[go: up one dir, main page]

JPS6410952B2 - - Google Patents

Info

Publication number
JPS6410952B2
JPS6410952B2 JP2895078A JP2895078A JPS6410952B2 JP S6410952 B2 JPS6410952 B2 JP S6410952B2 JP 2895078 A JP2895078 A JP 2895078A JP 2895078 A JP2895078 A JP 2895078A JP S6410952 B2 JPS6410952 B2 JP S6410952B2
Authority
JP
Japan
Prior art keywords
region
conductivity type
drain
source
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2895078A
Other languages
Japanese (ja)
Other versions
JPS54121071A (en
Inventor
Kenji Tokuyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP2895078A priority Critical patent/JPS54121071A/en
Publication of JPS54121071A publication Critical patent/JPS54121071A/en
Publication of JPS6410952B2 publication Critical patent/JPS6410952B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は絶縁ゲート型電界効果半導体装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an insulated gate field effect semiconductor device.

絶縁ゲート型電界効果半導体装置の基本特性の
ひとつにしきい値電圧の基板バイアス依存性があ
り、基板バイアス依存性を小さくする方法に、チ
ヤンネルドープ方式が挙げられる。チヤンネルド
ープ方式とは第1図に示す如く、高比抵抗基板1
を用いて基板バイアス依存性を改良し、ソース2
とドレイン3の間のパンチスルーを防止し、かつ
所要のしきい値電圧を得るために基板と同じ導電
型を有する基板よりも高濃度の領域、すなわちチ
ヤンネルドープ領域9を設ける方法である。しか
しながら基板濃度を低くすぎるとチヤンネル領域
9と基板領域1の界面においてソース2とドレイ
ン3のパンチスルーが発生するという欠点があつ
た。
One of the basic characteristics of an insulated gate field effect semiconductor device is the dependence of the threshold voltage on the substrate bias, and a channel doping method is a method for reducing the dependence on the substrate bias. The channel doping method is as shown in Figure 1.
The substrate bias dependence is improved using
In this method, a region having a higher concentration than the substrate, that is, a channel doped region 9, having the same conductivity type as the substrate is provided in order to prevent punch-through between the substrate and the drain 3 and to obtain the required threshold voltage. However, if the substrate concentration is too low, punch-through between the source 2 and drain 3 occurs at the interface between the channel region 9 and the substrate region 1, which is a drawback.

本発明の的は上記の欠点を改良した新しい絶縁
ゲート電界効果型半導体装置を提供する事にあ
る。
SUMMARY OF THE INVENTION The object of the present invention is to provide a new insulated gate field effect semiconductor device that overcomes the above-mentioned drawbacks.

本発明の特徴は上述のパンチスルーを防止する
ため、ソース・ドレインの少くとも一方の領域を
囲む基板と同一の導電型を有する高濃度不純物領
域を設け、かつこの高濃度不純物領域がある事に
よつて、カツトされてしまうチヤンネルをソース
又はドレインと導通させるため、基板の一主面に
そつてソース又はドレインからチヤンネル部すな
わちチヤンネルドープ領域まで延在する逆導電型
領域を設けたことであり、さらにこの逆導電型領
域はソース・ドレインを囲む一導電型領域より高
濃度とし、かつ、この逆導電型領域の深さはチヤ
ンネルドープ領域より浅くしたことにある。
A feature of the present invention is that, in order to prevent the punch-through described above, a high concentration impurity region having the same conductivity type as the substrate surrounding at least one of the source and drain regions is provided, and this high concentration impurity region is Therefore, in order to connect the cut channel to the source or drain, an opposite conductivity type region is provided along one main surface of the substrate extending from the source or drain to the channel portion, that is, the channel doped region. Further, this region of opposite conductivity type has a higher concentration than the region of one conductivity type surrounding the source/drain, and the depth of this region of opposite conductivity type is shallower than that of the channel doped region.

次に図面に基づいて本発明の実施例を説明す
る。
Next, embodiments of the present invention will be described based on the drawings.

以下の実施例においては、NチヤンネルMOS
トランジスタについてなされるが他の型のトラン
ジスタについても同様に説明される。
In the following embodiments, N-channel MOS
Although described for transistors, other types of transistors are similarly described.

第2図aないしgは本発明の第1の実施例につ
いて、製造工程順に説明する途中における断面図
である。まず第2図aに示される如く、高比抵抗
P型基板1の表面に酸化膜11と気相成長法写真
蝕刻法によつて将来トランジスタのソース・ドレ
イン領域となるべき領域にのみに残された窒化膜
12を形成し、酸素雰囲気中で、酸化してフイー
ルド酸化膜5を成長し、しかる後に、第2図bに
示される如くP+を拡散する領域(この場合は、
ドレイン領域のみとする)の窒化膜及び酸化膜を
除去し、P型不純物を拡散又はイオン注入した後
に熱処理し、P+領域10を形成し、次に第2図
cに示される如く、ソース側の窒化膜と酸化膜を
除去し、N型の高濃度不純物領域であるP+領域
10よりも浅いソース2とドレイン3を形成し、
次に写真蝕刻・酸化法により、ゲート領域4を、
第2図dに示される如く形成し、次に第2図eに
示される如く、ゲート酸化膜を通してP型イオン
例えばボロンをイオン注入し、チヤンネル表面に
基板よりも高濃度のP型のチヤンネルドープ領域
9を形成し、次に第2図fに示す如くチヤンネル
領域をフオトレジス14でおおい、少くともドレ
イン領域3の周囲のP+領域10の表面にN型不
純物例えばリンをイオン注入し、P+領域の表面
をN+領域13に反転させる。この時、N+領域1
3の深さがチヤンネルドープ領域10の深さより
も大きくならない様エネルギーを調整する必要が
ある。その理由はN+領域13と基板1が直接ぶ
つかるとソース2とドレイン3のパンチスルーが
基板の濃度で決定されてしまうためである。第2
図gは前述の上程に続いて、イオン注入されたイ
オンの活性化工程コンタクト孔開口工程、金属配
線6,7,8の形成工程を終えて完成した半導体
装置の断面図を示す。
FIGS. 2a to 2g are cross-sectional views in the middle of explaining the first embodiment of the present invention in the order of manufacturing steps. First, as shown in FIG. 2a, an oxide film 11 is formed on the surface of the high resistivity P-type substrate 1 by vapor phase growth and photolithography, leaving only the regions that will become the source and drain regions of transistors in the future. A field oxide film 5 is grown by oxidizing in an oxygen atmosphere, and then a region where P + is diffused (in this case, as shown in FIG. 2b) is formed.
After removing the nitride film and oxide film on the drain region (only the drain region) and diffusing or ion-implanting P type impurities, heat treatment is performed to form the P + region 10. Next, as shown in FIG. 2c, the source side The nitride film and oxide film are removed, and a source 2 and drain 3 are formed which are shallower than the P + region 10, which is an N-type high concentration impurity region.
Next, the gate region 4 is formed by photolithography and oxidation.
2d, and then, as shown in FIG. 2e, P-type ions, such as boron, are implanted through the gate oxide film to dope the channel surface with P-type at a higher concentration than the substrate. A region 9 is formed, and then the channel region is covered with a photoresist 14 as shown in FIG . Invert the surface of the region to N + region 13. At this time, N + area 1
It is necessary to adjust the energy so that the depth of channel doped region 3 is not greater than the depth of channel doped region 10. The reason for this is that if the N + region 13 and the substrate 1 directly collide, the punch-through of the source 2 and drain 3 will be determined by the concentration of the substrate. Second
FIG. g shows a cross-sectional view of a completed semiconductor device after completing the steps of activating the implanted ions, opening contact holes, and forming metal interconnections 6, 7, and 8, following the above steps.

以上に述べた第1の実施例はドレイン側にのみ
P+領域を設ける方法について説明したが次に、
ソース・ドレイン側にP+領域を形成しかつ、第
一の実施例とは異なる製法について述べる。
The first embodiment described above only applies to the drain side.
We explained how to create a P + area, but next,
A manufacturing method in which P + regions are formed on the source/drain side and is different from the first embodiment will be described.

第3図aないしgは本発明の第2の実施例につ
いて、製造工程順に説明する途中工程における断
面図である。
FIGS. 3A to 3G are cross-sectional views at intermediate steps to explain the second embodiment of the present invention in the order of manufacturing steps.

まず、第3図aに示される如く、高比抵抗の半
導体基板21の表面に将来ソース・ドレインとな
るべき領域が開口された、酸化膜22と窒化膜2
3の二重層を、酸化法・気相成長法、写真蝕刻法
等により形成し、次に第3図bに示される如く、
上述の開口部から、P型イオン例えばボロンを拡
散又はイオン注入し、熱処理をしてP+領域24
を作る。次に窒化膜23はエツチングされず、酸
化膜22のみがエツチングされる液、例えば弗酸
により、酸化膜22をサイドエツチし酸化膜の開
口部がP+領域24よりも大きくする。この状態
は第3図cに示される。続いて第3図dに示され
る如く窒化膜23をリン酸等により除去し、開口
部にP+領域24よりも高濃度でかつ、P+領域よ
りも浅いN+領域25をイオン注入法により設け
る。次に酸化法によつて一度表面に酸化膜を形成
してから写真蝕刻法により、高濃度のソース・ド
レイン領域を形成するための開口部を設け第3図
eに示す如く、P+領域24よりも深さが浅い高
濃度N++領域のソース26とドレイン27を、拡
散法及び熱処理により形成する。次に第3図fに
示す如く、写真蝕刻法酸化法によりゲート酸化膜
28を形成し、さらに、第3図gに示す如く、チ
ヤンネルドープ領域29、コンタクト孔、金属配
線形成工程を径て完成する。又、本実施例におい
てもN+領域25は、チヤンネルドープ領域29
よりも浅くなければならない。
First, as shown in FIG. 3a, an oxide film 22 and a nitride film 2 are formed on the surface of a high-resistivity semiconductor substrate 21 in which regions that will become sources and drains in the future are opened.
A double layer of No. 3 was formed by an oxidation method, a vapor phase growth method, a photoetching method, etc., and then as shown in FIG. 3b,
P-type ions, such as boron, are diffused or ion-implanted through the above-mentioned opening and heat-treated to form the P + region 24.
make. Next, the oxide film 22 is side-etched using a solution that etches only the oxide film 22 without etching the nitride film 23, such as hydrofluoric acid, so that the opening of the oxide film is made larger than the P + region 24. This situation is shown in Figure 3c. Next, as shown in FIG. 3d, the nitride film 23 is removed using phosphoric acid or the like, and an N + region 25 with a higher concentration than the P + region 24 and shallower than the P + region is formed in the opening by ion implantation. establish. Next, an oxide film is formed on the surface by an oxidation method, and then an opening for forming a high concentration source/drain region is formed by a photolithography method, and the P + region 24 is formed as shown in FIG. 3e. A source 26 and a drain 27 in a highly doped N ++ region having a shallower depth than the above are formed by a diffusion method and heat treatment. Next, as shown in FIG. 3f, a gate oxide film 28 is formed by photolithographic oxidation, and as shown in FIG. do. Also in this embodiment, the N + region 25 is the channel doped region 29.
must be shallower than

以上に述べた第2の実施例においてはソースと
ドレインをN++領域26,27において形成して
いるが第4図に示す第3の実施例の如くN+領域
35をそのまゝソース・ドレインとして用いる事
も可能である。又、P+領域34はチヤンネルス
トツパーとして用いる事は言うまでもない。
In the second embodiment described above , the source and drain are formed in the N ++ regions 26 and 27, but as in the third embodiment shown in FIG. It can also be used as a drain. It goes without saying that the P + region 34 is used as a channel stopper.

以上の説明により、本発明を用いれば基板バイ
アス依存性の少ない高性能の絶縁ゲート型電界効
果半導体装置が得られる事がわかる。
From the above description, it can be seen that by using the present invention, a high-performance insulated gate field effect semiconductor device with less dependence on substrate bias can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来技術による絶縁ゲート型電界効果
半導体装置の断面図である。第2図a乃至第2図
gは本発明の第1の実施例の製造を工程順に示し
た断面図である。第3図a乃至第3図gは本発明
の第2の実施例の製造を工程順に示した断面図で
ある。第4図は本発明の第3の実施例を示す断面
図である。 尚、図において、1,21,31……P型高比
抵抗基板、2,26……N++リース領域、3,2
7……N++ドレイン領域、4,28……ゲート酸
化膜、5……フイールド酸化膜、6……ソース電
極、7……ドレイン電極、8……ゲート電極、
9,29,39……P型チヤンネルドープ領域、
10,24,34……P+高濃度領域、11,2
2……酸化膜、12,23……窒化膜、13,2
5,35……N+領域、14……フオトレジスト
である。
FIG. 1 is a sectional view of a conventional insulated gate field effect semiconductor device. FIGS. 2a to 2g are cross-sectional views showing the manufacturing process of the first embodiment of the present invention in the order of steps. FIGS. 3a to 3g are cross-sectional views showing the manufacturing process of the second embodiment of the present invention in the order of steps. FIG. 4 is a sectional view showing a third embodiment of the present invention. In the figure, 1, 21, 31...P-type high resistivity substrate, 2, 26...N ++ lease area, 3, 2
7...N ++ drain region, 4, 28... gate oxide film, 5... field oxide film, 6... source electrode, 7... drain electrode, 8... gate electrode,
9,29,39...P-type channel doped region,
10, 24, 34...P + high concentration area, 11, 2
2...Oxide film, 12,23...Nitride film, 13,2
5, 35...N + area, 14...photoresist.

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型半導体基板の一主面に逆導電型のソ
ース領域およびドレイン領域を夫々設け、ソー
ス、ドレイン領域間のチヤネル領域表面にゲート
絶縁膜を介してゲート電極を有し、チヤネル領域
には前記半導体基板より高濃度の一導電型のチヤ
ンネルドープ領域を設けた絶縁ゲート型電界効果
半導体装置において、前記ソース領域およびドレ
イン領域の少くとも一方の領域は前記チヤネルド
ープ領域より高濃度の一導電型の高濃度領域内に
設け、前記一方の領域と前記チヤンネルドープ領
域との間に存在する前記一導電型の高濃度領域の
一主面をおおうように前記一導電型の高濃度領域
よりも高濃度で、かつ前記チヤンネルドープ領域
より浅い逆導電型領域が設けられ、前記浅い逆導
電型領域表面にゲート絶縁膜を介してゲート電極
を有することを特徴とする絶縁ゲート型電界効果
半導体装置。
1. A source region and a drain region of opposite conductivity type are provided on one main surface of a semiconductor substrate of one conductivity type, and a gate electrode is provided on the surface of the channel region between the source and drain regions with a gate insulating film interposed therebetween. In an insulated gate field effect semiconductor device including a channel doped region of one conductivity type with higher concentration than the semiconductor substrate, at least one of the source region and the drain region has one conductivity type with higher concentration than the channel doped region. is provided in the high concentration region of the one conductivity type, and is higher in concentration than the one conductivity type high concentration region so as to cover one main surface of the one conductivity type high concentration region existing between the one region and the channel doped region. An insulated gate type field effect semiconductor device, characterized in that an opposite conductivity type region is provided with a higher concentration and shallower than the channel doped region, and a gate electrode is provided on the surface of the shallow opposite conductivity type region with a gate insulating film interposed therebetween.
JP2895078A 1978-03-13 1978-03-13 Insulator gate type field effect semiconductor device Granted JPS54121071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2895078A JPS54121071A (en) 1978-03-13 1978-03-13 Insulator gate type field effect semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2895078A JPS54121071A (en) 1978-03-13 1978-03-13 Insulator gate type field effect semiconductor device

Publications (2)

Publication Number Publication Date
JPS54121071A JPS54121071A (en) 1979-09-19
JPS6410952B2 true JPS6410952B2 (en) 1989-02-22

Family

ID=12262678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2895078A Granted JPS54121071A (en) 1978-03-13 1978-03-13 Insulator gate type field effect semiconductor device

Country Status (1)

Country Link
JP (1) JPS54121071A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5047812A (en) * 1989-02-27 1991-09-10 Motorola, Inc. Insulated gate field effect device
JP2848757B2 (en) * 1993-03-19 1999-01-20 シャープ株式会社 Field effect transistor and method of manufacturing the same
JPH08316426A (en) * 1995-05-16 1996-11-29 Nittetsu Semiconductor Kk MOS semiconductor device and method of manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS508484A (en) * 1973-05-21 1975-01-28

Also Published As

Publication number Publication date
JPS54121071A (en) 1979-09-19

Similar Documents

Publication Publication Date Title
US5693974A (en) Elevated source/drain with solid phase diffused source/drain extension for deep sub-micron MOSFETS
KR100234700B1 (en) Manufacturing method of semiconductor device
KR920009745B1 (en) Manufacturing method of semiconductor
JPH0426542B2 (en)
JPS6410952B2 (en)
JP2633104B2 (en) Method for manufacturing semiconductor device
JPH09306862A (en) Method for manufacturing semiconductor device
JPH07263690A (en) Semiconductor device having salicide structure and its manufacture
JPH11186188A (en) Fabrication of semiconductor device
JP3259479B2 (en) MOS type semiconductor device and method of manufacturing the same
JPH0541516A (en) Semiconductor device and its manufacture
JPH0644559B2 (en) Method for manufacturing semiconductor integrated circuit
JPS63150965A (en) Manufacture of semiconductor device
JP3108927B2 (en) Method for manufacturing semiconductor device
JPS6367778A (en) Manufacture of semiconductor device
KR20010017654A (en) gate electrode structure for semiconductor device
JP2573303B2 (en) Method for manufacturing semiconductor device
JPH0410547A (en) Manufacture of semiconductor device
JPH04139834A (en) Manufacture of semiconductor device
JPH07122741A (en) Method for manufacturing semiconductor device
JPH07106569A (en) Semiconductor device and manufacturing method thereof
JPH0458562A (en) Mas transistor and manufacture thereof
JPH0226034A (en) Manufacture of semiconductor device
JPH0629383A (en) Production of semiconductor device
JPH04346263A (en) Manufacture of bi-cmos semiconductor device