[go: up one dir, main page]

JPS6393494A - Parabolic mirror optical system for laser beam processing - Google Patents

Parabolic mirror optical system for laser beam processing

Info

Publication number
JPS6393494A
JPS6393494A JP61239129A JP23912986A JPS6393494A JP S6393494 A JPS6393494 A JP S6393494A JP 61239129 A JP61239129 A JP 61239129A JP 23912986 A JP23912986 A JP 23912986A JP S6393494 A JPS6393494 A JP S6393494A
Authority
JP
Japan
Prior art keywords
parabolic mirror
optical system
processing
mirror
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61239129A
Other languages
Japanese (ja)
Inventor
Seiichiro Kimura
盛一郎 木村
Hidekazu Aoki
青木 英一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61239129A priority Critical patent/JPS6393494A/en
Publication of JPS6393494A publication Critical patent/JPS6393494A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To obtain a parabolic mirror optical system for laser beam processing which facilitates optical axis adjustment and is small in size by mounting a parabolic mirror to a curved receiving jig having a cooling layer and providing an adjusting means which can rotate the mirror biaxially and around the optical axis thereto. CONSTITUTION:A matching face 1 with a processing machine and the surface of a plane bearing receiving flange 2 are finished within 45 deg.+ or -0.05 angular accuracy to facilitate the optical path adjustment. The plane mirror 4 is housed in a unit integrated with the parabolic mirror 6 to reduce the size. The need for adjusting the angle of the plane mirror 4 is thereby eliminated. The processing result of good reproducibility is obtd. at the time of mounting and dismounting the entire parabolic mirror optical system for processing if the angle of the parabolic mirror 6 is adjusted by using an angle adjusting screw 5. A pipe 10 for inlet of a processing gas is mounted to a torch 12 so as to face the top end of the nozzle and the splashes returning to the parabolic mirror 6 through the torch 12 from a nozzle 13 are suppressed by the pressure of the processing gas. Another inlet for the processing gas is provided in order to entirely prevent the directivity of the processing. An annular nozzle for emitting the processing gas is mounted to a work.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、たとえば大出力炭酸ガスレーザ光を集光して
加工を行なう場合に使用する放物面鏡レーザ加工光学系
に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a parabolic mirror laser processing optical system used, for example, when processing is performed by focusing high-power carbon dioxide laser light. .

(従来の技術) レーザ光で被加工物を切断、溶接、熱処理加工するとき
、特に大出力炭酸ガスレーザ発振器からの出射光を集光
する光学部品には、従来ZnSθ。
(Prior Art) When cutting, welding, or heat-treating a workpiece with a laser beam, ZnSθ is conventionally used as an optical component that focuses the emitted light from a high-output carbon dioxide laser oscillator.

GaAs、KCQ、Geなどが用いられている。このよ
うな材質は1O96μsの波長に対し、99%以上の透
過率をもっているが、 5kW、 10kWと出力が増
えると、レーザ光の吸収が蓄積され、さらに大気中のほ
こり、ごみなどの物質がこれらの光学部品に付着すると
、急激にその部分の吸収が増大することにより、これら
光学部品は損傷あるいは燃焼し、有害物質を大気中に散
乱する。損傷、燃焼しなくとも、吸収率が増大すること
により、温度が上昇し、屈折率などが変化することによ
り、集光特性が時間とともに変化することもある。
GaAs, KCQ, Ge, etc. are used. Such materials have a transmittance of over 99% for the wavelength of 1O96μs, but as the output increases to 5kW and 10kW, absorption of laser light accumulates, and substances such as dust and dirt in the atmosphere are absorbed by these materials. When it adheres to optical components, the absorption of those parts increases rapidly, damaging or burning those optical components and scattering harmful substances into the atmosphere. Even if there is no damage or combustion, the light collection characteristics may change over time due to an increase in absorption rate, a rise in temperature, and a change in the refractive index.

この問題に対し1反射形光学系として、キャセグレーン
光学系、あるいは球面鏡光学系などがある。しかし、こ
れらの光学系は、集合特性」二、大形化になり、通常の
レンズ光学系部分には取りつけにくい点があった。また
、放物面鏡を加工光学系として用いる場合、光軸調整方
法が難しく、加工光学系として、普及していないのが現
状である。
To solve this problem, there are a Cassegrain optical system, a spherical mirror optical system, etc. as a single reflection optical system. However, these optical systems have aggregation characteristics and are large in size, making them difficult to attach to a normal lens optical system. Furthermore, when a parabolic mirror is used as a processing optical system, it is difficult to adjust the optical axis, and the parabolic mirror is not widely used as a processing optical system.

加工用ガスの流し方は、従来のレンズ光学系では、トー
チ内がほぼ密閉形となるため圧力がががった状態となり
、レンズへのスプラッシュ付着防止および加工に必要な
流速でノズルから、レーザ光と同軸に噴出することがで
きた。ところが反射形光学系では1通常外部から加工用
ガスを被加工物に流す方法がとられていた。
In conventional lens optical systems, the inside of the torch is almost sealed, so the pressure is low, and the processing gas flows from the nozzle to the laser at the flow rate necessary to prevent splash adhesion to the lens and for processing. It was possible to eject light coaxially. However, in a reflective optical system, a method has been adopted in which a processing gas is normally caused to flow into the workpiece from the outside.

(発明が解決しようとする問題点) 上記従来技術において従来のレンズ光学系同様の取りあ
つかい方法で、同等あるいは、それ以上の集光特性およ
び加工性能を得るために、射光強度、耐熱強度の高い集
光光学部品を用い、光軸調整方法の容易化、光学系全体
の小形化、さらに、加工用ガスを加工の方向によらず均
一に流し、なおかつ、光学部品のスプラッシュ付着防止
対策を備えることが必要な開発目標である。
(Problems to be Solved by the Invention) In the above-mentioned conventional technology, in order to obtain the same or better light focusing characteristics and processing performance using the same handling method as the conventional lens optical system, it is necessary to Use condensing optical components to simplify the optical axis adjustment method, downsize the entire optical system, allow processing gas to flow uniformly regardless of the direction of processing, and provide measures to prevent splash adhesion to optical components. is a necessary development goal.

本発明の目的は、耐光強度、耐熱強度に強く。The object of the present invention is to have strong light resistance and heat resistance.

光軸調整が容易で、なおかっ、従来のレンズ系と比べ5
同等もしくはそれ以上の加工性能を得ることができる小
形な放物面鏡レーザ加工光学系を提供するにある。
Optical axis adjustment is easy, and what's more, it is 5 times smaller than conventional lens systems.
An object of the present invention is to provide a small parabolic mirror laser processing optical system that can obtain processing performance equivalent to or better than that.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 第2図は、90°軸はずし放物面鏡の集光光路図を示す
、レーザ光15がビーム径17の大きさをもって放物面
鏡6の軸に入射するとレーザ光15は、90’折り返し
集光し、有効焦点距離16の点で理論的には、零に集光
する。しかし、実際には、レーザ光は広がり角をもって
伝送されるため、集光点ではある面積をもって集光され
る。また、光@調整中に起こる放物面鏡の軸に対する入
射角の変化は、集光特性に非常に敏感である。第3図は
、入射角に対するスポット径と焦点位置の変化を示す。
(Means for Solving the Problem) FIG. 2 shows a condensing optical path diagram of a parabolic mirror off-axis by 90 degrees. When the laser beam 15 is incident, the laser beam 15 is turned back 90' and focused, and theoretically, the light is focused to zero at the point of the effective focal length 16. However, in reality, since laser light is transmitted with a spread angle, it is focused over a certain area at the focal point. Also, the change in the angle of incidence with respect to the axis of the parabolic mirror that occurs during light adjustment is very sensitive to the light collection characteristics. FIG. 3 shows changes in spot diameter and focal position with respect to incident angle.

この計算結果から拡がり角1 、5mradのレーザ光
が放物面鏡の軸と平行に入射した場合の最小スボッ!へ
径は約0.3I1mの程度となりレンズ系とほぼ同等あ
るいはそれ以下となる。しかし、入射角が図のように変
化した場合、この最小スポット径に、入射角変化にとも
なうスポット径の大きさが加算されるため、パワー密度
は、急激に低下する。
From this calculation result, it is found that when a laser beam with a divergence angle of 1 and 5 mrad is incident parallel to the axis of the parabolic mirror, the minimum sluggishness is calculated. The diameter is approximately 0.3I1m, which is approximately equal to or smaller than that of the lens system. However, when the incident angle changes as shown in the figure, the power density sharply decreases because the size of the spot diameter accompanying the change in the incident angle is added to this minimum spot diameter.

この現象を実験的に確認したところ±2 mradまで
は加工結果に影響を与えないこと判明した。従って、こ
の放物面鏡に入射するレーザ光の角度は±2 nrad
以内の精度が必要となる。このために従来は、放物面鏡
手前の平面鏡に調整治具が具備されていたが、この調整
治具のために、放物面鏡に入射するべき軸が不明となっ
た。この問題を解決するために本発明では、放物面鏡に
入射させるために使用する平面鏡は、放物面鏡光学系と
一体形とし、機械仕上げ精度を高め、平面鏡の角度調整
治具を取り除くことが必要である。このように平面鏡で
反射されたレーザ光が放物面鏡に入射し、集光されるこ
とになる。次にこの放物面鏡の光路v4整には、2@お
よび軸回転ができるものとすると、レンズ系と同様な方
法で調整ができる。本発明の放物面鏡光学系は、このよ
うに一度調整されると、各ミラー交換まで光学系全体の
交換方式を採用することにより、調整は一切不要とする
ことができる。
When this phenomenon was confirmed experimentally, it was found that it did not affect the processing results up to ±2 mrad. Therefore, the angle of the laser beam incident on this parabolic mirror is ±2 nrad
Accuracy within this range is required. For this purpose, an adjustment jig has conventionally been provided on the plane mirror in front of the parabolic mirror, but this adjustment jig has made it unclear which axis should be incident on the parabolic mirror. In order to solve this problem, in the present invention, the plane mirror used to make the light incident on the parabolic mirror is integrated with the parabolic mirror optical system, improving the accuracy of mechanical finishing, and eliminating the angle adjustment jig for the plane mirror. It is necessary. The laser beam reflected by the plane mirror in this manner enters the parabolic mirror and is condensed. Next, the optical path v4 of this parabolic mirror can be adjusted in the same manner as the lens system, assuming that it can be rotated by 2@ and the axis. Once adjusted in this way, the parabolic mirror optical system of the present invention can eliminate the need for adjustment at all by adopting a method of replacing the entire optical system up to the replacement of each mirror.

加工中に発生するスプラッシュが放物面鏡に付着させな
いような方法を検討する必要があり、この問題に対して
は、レーザ光が通過するトーチを備え、レーザ光とほぼ
同軸に加工用ガスをノズル方向に向けて流す必要があり
、なおかつ、加工用ガスの流れ方向が加工の方向に依存
しないようにまた、シールドを完全にすめためにノズル
近傍に均一に流れる方法を検討する必要がある。
It is necessary to consider a method to prevent the splash generated during machining from adhering to the parabolic mirror. To solve this problem, a torch through which the laser beam passes, and a process gas is supplied almost coaxially with the laser beam. It is necessary to flow the gas toward the nozzle, and it is also necessary to consider a method that allows the gas to flow uniformly near the nozzle so that the flow direction of the processing gas does not depend on the direction of processing, and to ensure complete shielding.

(作 用) 以上の問題点を克服するために、第1−図に示すような
放物面鏡加工光学系を発明した。
(Function) In order to overcome the above problems, we invented a parabolic mirror processing optical system as shown in Figure 1.

光路調整を容易にするために、加工機との取り合い面1
と平面鏡骨フランジ2面の角度精度を45゛±0.05
以内に仕上げ、放物面鏡6と一体形ユニットに平面fR
4をおさめ、小形化とする。この方法により平面鏡4の
角度調整が不要となり、一度放物面鏡6の角度調整をい
くつかの放物面鏡角度調整ネジ5で行なえば、この放物
面鏡加工光学系全体を取りはずし取りつけに際し、再現
性の良い加工結果が得られる。
In order to facilitate optical path adjustment, the mounting surface 1 with the processing machine is
The angular accuracy of the two surfaces of the plane mirror bone flange is 45゛±0.05.
Finished within
4 and make it smaller. This method eliminates the need to adjust the angle of the plane mirror 4, and once the angle of the parabolic mirror 6 is adjusted using several parabolic mirror angle adjustment screws 5, the entire parabolic mirror processing optical system can be removed and installed. , machining results with good reproducibility can be obtained.

加工に使用する際スパッタ防止用および加工熱のシール
ド方法(雰囲気作り)については、レー′ザ光が通過す
るトーチ12に加工用ガス入1コ用バイブ10をノズル
先端方向に向くように取りつけることにより、ノズル1
3からトーチ12を通り、放物面@6にもどるようなス
プラッシュを加工用ガス圧力によりおさえることができ
る。さらに加工の方向性を完全に防ぐためにノズル13
に別の加工用ガス入口をもうけて、被加工物には、リン
グ状の加工用ガスを出すノズルを取りつけた。
To prevent spatter and shield processing heat (atmosphere creation) when using for processing, attach a vibrator 10 containing a processing gas to the torch 12 through which the laser beam passes so that it faces toward the nozzle tip. Accordingly, nozzle 1
3, passing through the torch 12 and returning to the paraboloid @6 can be suppressed by the processing gas pressure. Furthermore, in order to completely prevent the directionality of processing, the nozzle 13
A separate machining gas inlet was provided in the workpiece, and a ring-shaped nozzle for discharging the machining gas was attached to the workpiece.

(実施例) 第1図に本発明の放物面鏡加工光学系の構成図を示す、
加工機との取り合い面1は高精度に角度。
(Example) Fig. 1 shows a configuration diagram of the parabolic mirror processing optical system of the present invention.
The contact surface 1 with the processing machine is angled with high precision.

平面とも仕上げられており、平面鏡骨フランジ2面との
角度45“±o、os”以下で仕上げられている。
Both planes are finished, and the angle with the two surfaces of the plane mirror bone flange is 45"±o, os" or less.

平面鏡4は、平面鏡水冷用パイプ3から水で水冷される
構造になっている。放物面鏡6は十分に水冷されるよう
に放物面鏡内部に空胴をもち、直接水冷される構造にな
っている。この放物面鏡6は、放物面鏡調整用球面受台
8に設置され、他方の放物面i11調整用球面受台7と
スライドする構造になっている。この放物面鏡6の角度
調整は、いくつかの放物面鏡角度調整ねじ5で2@およ
び回転の調整が行なえる構造になっている。
The plane mirror 4 has a structure in which it is cooled with water from the plane mirror water cooling pipe 3. The parabolic mirror 6 has a cavity inside the parabolic mirror so that it can be sufficiently cooled by water, and has a structure in which it is directly cooled by water. This parabolic mirror 6 is installed on a spherical pedestal 8 for adjusting the parabolic mirror, and has a structure in which it slides with the other spherical pedestal 7 for adjusting the paraboloid i11. The angle of the parabolic mirror 6 can be adjusted by using several parabolic mirror angle adjusting screws 5.

この放物面鏡加工光学系には、レーザ光が通過するトー
チ12が取りつけられており、このトーチ12にノズル
13に向けて加工用ガスが流れるように斜めに吹き出し
口が出るように加工用ガス入口バイブが取りつけられて
いる。また、ノズル13は。
This parabolic mirror processing optical system is equipped with a torch 12 through which the laser beam passes, and the torch 12 has a blowout opening diagonally so that the processing gas flows toward a nozzle 13. A gas inlet vibe is installed. Also, the nozzle 13.

別の加工用ガス人口11を備え、被加工物にリング状に
加工用ガスが噴出するようにノズル断面14に示すノズ
ルを備えている。
Another processing gas port 11 is provided, and a nozzle shown in the nozzle cross section 14 is provided so that the processing gas is ejected in a ring shape onto the workpiece.

発振器から伝送されたレーザ光15は、加工機との取り
合い面】−と平面鏡骨フランジ2面が高精度に角度が保
証されているため、レーザ光15が加工機との取り合い
面1に垂直である限り、平面鏡4の反射光は、放物面鏡
6の軸に平行に入る。この反射光が平行に入射している
かどうかは、放物面鏡6の反射光が垂直にノズル13か
ら出るかどうかをいくつかの放物面鏡角度調整ねじ5を
用いて2軸方向と回転方向の調整を行なうことにより確
認できる。この調整を一度行なえば、加工機との取り合
い面12で脱着することで角度調整を行なわず、再現性
良く使用できた。
The laser beam 15 transmitted from the oscillator is positioned perpendicularly to the fitting surface 1 with the processing machine because the angle between the 2 surfaces of the flat mirror flange and the 2 surfaces of the plane mirror flange is ensured with high precision. To some extent, the reflected light from the plane mirror 4 enters parallel to the axis of the parabolic mirror 6. To determine whether this reflected light is incident in parallel, it is determined whether the reflected light from the parabolic mirror 6 exits from the nozzle 13 perpendicularly by rotating it in two axial directions and using several parabolic mirror angle adjustment screws 5. This can be confirmed by adjusting the direction. Once this adjustment was made, it could be used with good reproducibility by attaching and detaching at the fitting surface 12 to the processing machine without having to adjust the angle.

このようにして、放物面鏡6で集光されたレーザ光はノ
ズル13中心から被加工物表面に照射される。この際発
生するスプラッシュは、ノズル13中央を通過し、放物
面Ji6に達する場合もあるが、レーザ光が通過するト
ーチ12に設けられた。加工用ガス入口バイブ10がノ
ズル13に向けて取りつけら才りでいるため、これらの
スプラッシュは、加工用ガス圧力により上昇することな
く防止された。
In this way, the laser beam focused by the parabolic mirror 6 is irradiated from the center of the nozzle 13 onto the surface of the workpiece. The splash generated at this time passes through the center of the nozzle 13 and may reach the paraboloid Ji6, which was provided in the torch 12 through which the laser beam passes. Since the processing gas inlet vibrator 10 was mounted facing the nozzle 13, these splashes were prevented without being increased by the processing gas pressure.

なおかつ、加工があらゆる方向に行なわれる際に。Furthermore, when machining is performed in any direction.

加工用ガス入口バイブ10だけでは不モ分な場合に際し
、ノズル13に備えられた構造で被加工物にリング状1
4に加工用ガスが流れることを採用することにより、均
一な加工が行なえた。
When the machining gas inlet vibrator 10 alone is insufficient, the nozzle 13 has a structure that provides a ring-shaped
By employing the flow of processing gas in step 4, uniform processing was possible.

上記実施例により、従来のレンズ系で問題となっていた
大出力炭酸ガスレーザのような大出力レーザ光に対し、
耐光強度、耐熱強度が十分強い放物面鏡をレンズ系と同
等の加工特性が得られることが確認され、放物面鏡の光
路調整は容易となり、また、一度光路調整を行なえば、
それぞれのミラ−交換までFJ整不要となった。また、
加工機との取り合い面で脱着する方法により、集光特性
、加工特性とも再現性が非常に良い小形な放物面鏡加工
光学系を開発することができた。
With the above embodiment, it is possible to avoid high-power laser beams such as high-power carbon dioxide lasers, which have been a problem with conventional lens systems.
It has been confirmed that a parabolic mirror with sufficiently strong light resistance and heat resistance can be processed with the same processing characteristics as a lens system, making it easy to adjust the optical path of a parabolic mirror, and once the optical path is adjusted,
It is no longer necessary to adjust the FJ until each mirror is replaced. Also,
By attaching and detaching the mirror at the interface with the processing machine, we were able to develop a compact parabolic mirror processing optical system with very good reproducibility in both light-gathering and processing characteristics.

加工用ガスも従来のレンズ系光学系と比べ同等にスプラ
ッシュ防止および加工用ガスとしての役割をはだすこと
ができ、方向性のない加工が行なえる放物面鏡加工光学
系を発明することができた。
The processing gas can also function as a splash prevention and processing gas to the same extent as conventional lens-based optical systems, making it possible to invent a parabolic mirror processing optical system that can perform non-directional processing. did it.

他の実施例 第4図は、放物面tlL調整部の本発明の他の実施例を
示す、この実施例は、放物面鏡軸にシャフトをとりつけ
調整ネジ5で調整および固定する部分に球面部を具備す
る放物面tlt調整用軸受部を取りつけた場合で、本発
明の第1図の場合と同等な性能が得られた。
Another Embodiment FIG. 4 shows another embodiment of the present invention of a parabolic tlL adjustment section. In the case where a parabolic tlt adjustment bearing portion having a spherical surface portion was attached, performance equivalent to that of the case of the present invention shown in FIG. 1 was obtained.

第5図は、本発明の放物面鏡加工光学系の加工機との取
り合い面に熱的に4分割以上にしゃ断された部分を作り
それらに熱伝対19をうめこみ、レーザ光15が加工機
との取り合い面に対し、垂直に入射されているかどうか
を検知する方法を取り入れることにより、本発明の放物
面鏡加工光学系の性能を保証することができ、安全に加
工が行なうことができた。
FIG. 5 shows a structure in which a thermally cut-off part is made into four or more parts on the connecting surface of the parabolic mirror processing optical system of the present invention and the processing machine, and a thermocouple 19 is embedded in each part, and the laser beam 15 is By incorporating a method of detecting whether or not the light is incident perpendicularly to the surface that connects to the processing machine, the performance of the parabolic mirror processing optical system of the present invention can be guaranteed and processing can be performed safely. was completed.

〔発明の効果〕〔Effect of the invention〕

大出力炭酸ガスレーザを用い、溶接、切断、熱処理など
を行なう際に必要な集光光学系として、従来のレンズ系
のように耐光強度、耐熱強度に弱い光学部品より、格段
に強い90°軸はずし放物面鏡を平面鏡と組合せて使用
し、平面鏡側には、光軸gu部を除き一体形として小形
化にすることにより、従来のレンズ系とほぼ同等もしく
は、それ以上に取あつかいが容易な光学系を提供するこ
とができた。また本発明により放物面鏡の調整は容易と
なり、一度調整すれば従来のレンズ系と同様なとりあつ
かい方法で再現性よく脱着することができた。 加工用
ガスの流し方の発明により、ミラーへのスプラッシュ付
着は防止され、従来のレンズ系光学系の加工用ガスの役
割をはだすことができ方向性のない加工が行なうことが
できた。
As a condensing optical system required when performing welding, cutting, heat treatment, etc. using a high-output carbon dioxide laser, the 90° off-axis optical system is much stronger than optical components that are weak in light resistance and heat resistance, such as conventional lens systems. By using a parabolic mirror in combination with a plane mirror, and making the plane mirror smaller and integral with the exception of the optical axis gu, the system is almost as easy to handle as, or even easier than, conventional lens systems. We were able to provide the optical system. Further, according to the present invention, the parabolic mirror can be easily adjusted, and once adjusted, it can be attached and detached with good reproducibility using the same handling method as conventional lens systems. By inventing a method for flowing the processing gas, splash adhesion to the mirror was prevented, and the role of the processing gas in the conventional lens-based optical system could be fulfilled, making it possible to perform processing without directionality.

【図面の簡単な説明】[Brief explanation of the drawing]

放物面鏡レーザ加工光学系の作用を示す説明図、第4図
、第5図は本発明の放物面鏡レーザ加工光学系の他の実
施例を示す部分詳細図である。 4・・・平面鏡     6・・・放物面鏡7.8・・
・放物面鏡調整用球面受台 代理人 弁理士 則 近 憲 佑 同  三俣弘文 7F、沓明、始面韓洸矛1張折狛て 第  3  図 \自重力に丈セすゐ又ボ・ント7±と
91社イさ】[第  4  図  イ也0汝物狛鏡l唱
せ部の喫]托7列第  5  図
FIGS. 4 and 5 are explanatory diagrams showing the operation of the parabolic mirror laser processing optical system, and are partially detailed views showing other embodiments of the parabolic mirror laser processing optical system of the present invention. 4...Plane mirror 6...Parabolic mirror 7.8...
・Spherical cradle for parabolic mirror adjustment Agent Patent attorney Nori Chika Ken Yudo Hirofumi Mitsumata 7th floor, Kutsumei, first face Hanko piston 1 tension broken Figure 3 ± and 91 companies] [Fig. 4] 7th column, Fig. 5

Claims (3)

【特許請求の範囲】[Claims] (1)レーザ発振器から得られたレーザ光を90°軸は
ずし放物面鏡で集光するレーザ加工光学系において、光
軸に対し45°に設置された平面鏡と組合せて一体形光
学ユニットとして使用し、平面鏡には光路調整治具は具
備せず、放物面鏡側には冷却層を持つ曲面受治具に放物
面鏡を取りつけ、2軸および光軸中心に対して回転させ
ることができる調整治具を具備することを特徴とする放
物面鏡レーザ加工光学系。
(1) In a laser processing optical system in which the laser beam obtained from a laser oscillator is focused by a parabolic mirror that is 90 degrees off-axis, it is used as an integrated optical unit in combination with a plane mirror installed at 45 degrees to the optical axis. However, the plane mirror does not have an optical path adjustment jig, but the parabolic mirror is attached to a curved support jig with a cooling layer on the parabolic mirror side, and it can be rotated about two axes and the center of the optical axis. A parabolic mirror laser processing optical system characterized by being equipped with an adjustment jig.
(2)特許請求の範囲第1項に対し、平面鏡を取りつけ
る面と本放物面鏡光学系全体を機械側に取りつける受平
面の角度を45°±0.05以内におさえることを特徴
とする放物面鏡レーザ加工光学系。
(2) Regarding claim 1, the invention is characterized in that the angle between the plane on which the plane mirror is attached and the receiving plane on which the entire parabolic mirror optical system is attached to the machine side is kept within 45°±0.05. Parabolic mirror laser processing optical system.
(3)特許請求の範囲第1項に対し、加工光学系として
使用する際には、90°軸はずし放物面鏡で反射された
レーザ光が集光しながら通過するパイプ状のトーチを具
備し、トーチにレーザ光が通過するノズル方向に向けて
斜めに不活性ガスあるいは活性ガスが流れるように細い
パイプを具備することを特徴とする放物面鏡工光学系。 さらに、レーザ光出口近傍においては、レーザ光光軸に
対しリング状に不活性ガスあるいは、活性ガスが被加工
物に噴出されるようなノズルを具備することを特徴とす
る放物面鏡レーザ加工光学系。
(3) Regarding claim 1, when used as a processing optical system, it is equipped with a pipe-shaped torch through which the laser beam reflected by the 90° off-axis parabolic mirror passes through while being condensed. A parabolic mirror optical system is characterized in that the torch is equipped with a thin pipe so that an inert gas or an active gas flows obliquely toward a nozzle direction through which a laser beam passes. Furthermore, parabolic mirror laser processing is characterized in that near the laser beam exit, a nozzle is provided in a ring shape relative to the laser beam optical axis so that inert gas or active gas is ejected onto the workpiece. Optical system.
JP61239129A 1986-10-09 1986-10-09 Parabolic mirror optical system for laser beam processing Pending JPS6393494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61239129A JPS6393494A (en) 1986-10-09 1986-10-09 Parabolic mirror optical system for laser beam processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61239129A JPS6393494A (en) 1986-10-09 1986-10-09 Parabolic mirror optical system for laser beam processing

Publications (1)

Publication Number Publication Date
JPS6393494A true JPS6393494A (en) 1988-04-23

Family

ID=17040214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61239129A Pending JPS6393494A (en) 1986-10-09 1986-10-09 Parabolic mirror optical system for laser beam processing

Country Status (1)

Country Link
JP (1) JPS6393494A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03216287A (en) * 1990-01-19 1991-09-24 Fanuc Ltd Laser beam cutting method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6122318A (en) * 1984-07-11 1986-01-30 Agency Of Ind Science & Technol Light converging device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6122318A (en) * 1984-07-11 1986-01-30 Agency Of Ind Science & Technol Light converging device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03216287A (en) * 1990-01-19 1991-09-24 Fanuc Ltd Laser beam cutting method

Similar Documents

Publication Publication Date Title
US20060186098A1 (en) Method and apparatus for laser processing
JP2720811B2 (en) Laser focusing method and apparatus
US3972599A (en) Method and apparatus for focussing laser beams
JPH058079A (en) Laser beam machine
JP2000042779A (en) Laser beam machining device
JP2008134468A (en) Condensing optical system and optical processing device
CN212420087U (en) Optical head device for universal deburring
JPS6393494A (en) Parabolic mirror optical system for laser beam processing
US5793012A (en) Fresnel reflection termination system for high powered laser systems
JPH11347772A (en) Laser beam trimming device and its method for laser beam machine
JPS6363594A (en) Gas laser device
JP2757649B2 (en) Laser processing head
JP2002316291A (en) Laser beam machine
JPH09122950A (en) Composite welding head
KR20170143119A (en) Optical focusing system for laser cutting head and laser cutting head comprising same
JPS58103991A (en) External optical apparatus for laser processing machine
JP3397312B2 (en) Laser beam synthesizer and laser processing system
CN213560533U (en) A universal deburring head device
JP2817555B2 (en) Laser processing machine
JP2006212689A (en) Laser light emission method and laser torch used therefor
JPH04143092A (en) laser processing equipment
JPH0810978A (en) Laser beam machining head
WO2016002570A1 (en) Laser processing mask
JPS6262321A (en) Laser light absorber
JP2000349372A (en) Gas laser beam absorber