JPS6398944A - Charged particle ray application device - Google Patents
Charged particle ray application deviceInfo
- Publication number
- JPS6398944A JPS6398944A JP24292886A JP24292886A JPS6398944A JP S6398944 A JPS6398944 A JP S6398944A JP 24292886 A JP24292886 A JP 24292886A JP 24292886 A JP24292886 A JP 24292886A JP S6398944 A JPS6398944 A JP S6398944A
- Authority
- JP
- Japan
- Prior art keywords
- filter
- charged particle
- electron
- lens
- particle beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、荷電粒子線応用装置に係り、特にエネルギー
フィルタや質敏分離に好適な荷電粒子光学系に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a charged particle beam application device, and particularly to a charged particle optical system suitable for energy filters and mass separations.
従来、走査形電子顕微鏡の分解能を向上するために、試
料を対物レンズの中に配置して低収差化を図った第4図
に示す電子光学系が用いられている(日本電子顕微鏡学
会、第40回学技講演会予稿集、P211)。このよう
な光学系を用いても、特に低加速領域では色収差により
分解能が低下する欠点がある。この問題を解決するため
には、電子線のエネルギー幅を小さくして色収差を小さ
くする必要がある。そこで、エネルギーフィルタを用い
た電子光学系をすでに考案した。Conventionally, in order to improve the resolution of scanning electron microscopes, an electron optical system shown in Fig. 4, in which the sample is placed inside an objective lens to reduce aberrations, has been used (Japan Society of Electron Microscopy, Vol. Proceedings of the 40th Academic and Technical Conference, p.211). Even when such an optical system is used, there is a drawback that resolution is reduced due to chromatic aberration, especially in a low acceleration region. In order to solve this problem, it is necessary to reduce the energy width of the electron beam to reduce chromatic aberration. Therefore, we have already devised an electron optical system using an energy filter.
この電子光学系を第3図に示す。ここで、フィルタ10
は電界と磁界を直行させた所謂ウィーンフィルタが適し
ている。また、フィルタ10の収差の観点から電子線8
はレンズ3によりフィルタ10の偏向支点20に結像さ
れることが最も望まして事も分かつている。しかし、こ
の第3図の方式ではこの偏向支点が固定されているため
レンズ3の使用条件は固定される。通常、レンズ3は電
子光学系全体の縮小率や電子線の電流を調整するために
用いられており、この機能が損なわれるという間麗かあ
る。This electron optical system is shown in FIG. Here, filter 10
A so-called Wien filter in which the electric field and magnetic field are orthogonal is suitable. In addition, from the viewpoint of the aberration of the filter 10, the electron beam 8
It is also known that it is most desirable for the lens 3 to form an image on the deflection fulcrum 20 of the filter 10. However, in the method shown in FIG. 3, since this deflection fulcrum is fixed, the usage conditions of the lens 3 are fixed. Normally, the lens 3 is used to adjust the reduction ratio of the entire electron optical system and the current of the electron beam, and there is a risk that this function will be impaired.
」1記従来技術は、電子光学系全体の縮小率や電子線の
電流を調整する事が十分に行えないと言う欠点があった
0本発明の目的は、この欠点を補う事にある。1. The prior art had the drawback that it was not possible to sufficiently adjust the reduction ratio of the entire electron optical system and the current of the electron beam.The purpose of the present invention is to compensate for this drawback.
上記目的を達成するためには、フィルタの偏向支点を変
化させれるようにしておけばよい。このようにすればコ
ンデンサレンズの使用条件を変化させた時に変化する結
像点をフィルタの偏向支点と一致させる事ができる。こ
れを実現するためには、フィルタを二段に分割し、各々
のフィルタの強さを調整すれば、フィルタ全体としての
偏向支点を任意に変えることができる。In order to achieve the above object, the deflection fulcrum of the filter may be changed. In this way, the imaging point that changes when the conditions of use of the condenser lens are changed can be made to coincide with the deflection fulcrum of the filter. In order to realize this, the filter is divided into two stages and the strength of each filter is adjusted, thereby making it possible to arbitrarily change the deflection fulcrum of the filter as a whole.
ウィーンフィルタとは所望のエネルギをもつビームは直
進させ、その他のエネルギのビームは偏向して曲げられ
るようにしたものである。すなわち一種の偏向器である
。A Wien filter allows beams with a desired energy to travel straight, while beams with other energies are deflected and bent. In other words, it is a kind of deflector.
第2図に本発明の原理図を示す。フィルタ10に入射し
たビーム8で、所望のエネルギよりΔ■異なるビーム8
1は絞り11のエツジにくるようにすれば、これ以上異
なるエネルギーのビームは完全にカットできる。入射し
たビーム81はフィルタ101で最初に01曲げられ、
次にフィルタ102により再度02曲げられる。このと
き、フィルタ10を通過後の偏向角θはθ=01+02
となる。絞り11の半径をroとすると、偏向支点20
はroloだけ絞りより上側にあることになる。第2図
でも分かるように、ビーム81が絞り11のエツジにく
るようにするための731とO2の組み合わせは無限に
あり、偏向角θは任意に変えられる。すなわち、偏向支
点を自由に変えられることになる。FIG. 2 shows a diagram of the principle of the present invention. The beam 8 incident on the filter 10 has an energy different by Δ■ from the desired energy.
1 is placed at the edge of the aperture 11, beams with different energies can be completely cut out. The incident beam 81 is first bent by 01 at the filter 101,
Next, the filter 102 bends 02 again. At this time, the deflection angle θ after passing through the filter 10 is θ=01+02
becomes. If the radius of the aperture 11 is ro, then the deflection fulcrum 20
is located above the aperture by rolo. As can be seen in FIG. 2, there are an infinite number of combinations of 731 and O2 to bring the beam 81 to the edge of the aperture 11, and the deflection angle θ can be changed arbitrarily. In other words, the deflection fulcrum can be changed freely.
以下1本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.
FEffi子銃1より出た電子線8は、加速レンズ2に
より所望の電圧に加速される。電子線8はコンデンサレ
ンズ3を通過した後、ウィーンフィルター101と10
2により電子線のエネルギー分前が行われ、所望のエネ
ルギー幅の電子線のみが絞り11を通過する。この電子
線は対物レンズ6により、試料7面上に結像される。試
料7の表面で完生じた二次電子9は検出器5で検出さ九
、映像信号となる。The electron beam 8 emitted from the FEffi sub-gun 1 is accelerated to a desired voltage by an accelerating lens 2. After the electron beam 8 passes through the condenser lens 3, it passes through the Wien filters 101 and 10.
2, the energy of the electron beam is reduced, and only the electron beam with a desired energy width passes through the aperture 11. This electron beam is imaged onto the surface of the sample 7 by the objective lens 6. The secondary electrons 9 completely generated on the surface of the sample 7 are detected by the detector 5 and become a video signal.
ここで、レンズ3とフィルタ101,102の調整は以
下のようにして行える。まずレンズ3により縮小率や電
子線の電流量の調整を行なう。このとき、電子線8はξ
1ヒの適当な所に結像する。Here, the lens 3 and filters 101 and 102 can be adjusted as follows. First, the lens 3 is used to adjust the reduction ratio and the amount of current of the electron beam. At this time, the electron beam 8 is ξ
1. Focus the image on a suitable location.
最初に、フィルタ101を動作させるところ偏向支点2
1はフィルタ101の中心にあり、結像ズエの位置とは
異なっている。従って、?1子線の試料面上での照射位
置が変化するので、たとえばSEM像をlltF%して
いると像が8e1する。そこで、フィルタ102を動作
させてこの像が元の位置にくるようにすれば、フィルタ
101と102による偏向支点20は上記結像点と一致
することになる6次に、フィルタのエネルギ感度を調整
することになるが、これはフィルタ101と102の強
さの比を変えずに行えばよいことになる。このようにし
て本発明のフィルタは、偏向支点20とレンズ3の結像
点を常に一致させて用いる事ができる。First, the deflection fulcrum 2 is where the filter 101 is operated.
1 is located at the center of the filter 101, which is different from the position of the image forming groove. Therefore? Since the irradiation position of the single beam on the sample surface changes, for example, when the SEM image is lltF%, the image becomes 8e1. Therefore, if the filter 102 is operated to bring this image to its original position, the deflection fulcrum 20 formed by the filters 101 and 102 will coincide with the above image formation point.Sixth order, the energy sensitivity of the filter will be adjusted. However, this can be done without changing the strength ratio of filters 101 and 102. In this manner, the filter of the present invention can be used with the deflection fulcrum 20 and the imaging point of the lens 3 always being aligned.
すなわち、フィルタの収差G最小の状態で用いることが
できる。That is, the filter can be used in a state where the aberration G of the filter is minimized.
本発明において、試F)7は対物レンズ6の内部に配置
し、二次電子検出器5を対物レンズ6の電子銃側に配置
したが、この配置に関しては第1図の実施例に限定され
るものではないことはいうまでもない。またレンズの種
類(磁界形、静T!!形)や個数、電子銃の種類も本発
明の実施例に限ることなく本発明を用いることができる
。In the present invention, sample F) 7 was placed inside the objective lens 6, and the secondary electron detector 5 was placed on the electron gun side of the objective lens 6, but this placement is limited to the embodiment shown in FIG. Needless to say, this is not something that can be done. Further, the type of lens (magnetic field type, static T!! type), number of lenses, and type of electron gun are not limited to the embodiments of the present invention, and the present invention can be used.
本発明は、電子線のエネルギーフィルタに関して述べた
。しかし、この、応用にかきることなく、例えば電子銃
をイオン銃で置き換えた装置で、イオン線の質量分離フ
・rルタとしてウィーンフィルタを用いたときにも同1
に行える。すなわち、イ、ji電粒子線の応用装置一般
に使用できろ。The present invention has been described with respect to an energy filter for electron beams. However, regardless of the application, for example, when a Wien filter is used as a mass separation filter for ion beams in a device in which the electron gun is replaced with an ion gun, the same result can be obtained.
can be done. In other words, it can be used in general application equipment for electric particle beams.
以上に述べたごとく、本発明によれば、コンテンサレン
ズの結像点とエネルギーフィルタの偏向支点とをつねに
一致させることができるので、このフィルタによる収差
を最も小さくして使用することができる。このとき、例
えば低加速電圧でも高分解能な走査形電子顕微鏡の提供
が可能になる。As described above, according to the present invention, the imaging point of the condenser lens and the deflection fulcrum of the energy filter can always be made to coincide, so that the aberration caused by this filter can be minimized when used. At this time, for example, it becomes possible to provide a scanning electron microscope with high resolution even at a low acceleration voltage.
第1図は本発明の一実施例を示す走査形電子顕微鏡の基
本構成図、第2図は本発明の動作を示す原理図、第3図
は従来の走査形電子顕微鏡の基本構成図、第4図は高分
解能化を図った従来の走査形電子顕微鏡の基本構成図。
1・・・電界放射形電子銃、2・・・加速レンズ、3・
・・コンデンサレンズ、4・・・偏向器、5・・・二次
電子検出器、6・・・対物レンズ、7・・・試料、8・
・・電子線、9・・・二次電子、10,101,102
・・・ウィーンフィルタ、11・・・絞り、20.21
・・・それぞれウィーンフィルター0と101の偏向支
点、80・・・所望のエネルギーをもつ電子線、81.
82・・・所望のエネルギー以外の電子線。
i′FIG. 1 is a basic configuration diagram of a scanning electron microscope showing an embodiment of the present invention, FIG. 2 is a principle diagram showing the operation of the present invention, and FIG. 3 is a basic configuration diagram of a conventional scanning electron microscope. Figure 4 shows the basic configuration of a conventional scanning electron microscope with high resolution. 1... Field emission type electron gun, 2... Accelerating lens, 3...
... Condenser lens, 4... Deflector, 5... Secondary electron detector, 6... Objective lens, 7... Sample, 8...
...Electron beam, 9...Secondary electron, 10,101,102
...Wien filter, 11...Aperture, 20.21
. . . Deflection fulcrums of Wien filters 0 and 101, respectively, 80 . . . Electron beam with desired energy, 81.
82...Electron beam with energy other than the desired energy. i′
Claims (1)
絞るレンズ手段、上記粒子線を試料面上で二次元的に走
査する走査手段、および電界と磁界とが直交するように
構成された偏向形エネルギーフィルタ手段とを具備した
荷電粒子線応用装置において、上記フィルタ手段を二段
にして、これらのフィルタによる荷電粒子線の偏向支点
の位置を変化できるようにしたことを特徴とする荷電粒
子線応用装置。1. A charged particle source, a lens means for narrowing the charged particle beam emitted from the charged particle source, a scanning means for two-dimensionally scanning the particle beam on the sample surface, and an electric field and a magnetic field are configured to be perpendicular to each other. A charged particle beam application device comprising deflection-type energy filter means, characterized in that the filter means is arranged in two stages, so that the position of the deflection fulcrum of the charged particle beam by these filters can be changed. Particle beam application equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24292886A JPS6398944A (en) | 1986-10-15 | 1986-10-15 | Charged particle ray application device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24292886A JPS6398944A (en) | 1986-10-15 | 1986-10-15 | Charged particle ray application device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6398944A true JPS6398944A (en) | 1988-04-30 |
Family
ID=17096298
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24292886A Pending JPS6398944A (en) | 1986-10-15 | 1986-10-15 | Charged particle ray application device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6398944A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007285032A (en) * | 2006-04-18 | 2007-11-01 | Aoki Sekizai Kk | Built-up pet grave |
-
1986
- 1986-10-15 JP JP24292886A patent/JPS6398944A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007285032A (en) * | 2006-04-18 | 2007-11-01 | Aoki Sekizai Kk | Built-up pet grave |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6191423B1 (en) | Correction device for correcting the spherical aberration in particle-optical apparatus | |
US5414261A (en) | Enhanced imaging mode for transmission electron microscopy | |
US4755685A (en) | Ion micro beam apparatus | |
EP1381073B1 (en) | Aberration-corrected charged-particle optical apparatus | |
US4649316A (en) | Ion beam species filter and blanker | |
JP2007128893A (en) | Corrector for correcting chromatic aberration in particle optical device | |
JP2810797B2 (en) | Reflection electron microscope | |
JP7194849B2 (en) | electron optical system | |
US6960763B2 (en) | Energy filter and electron microscope | |
JPH02142045A (en) | Charged particle beam application equipment | |
US6878937B1 (en) | Prism array for electron beam inspection and defect review | |
US6239430B1 (en) | Particle beam apparatus with energy filter | |
US7465939B2 (en) | Aberration correction device and method for operating same | |
US6232601B1 (en) | Dynamically compensated objective lens-detection device and method | |
JP2000228162A (en) | Electron beam device | |
US7468517B2 (en) | Single stage charged particle beam energy width reduction system for charged particle beam system | |
US6441378B1 (en) | Magnetic energy filter | |
US4081674A (en) | Ion microprobe analyzer | |
US6943360B1 (en) | Twisted-compensated low-energy electron microscope | |
JPS6398944A (en) | Charged particle ray application device | |
US6717141B1 (en) | Reduction of aberrations produced by Wien filter in a scanning electron microscope and the like | |
US4097739A (en) | Beam deflection and focusing system for a scanning corpuscular-beam microscope | |
JP3790646B2 (en) | Low energy reflection electron microscope | |
JP3123850B2 (en) | Direct mapping reflection electron microscope | |
JP3139484B2 (en) | Charged particle beam microscopy |