JPS641056B2 - - Google Patents
Info
- Publication number
- JPS641056B2 JPS641056B2 JP13493182A JP13493182A JPS641056B2 JP S641056 B2 JPS641056 B2 JP S641056B2 JP 13493182 A JP13493182 A JP 13493182A JP 13493182 A JP13493182 A JP 13493182A JP S641056 B2 JPS641056 B2 JP S641056B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- aluminum electrode
- wiring layer
- electrode wiring
- opening
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Description
【発明の詳細な説明】
本発明は半導体装置、特に半導体集積回路装置
における多層配線構造の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a multilayer wiring structure in a semiconductor device, particularly in a semiconductor integrated circuit device.
半導体集積回路の高密度化により多層配線の必
要性が増大しており、種々の構造が提案されてい
るがそれぞれの方式に問題が残つていて、末だに
決定版がないというのが実情である。特に、下層
の電極配線層と上層の電極配線層との短絡防止、
これらの間の接続部における電気抵抗低減、そし
て上層の電極配線層と層間絶縁層との密着性改善
においては不充分であつた。 The need for multilayer wiring is increasing due to the increasing density of semiconductor integrated circuits, and various structures have been proposed, but problems remain with each method, and the reality is that there is no definitive solution. It is. In particular, prevention of short circuit between the lower electrode wiring layer and the upper electrode wiring layer,
It was insufficient to reduce the electrical resistance at the connection between these and to improve the adhesion between the upper electrode wiring layer and the interlayer insulating layer.
本発明の目的は、上した短絡防止、接続部にお
ける電気抵抗低減および密着性改善を実現する方
法を提供することにある。 An object of the present invention is to provide a method for preventing short circuits, reducing electrical resistance at a connection portion, and improving adhesion.
本発明による方法は、層間絶縁膜として有機樹
脂を使用し、かつこの絶縁膜を被覆したのちに
SF6とO2との混合ガスプラズマで絶縁膜表面およ
び下層の配線層の露出部をエツチングし、その後
に上層の配線層を形成することを特徴とする。以
下、従来技術と対比させながら本発明を詳述す
る。 The method according to the present invention uses an organic resin as an interlayer insulating film, and after coating this insulating film,
The method is characterized by etching the surface of the insulating film and the exposed parts of the lower wiring layer using mixed gas plasma of SF 6 and O 2 , and then forming the upper wiring layer. Hereinafter, the present invention will be explained in detail in comparison with the prior art.
従来一般的に用いられていた層間絶縁膜として
は、300〜400℃の低温で成長が可能なプラズマ窒
化物が挙げられる。例えば第1図において、拡散
工程の完了したシリコン基板1の表面に第1層目
のアルミニウム電極配線層2を形成してからプラ
ズマ窒化膜3を成長させる。次に、CF4ガスプラ
ズマでフオトエツチングを行ない、プラズマ窒化
膜3に層間接続のための開口部4を形成し、しか
る後に第2層目のアルミニウム電極配線層5を形
成する。そのあと、表面保護用のポリイミド膜6
が塗布され、ヒドラジンなどのフオトエツチング
により、ワイヤボンデイングのための開口部7が
形成される。 An example of an interlayer insulating film that has been commonly used in the past is plasma nitride, which can be grown at a low temperature of 300 to 400°C. For example, in FIG. 1, a first aluminum electrode wiring layer 2 is formed on the surface of a silicon substrate 1 on which a diffusion process has been completed, and then a plasma nitride film 3 is grown. Next, photoetching is performed using CF 4 gas plasma to form an opening 4 in the plasma nitride film 3 for interlayer connection, and then a second aluminum electrode wiring layer 5 is formed. After that, a polyimide film 6 for surface protection was applied.
is applied, and an opening 7 for wire bonding is formed by photoetching with hydrazine or the like.
この方法による問題点は、プラズマ窒化膜3
は気相成長膜なので、ゴミなどによるピンホール
が極めて発生し易いこと、各層の端面における
次層(例えば、第1層のアルミニウム電極配線層
2の端面8におけるプラズマ窒化膜3)のステツ
プカバレジが悪く途切れ易いこと、熱処理工程
の重なる第1層のアルミニウム電極配線層2の表
面に生じるヒルロツク9によつて、第2層のアル
ミニウム電極配線層5との短絡事故が多いこと、
プラズマ窒化膜3は可撓性がなく、各アルミニ
ウム層2および5との熱膨張係数の違いが大き
く、亀裂が入り易いことなどである。そのため、
通常、第1層目のアルミニウム電極配線層2の膜
厚は0.5μm以下に抑えてあり、この結果、この構
造は定格電流が厳しく制限されて専ら小電力用集
積回路に適用されているに過ぎない。 The problem with this method is that the plasma nitride film 3
Since it is a vapor-phase grown film, pinholes are extremely likely to occur due to dust, etc., and the step coverage of the next layer (for example, the plasma nitride film 3 on the end surface 8 of the first aluminum electrode wiring layer 2) on the end surface of each layer is poor. In addition, there are many short-circuit accidents with the second aluminum electrode wiring layer 5 due to hillocks 9 that occur on the surface of the first aluminum electrode wiring layer 2, which is subjected to overlapping heat treatment processes.
The plasma nitride film 3 is not flexible, has a large difference in coefficient of thermal expansion from the aluminum layers 2 and 5, and is easily cracked. Therefore,
Normally, the film thickness of the first aluminum electrode wiring layer 2 is kept to 0.5 μm or less, and as a result, this structure has a severely limited rated current and is only applied to low-power integrated circuits. do not have.
第2図は本発明の一実施例を示す。すなわち、
拡散工程の完了したシリコン基板1の表面に、第
一層目のアルミニウム電極配線層2を形成してか
ら、ポリイミド層10を塗布し、ヒドラジンを用
いてフオトエツチングを行ない層間接続用の開口
部4を形成する。 FIG. 2 shows an embodiment of the invention. That is,
After the first aluminum electrode wiring layer 2 is formed on the surface of the silicon substrate 1 on which the diffusion process has been completed, a polyimide layer 10 is applied, and photoetching is performed using hydrazine to form openings 4 for interlayer connections. form.
このあと、SF6(六弗化イオウ)とO2(酸素)ガ
スプラズマ内で軽くドライエツチングを行なつて
から、直ちに第2層目のアルミニウム層5を蒸着
またはマグネトロンスパツタなどによつて形成
し、フオトエツチングを行なう。このプラズマ処
理は、ポリイミド層10の表面から分解あるいは
蒸発して再付着した有機物を除去すると同時に、
第1層目のアルミニウム電極配線層2の開口部4
の表面に生ずる酸化物であるアルミナなどをエツ
チング除去する効果がある。この効果により、第
1層目のアルミニウム電極配線層2と第2層目の
アルミニウム電極配線層5との接触抵抗を軽減す
ると共に、層間絶縁膜であるポリイミド層10と
第2層のアルミニウム電極配線層5との機械的密
着強度を向上させることができた。特に大きな密
着強度を要する外部回路との接続部を第2層目の
アルミニウム電極5に設けることも可能となりパ
ターン設計の自由度も大きくなつた。この後、表
面保護用ポリイミド膜6を形成し、これにワイヤ
ボンデイングのための開口部7を形成する。 After this, light dry etching is performed in SF 6 (sulfur hexafluoride) and O 2 (oxygen) gas plasma, and immediately a second aluminum layer 5 is formed by vapor deposition or magnetron sputtering. and perform photo-etching. This plasma treatment removes organic substances that have been decomposed or evaporated and redeposited from the surface of the polyimide layer 10, and at the same time,
Opening 4 in the first aluminum electrode wiring layer 2
It has the effect of etching and removing oxides such as alumina that occur on the surface of. This effect reduces the contact resistance between the first aluminum electrode wiring layer 2 and the second aluminum electrode wiring layer 5, and also reduces the contact resistance between the polyimide layer 10, which is an interlayer insulating film, and the second aluminum electrode wiring layer. The mechanical adhesion strength with layer 5 could be improved. It is also possible to provide the second layer aluminum electrode 5 with a connection portion to an external circuit that requires particularly high adhesion strength, and the degree of freedom in pattern design is increased. Thereafter, a surface protective polyimide film 6 is formed, and an opening 7 for wire bonding is formed therein.
このようにしてできた半導体集積回路は、層間
絶縁膜であるポリイミド層10が2.0μmと比較的
厚いため、第1層目のアルミニウム電極配線層2
に生じたヒルロツク9によつても第2層目のアル
ミニウム電極配線層5と短絡を起すことはない。
しかも、第1層目のアルミニウム電極配線層2の
膜厚を1.0〜1.7μmと比較的厚くすることができ、
電流密度の比較的大きい中電力用集積回路に適用
することが可能となつた。さらにまた、プラズマ
窒化膜に比してポリイミドは層形成や加工のコス
トが低く、民生用の半導体集積回路のように大量
生産されるものに適している。 In the semiconductor integrated circuit made in this way, since the polyimide layer 10, which is an interlayer insulating film, is relatively thick at 2.0 μm, the first aluminum electrode wiring layer 2
Even the hillock 9 generated during the process will not cause a short circuit with the second aluminum electrode wiring layer 5.
Moreover, the film thickness of the first aluminum electrode wiring layer 2 can be made relatively thick at 1.0 to 1.7 μm.
It has become possible to apply this method to medium-power integrated circuits with relatively high current densities. Furthermore, polyimide has lower costs for layer formation and processing than plasma nitride films, and is suitable for mass-produced products such as semiconductor integrated circuits for consumer use.
本発明の適用範囲は、一実施例に示した2層配
線構造に限定されることなく、3層以上の多層配
線に適用することもできる。層間絶縁膜として
も、ポリイミドに限定されることなくポリマー全
般に適用可能なことは明白である。また、電極金
属として挙げられたアルミニウム以外に、モリブ
デン、タンタル、タングステンなどの単一金属
や、チタン−白金などの複合金属系にも適用可能
である。 The scope of application of the present invention is not limited to the two-layer wiring structure shown in one embodiment, but can also be applied to multilayer wiring of three or more layers. It is clear that the interlayer insulating film is not limited to polyimide and can be applied to all polymers. Further, in addition to aluminum mentioned as the electrode metal, it is also applicable to single metals such as molybdenum, tantalum, and tungsten, and composite metals such as titanium-platinum.
第1図は従来の製造方法により製造された半導
体装置を示す断面図、第2図は本発明の一実施例
により製造された半導体装置を示す断面図であ
る。
1……シリコン基板、2……第1層目のアルミ
ニウム電極、3……層間絶縁用プラズマ窒化膜、
4……層間接続のための開口部、5……第2層目
のアルミニウム電極、6……表面保護用ポリイミ
ド層、7……外部接続用開口部、8……第1層目
のアルミニウム電極の端面、9……第1層目のア
ルミニウム電極表面のヒルロツク、10……層間
絶縁用ポリイミド層。
FIG. 1 is a sectional view showing a semiconductor device manufactured by a conventional manufacturing method, and FIG. 2 is a sectional view showing a semiconductor device manufactured by an embodiment of the present invention. 1... Silicon substrate, 2... First layer aluminum electrode, 3... Plasma nitride film for interlayer insulation,
4... Opening for interlayer connection, 5... Aluminum electrode of second layer, 6... Polyimide layer for surface protection, 7... Opening for external connection, 8... Aluminum electrode of first layer 9... Hill lock on the surface of the first layer of aluminum electrode, 10... Polyimide layer for interlayer insulation.
Claims (1)
該下層配線を有機樹脂膜で覆う工程と、該有機樹
脂膜に前記下層配線の一部を露出させる開口を形
成する工程と、しかる後前記有機樹脂膜の表面お
よび前記開口により露出した前記下層配線の前記
一部の表面をSF6とO2のガスプラズマによつて軽
くエツチング除去する工程と、その後前記開口を
介して前記下層配線の前記一部に接続する上層配
線を前記有機樹脂膜上に形成する工程とを有する
ことを特徴とする半導体装置の製造方法。1. A step of forming lower layer wiring on the semiconductor substrate,
a step of covering the lower layer wiring with an organic resin film, a step of forming an opening in the organic resin film to expose a part of the lower layer wiring, and then a step of covering the surface of the organic resin film and the lower layer wiring exposed by the opening. a step of lightly etching and removing the surface of the part using SF 6 and O 2 gas plasma, and then forming an upper layer wiring on the organic resin film to be connected to the part of the lower wiring through the opening. 1. A method of manufacturing a semiconductor device, the method comprising: forming a semiconductor device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13493182A JPS5925246A (en) | 1982-08-02 | 1982-08-02 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13493182A JPS5925246A (en) | 1982-08-02 | 1982-08-02 | Manufacture of semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5925246A JPS5925246A (en) | 1984-02-09 |
JPS641056B2 true JPS641056B2 (en) | 1989-01-10 |
Family
ID=15139898
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13493182A Granted JPS5925246A (en) | 1982-08-02 | 1982-08-02 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5925246A (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53107285A (en) * | 1977-03-02 | 1978-09-19 | Hitachi Ltd | Production of wiring structural body |
JPS55138856A (en) * | 1979-04-18 | 1980-10-30 | Oki Electric Ind Co Ltd | Method of fabricating semiconductor device |
IT1153991B (en) * | 1980-10-29 | 1987-01-21 | Rca Corp | METHOD TO CREATE A DIELECTRIC METALLIZATION STRUCTURE |
-
1982
- 1982-08-02 JP JP13493182A patent/JPS5925246A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5925246A (en) | 1984-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5266519A (en) | Method for forming a metal conductor in semiconductor device | |
JPH11330231A (en) | Metal coat structure | |
JPS59198734A (en) | Multilayer interconnection structure | |
US4816895A (en) | Integrated circuit device with an improved interconnection line | |
JPS5968953A (en) | Method of producing monolithic integrated circuit | |
KR900007757B1 (en) | Semiconductor device and manufacturing method | |
JPS641056B2 (en) | ||
JPS5910064B2 (en) | Manufacturing method of multilayer wiring structure | |
JPS61242039A (en) | Semiconductor device | |
JPH04127454A (en) | Semiconductor device | |
JPH10209276A (en) | Wiring forming method | |
JPH077765B2 (en) | Method for manufacturing semiconductor device | |
KR100240268B1 (en) | Method for forming metal wiring in semiconductor device | |
KR100303796B1 (en) | Metal wiring formation method of semiconductor device | |
JPH04196251A (en) | Semiconductor device | |
JPH03171758A (en) | Semiconductor device and manufacture thereof | |
JPS63164344A (en) | Semiconductor device | |
JPS58110055A (en) | Semiconductor device | |
JPS61203654A (en) | Semiconductor device and its production | |
KR0173178B1 (en) | Semiconductor metal film etching process | |
JPS6347952A (en) | Semiconductor device | |
JP2998719B2 (en) | Semiconductor device | |
KR910000807Y1 (en) | Multiplayer semiconductor | |
JPS6146051A (en) | Wiring method | |
JPH0383340A (en) | Al multilayer interconnection structure of semiconductor element |