8
秒であつた。
実施例 4
割砕大豆(水分12.7%w/w、粒度8乃至16メ
ツシユ)を3000Kg/hの割合で9atgの過熱水蒸
気が通気されている第1流動式加熱装置に投入し
て加熱処理した後、第2流動式加熱装置に供給し
て更に加熱処理した。次いで原料を大気中に放出
して消化率94.6%、水分7.5%の製品を得た。
上記夫々の加熱装置における過熱水蒸気の入口
及び出口の温度は、第1流動式加熱装置で夫々
220℃、182℃であり、第2流動式加熱装置で夫々
260℃、220℃であつた。又過熱水蒸気の循環量は
8500Kg/h、補充量は620Kg/hであり、処理時
間は20秒であつた。
実施例 5
加水した脱脂大豆(水分;25.3%w/w、粒
度;16〜24メツシユ)を1590Kg/h、割砕小麦
(水分;11.2%w/w、粒度;16〜24メツシユ)
を1420Kg/hの割合で混合供給し6.5atgの過熱水
蒸気が通気されている第1気流式加熱装置に投入
して加熱処理した後、第2気流式加熱装置に供給
して更に加熱処理する。次いで原料を大気中に放
出し両者平均して水分17.5%の製品を得た。
この製品に1845/hの割合で加水して冷却
後、通常の手段により製麹、仕込を行い風味良好
な醤油諸味を得た。
第1気流式加熱装置における過熱水蒸気の入口
及び出口の温度はそれぞれ186℃、175℃であり、
第2気流式加熱装置でそれぞれ197℃、186℃であ
つた。過熱水蒸気の循環量は4800Kg/h、水蒸気
補充量は520Kg/hであり、又加熱処理時間は8
秒であつた。
実施例 6
玄米(水分13.0%w/w、全粒、ビタミン0.42
mg/100g)を3000Kg/hの割合で6atgの過熱水
蒸気が通気されている気流式加熱装置に投入して
加熱処理した後、流動式加熱装置に供給して更に
加熱処理した。次いで原料を大気中に放出してα
化度92%、膨化度7.5倍、水分3.5%、ビタミン
0.35mg/100gの製品を得た。
前記それぞれの加熱装置における過熱水蒸気の
入口及び出口の温度は、気流式加熱装置でそれぞ
れ210℃、167℃、流動式加熱装置でそれぞれ250
℃、210℃であつた過熱水蒸気の循環量は440Kg/
h、水蒸気補充量は380Kg/hであり、本実施例
による加熱処理時間は8秒であつた。
以下実施例7乃至実施例9に殺菌効果に関する
例を示す。
実施例 7
ふすま(水分10.8%w/w、粒度28メツシユ以
下)を200Kg/hの割合で3atgの過熱水蒸気が通
気されている第1気流式加熱装置に投入して加熱
処理した後、第2気流式加熱装置に供給して更に
加熱処理する。次いで原料を大気中に放出して水
分3.5%の製品を得た。そして原料中に3.1×106
個/gあつた一般生菌数は0になつた。
上記夫々の加熱装置における加熱水蒸気の入口
及び出口での温度は、第1気流式加熱装置で夫々
200℃、148℃であり、第2気流式加熱装置で夫々
232℃、200℃であつた。又過熱水蒸気の循環量は
410Kg/h、補充量は120Kg/hであり、加熱処理
時間は6秒であつた。
実施例 8
カツオ節粉砕物(水分14.8%w/w、粒度8乃
至12メツシユ)を900Kg/hの割合で2atgの過熱
水蒸気が通気されている第1流動式加熱装置に投
入して加熱処理して後、第2流動式加熱装置に供
給して更に加熱処理した。次いで原料を大気中に
放出して水分9.7%の製品を得た。そして原料中
に2.8×104個/gあつた一般生菌数は0になつ
た。
上記夫々の加熱装置における過熱水蒸気の入口
及び出口での温度は、第1流動式加熱装置で夫々
175℃、135℃であり、第2流動式加熱装置で夫々
240℃、175℃であつた。又過熱水蒸気の循環量は
1200Kg/h、補充量は240Kg/hであり、加熱処
理時間は25秒であつた。
実施例 9
ブラツクペツパー(水分12.8%w/w、全粒)
を820Kg/hの割合1.5atgの過熱水蒸気が通気さ
れている流動式加熱装置に投入して加熱処理した
後、気流式加熱装置に供給して更に加熱処理し
た。次いで原料を大気中に放出して水分7.1%の
製品を得た。そして原料中に1.7×107個/gあつ
た一般生菌数は0になつた。
上記夫々の加熱装置における過熱水蒸気の入口
及び出口での温度は、流動式加熱装置で夫々182
℃、130℃であり、気流式加熱装置で夫々210℃、
182℃であつた。又過熱水蒸気の循環量は980Kg/
h、補充量は180Kg/hであり、加熱処理時間は
20秒であつた。[Table] As described in Experimental Example 1, in the present invention,
Since the raw materials can be treated with superheated steam at a lower temperature than the conventional method, the vitamins contained in the raw materials are difficult to destroy, as is clear from Table 2, and their residual rate is high in the product, resulting in a highly nutritious product. be able to. The present invention also provides better results than conventional methods regarding the degree of gelatinization and the degree of swelling. As described above, in the present invention, the raw material is sequentially heat-treated in multiple steps, so that the maximum temperature of the heating medium can be lowered. Therefore, the present invention is effective for heat treatment of raw materials that are sensitive to thermal denaturation, and can prevent oxidation of fine particles and uniform heating, and can also prevent water contained in the raw materials from scattering. For example, defatted soybeans or wheat, which are used as raw materials for soy sauce, have advantages such as improved nitrogen utilization. In addition, the heat resistance burden on the equipment used is reduced, the lifespan of the gaskets of the input and discharge valves can be increased, and the heat loss of the entire device can be reduced. Alternatively, depending on the processing conditions of the raw material, the heat load can be compensated only by the compression heat of the blower, and advantages such as higher efficiency can be obtained when the temperature of the heating medium is lower. Examples of the present invention will be quantitatively discussed below. Note that Examples 1 to 6 below show examples regarding heat denaturation. Example 1 200Kg/h of wheat (moisture 11.2% w/w, whole grain)
After being heat-treated by being charged into an air-flow heating device through which 6.5 atg of superheated steam is passed through at a rate of 6.5 atg, it is then supplied to a fluid-flow heating device and further heat-treated. The raw material is then released into the atmosphere with a digestibility of 95.8% and a degree of gelatinization of 78.
%, the degree of swelling was 2.7 times, and the moisture content was 7.1%. The temperatures at the inlet and outlet of the superheated steam in each of the above heating devices are 200°C and 200°C, respectively, in the airflow heating device.
170℃, respectively 260℃ and 200℃ using a fluidized heating device.
It was warm at ℃. The circulation amount of superheated steam is 4750Kg/h,
The replenishment amount is 450Kg/h, and the heat treatment time is 18
It was hot in seconds. Example 2 Corn (moisture 10.5% w/w, whole grain)
After being heated and heated in an air flow heating device through which 7.0 atg of superheated steam is aerated at a rate of 1500 kg/h, the material is supplied to a flow heating device for further heat treatment. Next, the raw material is released into the atmosphere, and the degree of gelatinization is 81%.
A product with a swelling degree of 5.6 times and a moisture content of 5.8% was obtained. The temperature at the inlet and outlet of the superheated steam in each of the above heating devices is 220°C for the airflow heating device.
℃, 175℃, respectively 280℃ and 175℃ using a fluidized heating device.
It was 220℃. Also, the circulation amount of superheated steam is 5100
Kg/h, the replenishment amount was 480 Kg/h, and the heat treatment time was 20 seconds. Example 3 Unlike Examples 1 and 2, this example shows the results when raw materials were treated using an apparatus in which three stages of airflow heating apparatuses were installed. First, defatted soybeans (moisture 11.5% w/w, particle size 16~
24 mesh) Superheated steam of 6.5 atg at a rate of 3300 kg/h was introduced into the first airflow heating device which was ventilated. The following is heated in the second and third airflow heating devices in order, and then released into the atmosphere with a digestibility of 95.2.
% and a moisture content of 7.8%. The temperatures at the inlet and outlet of the superheated steam in each of the above heating devices are the same as those in the first airflow heating device, respectively.
190℃, 168℃, 210℃ with the second airflow heating device, respectively.
190℃, 220℃ and 210℃ respectively with the third airflow heating device
It was hot. Also, the circulation amount of superheated steam is 7800Kg/h,
The replenishment amount is 450Kg/h, and the heat treatment time is approximately 8
It was hot in seconds. Example 4 Cracked soybeans (moisture 12.7% w/w, particle size 8 to 16 mesh) were heated at a rate of 3000 kg/h into the first fluidized heating device in which 9 atg of superheated steam was vented. , and was further heat-treated by being supplied to a second fluidized heating device. The raw material was then released into the atmosphere to obtain a product with a digestibility of 94.6% and a moisture content of 7.5%. The temperatures at the inlet and outlet of the superheated steam in each of the above heating devices are the same as those in the first fluid heating device.
220℃ and 182℃, respectively, using the second fluidized heating device.
The temperature was 260℃ and 220℃. Also, the amount of circulating superheated steam is
The amount of replenishment was 8500Kg/h, the replenishment amount was 620Kg/h, and the processing time was 20 seconds. Example 5 1590 kg/h of hydrated defatted soybeans (moisture; 25.3% w/w, particle size: 16-24 mesh) and crushed wheat (moisture; 11.2% w/w, particle size: 16-24 mesh)
are mixed and supplied at a rate of 1420 Kg/h, charged into a first air-flow heating device through which 6.5 atg of superheated steam is vented, and subjected to heat treatment, and then supplied to a second air-flow heating device for further heat treatment. The raw materials were then released into the atmosphere to obtain a product with an average moisture content of 17.5%. Water was added to this product at a rate of 1845/h, and after cooling, koji was made and prepared using conventional means to obtain soy sauce moromi with good flavor. The temperatures at the inlet and outlet of the superheated steam in the first airflow heating device are 186°C and 175°C, respectively.
The temperatures were 197°C and 186°C, respectively, in the second airflow heating device. The circulating amount of superheated steam is 4800 kg/h, the amount of steam replenishment is 520 kg/h, and the heat treatment time is 8
It was hot in seconds. Example 6 Brown rice (moisture 13.0% w/w, whole grain, vitamin 0.42
mg/100g) was heated at a rate of 3000 kg/h into an air flow heating device through which 6 atg of superheated steam was vented, and then supplied to a flow heating device for further heat treatment. Next, the raw material is released into the atmosphere and α
degree of expansion 92%, degree of swelling 7.5 times, moisture 3.5%, vitamins
A product of 0.35mg/100g was obtained. The temperatures at the inlet and outlet of the superheated steam in each of the heating devices are 210°C and 167°C, respectively, for the airflow type heating device, and 250°C, respectively, for the fluid type heating device.
The circulating amount of superheated steam at 210℃ is 440Kg/
h. The amount of steam replenishment was 380 kg/h, and the heat treatment time in this example was 8 seconds. Examples regarding the bactericidal effect will be shown in Examples 7 to 9 below. Example 7 Bran (moisture 10.8% w/w, particle size 28 mesh or less) was heated at a rate of 200 kg/h into the first airflow heating device through which 3 atg of superheated steam was vented, and then heated. It is supplied to an airflow heating device for further heat treatment. The raw material was then released into the atmosphere to obtain a product with a moisture content of 3.5%. and 3.1× 106 in the raw material
The number of general viable bacteria per gram decreased to 0. The temperature at the inlet and outlet of the heated steam in each of the above heating devices is the same as that in the first airflow heating device, respectively.
200℃ and 148℃, respectively, using the second airflow heating device.
It was 232℃ and 200℃. Also, the amount of circulating superheated steam is
The replenishment rate was 410Kg/h, the replenishment rate was 120Kg/h, and the heat treatment time was 6 seconds. Example 8 Pulverized bonito flakes (moisture 14.8% w/w, particle size 8 to 12 mesh) were heated at a rate of 900 kg/h into the first fluidized heating device through which 2 atg of superheated steam was aerated. Thereafter, it was supplied to a second fluidized heating device for further heat treatment. The raw material was then released into the atmosphere to obtain a product with a moisture content of 9.7%. The number of general viable bacteria in the raw material, which was 2.8×10 4 cells/g, decreased to 0. The temperatures at the inlet and outlet of the superheated steam in each of the above heating devices are the same as those in the first fluid heating device.
175℃ and 135℃, respectively, using the second fluidized heating device.
The temperatures were 240℃ and 175℃. Also, the amount of circulating superheated steam is
The replenishment rate was 1200Kg/h, the replenishment rate was 240Kg/h, and the heat treatment time was 25 seconds. Example 9 Black Petzpur (moisture 12.8% w/w, whole grain)
The material was heat-treated by being put into a fluidized heating device through which superheated steam of 1.5 atg at a rate of 820 kg/h was aerated, and then supplied to an airflow heating device for further heat treatment. The raw material was then released into the atmosphere to obtain a product with a moisture content of 7.1%. The number of general viable bacteria in the raw material, which was 1.7×10 7 cells/g, decreased to 0. The temperatures at the inlet and outlet of the superheated steam in each of the above heating devices are 182
℃, 130℃, and 210℃ and 130℃ respectively with airflow heating device.
It was 182℃. Also, the circulating amount of superheated steam is 980Kg/
h, the replenishment amount is 180Kg/h, and the heat treatment time is
It was hot in 20 seconds.
第1図は本発明の実施例を示す加熱処理装置の
模式図、第2図は投入バルブとして強制排出式バ
ルブを用いた実施例図、第3図は第1図A−A線
断面図、第4図乃至第8図は本発明の他の実施例
を示す加熱処理装置の模式図、第9図は流動式加
熱装置の他の実施例図、第10図は第9図B−B
線断面図、第11図は第9図C−C線展開図、第
12図は流動式加熱装置の他の実施例図、第13
図は第12図D−D線展開図、第14図及び第1
5図は夫々流動式加熱装置の他の実施例図であ
る。
尚図面中1は気流式加熱装置、3は加熱パイ
プ、4はサイクロン、6は流動式加熱装置、8は
加熱缶、16は原料移送装置、23は送風機、2
4は過熱器である。
FIG. 1 is a schematic diagram of a heat treatment apparatus showing an embodiment of the present invention, FIG. 2 is an embodiment diagram using a forced discharge valve as an input valve, and FIG. 3 is a sectional view taken along the line A-A in FIG. 1. 4 to 8 are schematic diagrams of a heat treatment apparatus showing other embodiments of the present invention, FIG. 9 is a diagram of another embodiment of a fluidized heating apparatus, and FIG. 10 is a diagram 9B-B
11 is a developed view along the line C-C in FIG.
The figures are Figure 12 D-D line development diagram, Figure 14 and Figure 1.
FIG. 5 is a diagram showing another embodiment of the fluidized heating device. In the drawings, 1 is an air flow heating device, 3 is a heating pipe, 4 is a cyclone, 6 is a fluid heating device, 8 is a heating can, 16 is a raw material transfer device, 23 is a blower, 2
4 is a superheater.
Claims (1)
加熱パイプの上流部においてこれに連結され、且
つ原料を気密的に供給する投入バルブ及び上記加
熱パイプの下流部において連結され、且つ過熱水
蒸気と原料とに分離する捕集装置とから成る気流
式加熱装置と、原料投入口及び排出口、過熱水蒸
気入口及び出口を有するとともに、内部に多孔板
を備え、該多孔板上にて原料の流動層を形成させ
ながら該原料を加圧加熱する加熱缶及び該加熱缶
の原料排出口に設けられた排出バルブから成る流
動式加熱装置とから構成され、前記加熱缶と加熱
パイプ上流側とを連通し、又前記捕集装置と加熱
缶とを中間バルブを介して連通したことを特徴と
する粉粒物質の加熱処理装置。 2 原料投入口及び排出口、過熱水蒸気入口及び
出口を有するとともに、内部に多孔板を備え、該
多孔板にて原料の流動層を形成させながら該原料
を加圧加熱する加熱缶及び該加熱缶の原料排出口
に設けられた排出バルブとから成る流動式加熱装
置と、過熱水蒸気が通気されている加熱パイプ、
該加熱パイプの上流部においてこれに連結された
中間バルブ、上記加熱パイプの下流部においてこ
れに連結され、過熱水蒸気と原料とに分離する捕
集装置及び該捕集装置に設置された排出バルブと
から構成され、前記捕集装置と加熱缶とを連通
し、又加熱缶と前記加熱パイプ上流側とを前記中
間バルブを介して連通したことを特徴とする粉粒
物質の加熱処理装置。[Scope of Claims] 1. A heating pipe through which superheated steam is vented, an input valve connected to the upstream part of the heating pipe, and connected to the input valve for supplying raw materials in an airtight manner, and connected to the downstream part of the heating pipe, In addition, it has an airflow heating device consisting of a collection device that separates superheated steam and raw materials, a raw material inlet and an outlet, a superheated steam inlet and an outlet, and has a perforated plate inside, and a perforated plate on the perforated plate. It is composed of a heating can that pressurizes and heats the raw material while forming a fluidized bed of the raw material, and a fluidized heating device consisting of a discharge valve provided at the raw material outlet of the heating can, and the heating can and the heating pipe upstream side. 1. A heat treatment apparatus for a particulate material, characterized in that the collection device and the heating can are communicated through an intermediate valve. 2. A heating can that has a raw material inlet and an outlet, a superheated steam inlet and an outlet, and is equipped with a perforated plate inside, and pressurizes and heats the raw material while forming a fluidized bed of the raw material with the perforated plate, and the heating can a fluid heating device consisting of a discharge valve provided at the raw material discharge port, and a heating pipe through which superheated steam is vented;
an intermediate valve connected to the upstream part of the heating pipe; a collection device connected to the downstream part of the heating pipe to separate superheated steam and raw materials; and a discharge valve installed in the collection device. 1. An apparatus for heat treatment of particulate materials, characterized in that the collection device and the heating can are connected to each other, and the heating can and the upstream side of the heating pipe are connected to each other via the intermediate valve.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56211084A JPS58111667A (en) | 1981-12-26 | 1981-12-26 | Method and apparatus for heat-treatment of granular substance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56211084A JPS58111667A (en) | 1981-12-26 | 1981-12-26 | Method and apparatus for heat-treatment of granular substance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58111667A JPS58111667A (en) | 1983-07-02 |
JPS6411274B2 true JPS6411274B2 (en) | 1989-02-23 |
Family
ID=16600144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56211084A Granted JPS58111667A (en) | 1981-12-26 | 1981-12-26 | Method and apparatus for heat-treatment of granular substance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58111667A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07114675B2 (en) * | 1988-04-08 | 1995-12-13 | 三菱重工業株式会社 | Apparatus for sterilization of powdered material by superheated steam |
SE507856C2 (en) | 1996-04-12 | 1998-07-20 | Acanova Ab | Heat remediation of seeds |
EP2173774B1 (en) * | 2007-07-26 | 2017-10-11 | Cargill, Incorporated | Process for modifying starches |
JP5452370B2 (en) * | 2010-03-18 | 2014-03-26 | 株式会社日清製粉グループ本社 | Method for producing sterilized grain |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5612090A (en) * | 1979-07-12 | 1981-02-05 | Shin Meiwa Ind Co Ltd | Squeeze pump |
-
1981
- 1981-12-26 JP JP56211084A patent/JPS58111667A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58111667A (en) | 1983-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4463022A (en) | Method of grinding and cooking whole grain | |
US20230189855A1 (en) | Process for improving the organoleptic and nutritional properties of legume meal and components and derivatives thereof | |
JPH0553B2 (en) | ||
GB1327134A (en) | Heat-treated flour process for making it and products containing it | |
JPH02227038A (en) | Production of instant food for granular grain | |
JPS5842743B2 (en) | How do you know what to do? | |
JPS6225020B2 (en) | ||
JPS6352845A (en) | Production of cereal rolled flake and apparatus therefor | |
FI72257B (en) | FOERFARANDE FOER FRAMSTAELLNING AV BEHANDLADE SPANNMAOLSPRODUKTER OCH APPARAT FOER UTFOERANDE AV FOERFARANDET | |
EP0852911A2 (en) | A process for preparing a particulate product from spent grains and a particulate product obtainable by said method | |
EP0094448A1 (en) | Method and apparatus for heat-treating powdered, granular and like materials | |
JPS6411274B2 (en) | ||
JPS6247500B2 (en) | ||
JPS6152657B2 (en) | ||
US20060088634A1 (en) | Process for granulation of low-moisture processed foods and use thereof | |
Desikachar | Technology options for formulating weaning foods for the economically weaker segments of populations in developing countries | |
US20060083834A1 (en) | Process for granulation of wet processed foods and use thereof | |
JP4413502B2 (en) | Okara molded product manufacturing method | |
JPH11103802A (en) | Heat-treatment of powdery particulate substance and device therefor | |
US460320A (en) | Cereal food and process of producing the same | |
CN108719755A (en) | It is a kind of using brown rice and highland barley as fast food brewed powder of major ingredient and preparation method thereof | |
Brito-De La Fuente et al. | Popping and cleaning of amaranth seeds in a fluidized bed | |
JPH0724080Y2 (en) | Soybean pressed flakes manufacturing equipment | |
JPH04197152A (en) | Apparatus for steaming treatment | |
KR20010076457A (en) | A method for forming raw food |